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m What is eXtreme Programming

m Why eXtreme Programming?
Social analysis

Cognitive analysis
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Problems in software development

m Google: "problems with software development”
Requirements are complex
Clients usually do not know all the requirements in advance
Requirements may be changing
Frequent changes are difficult to manage
Process bureaucracy (documents over development)
It takes longer
The result is not right the first time
It costs more

Applying the wrong process for the product
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Size of project Early On-Time Delayed Cancelled

1 function point 14.68% 83.16% 1.92% 0.25%

10 function points 11.08% 81.25% 5.67% 2.00%

100 function points 6.06% T4.77% 11.83% 7.33%
1,000 function points 1.24% 60.76% 17.67% 20.33%
10,000 function points 0.14% 28.00% 23.83% 48.00%
100,000 function points 0.00% 13.67% 21.33% 65.00%
Average 5.53% 56.94% 13.71% 23.82%

Table 1: Percentage of projects early, on-time, late, canceled
(from Patterns of Software Systems Failure and Success, by Capers Jones)

Sum
100.00%
100.00%
100.00%
100.00%
100.00%
100.00%
100.00%
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Economics of
software development

— cost of change /

Requirements Analysis Design Implementation Testing Production
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What if...

— cost of change
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What is eXtreme Programming

.N"wyna nnny exXtreme Programming =

Differences from traditional methodologies

Emphasis on people vs. development activities & schedule

XP specifies how to behave; still leaves freedom

12 practices

4 values: feedback, simplicity, communication, courage

The meaning of ‘eXtreme’

Optimum: teams up to 12 developers; can be adjusted

to bigger teams. 10
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Why XP?
m Survey:
31 XP/Agile-methods early adopter projects
14 firms
Findings:
m Cost reduction: 5-7% on average

m Time to market compression: 25-50% reduction

This datum will be explained later
12
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Why XP?

m big companies using XP in at least some capacity
=1 Ford Motor, Chrysler, IBM, HP
m smaller software houses:

0 Mayford Technologies

0 RoleModel Software

m tutorials: Industrial Logic, Object Mentor

13
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Project Timetable: 1 release - 3 iterations
(2 months - 9 weeks)

Business Da

Business Day |
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Business Day

m On-site customer

m Planning game

m Small releases @
m Simple design =

Source : http://www.rolemodelsof tware.com/

m Metaphor

16




Business Day —

m 5 practices (out of 12)
Planning game
On-site customer
Small releases
Simple design
Metaphor

Reflection

m Planning game

All developers participate
All have the same load

All developers get an
overview of the entire
development process

Simple means
Very detailed

Levels of abstraction
17

Business Day —

m 5 practices (out of 12)
Planning game
On-site customer
Small releases
Simple design
Metaphor

Reflection

m On-site customer

Customer’s on-going
feedback

m Small releases

On-going opportunity to
update/change
requirements

18
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Business Day — Reflection

m 5 practices (out of 12)
Planning game
On-site customer
Small releases
Simple design
Metaphor

m Simple design

Develop only what is
needed for your
development task

m Metaphor

Bridges customers-

developers-business gaps

19

Development Day

Pair programming
Code standards
Refactoring

Simple design

Collective ownership

Source: http://www.rolemodelsoftware.com/

Test driven development (acceptance, unit-test)

Continuous integration (one integration machine)

Sustainable pace (40-hour week)

20
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Development Day - Reflection

m The development environment
1 All see all; fosters communication
m Stand-up meeting
o All know what all do
m Pair programming
1 Each task is thought on two levels of abstraction
m Unit test (automatic test first)
O First: improves understanding; Automatic: testing is easy
1 Developers program and test
[ Testing becomes manageable
[ Success vs. failure

22
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Development Day - Reflection

m Continuous integration

Reduces integration risks in later stages

Collective ownership

Important in companies with high turnover

Coding standards

Refactoring and simple design

Code improvement is part of the methodology (though it doesn't
produce code), gradual process

Sustainable pace (40-hour week)

Intense and productive work, developers are not tired 23

Development and Business Days — Reflection

Code/Technical Human/Social
Perspective Perspective

Refactoring Collective ownership
Simple design Pair programming
Coding standards Sustainable pace
Testing On-site customer
Continuous integration  |Planning game
Small releases Metaphor

24
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The 12 XP practices

On=3nte CUSTOMER,

PlANN]NingE

TONT

A0 HovrWeeg

METApHOR,

Note:

_ nothing is new;
SIMple Desien gathering the
practices

together is XP
»Taf.m\-r"'smk‘ RELSas9 uniqueness

CollecniVE OWNERSH i <l CoNTINUOUS TNTEGR ATADN

FIGURE 4. The practices support each other

Source: Beck, K. (2000). eXtreme Programming explained, Addison Wesley.
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What is eXtreme Programming

m Differences from traditional methodologies
All developers are involved with requirements-design-code-testing

Emphasis on people vs. development activities & schedule

XP specifies how to behave; still leaves freedom and place for creativity
m The meaning of ‘eXtreme’
m 12 practices

m 4 values: feedback, simplicity, communication, courage

26
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What is eXtreme Programming

m Agile Software Development Methodology
Other agile methods: SCRUM, Feature Driven
Development, DSDM
All acknowledge that the main issue of software

development is people: customers, communication

m Manifesto for Agile Software Development:

http://agilemanifesto.orqg/

m eXtreme Programming: Kent Beck, 1996, Chrysler

27

Why XP?
m You do not do XP to save money;

However, XP shortens time to market

m XP is a mature software development

method

28
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Why XP?
m Survey:
31 XP/Agile-methods early adopter projects, 14 firms
Findings:
m Cost reduction: 5-7% on average

m [ime to market compression: 25-50% reduction in

time

29

Why XP? — Analysis
m Shorter development period:

Code is easy-to-work with:
m less bugs: unit tests
m code is more readable & workable (invest now to gain benefits
later):pair programming, refactoring, coding standards
Development is manageable and controlled:
= accurate estimation: small releases

= meets customer needs: customer on-site, planning game,

acceptance tests 30
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Why XP? — Analysis
m Shorter development period (cont):

Knowledge sharing, if one leaves everything continues
as usual: pair programming, collective ownership
Production is increased: pair programming (work all the time),

sustainable pace

Cost for requirements change/update/elaboration is

CONSTANT: simple design, planning game (redundant features

are not added by customer and developers)
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Why XP?

Barry W. Boehm (1981). Software Engineering Economics,
Englewood Cliffs, N.J.: Prentice Hall.

63 software development projects in corporations such as IBM.

Phase of requirement change Cost Ratio
Requirements 1
Design 3-6
Coding 10
Development testing 15-40
Acceptance testing 30-70
Operation 40-1000 .
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Why XP?

m Under the assumption that “the later a requirements is
introduced the more expensive it is”, customers (and

developers) try to make a “complete” list of requirements.

m Under the assumption that “cost for introducing an update in
the requirements is constant”, customers (and developers)
do not assume what the customer will need and develop

exactly and only what is needed.
33

Why XP?
m You do not use XP to save money;

However, XP shortens time to market

m XP is a mature software development

method (at least CMM level 3)

34
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XP in Practice: Conceptual Changes

m XP encourages:
Cooperation (vs. knowledge-is-power)
Simplicity (vs. habit-of-high-complexity)

Change in work habits

35
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Extreme Pro;pre mming
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Splkc Capyright 2008 . Doavan Wells
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Release Plan
Months
Iteration Plan
Weeks

Acceptance Test

Extra‘ma Programming

Days
Stand Up Meeting
One Day
Pair Negotiation
Hoursj
Unit Test
Minutes
Pair Programming
Seconds
Copyright 20001 1. Donovan Wells Code
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A Day in the Life...

Standup Meeting @ 9AM
T
Pair Up
/ l
/

Test =— Q&A

AN

Cade — Refactor

/

Integrate or Toss

¢

Go Home (@ 5PM 41
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Why XP? — Cognitive and Social Analysis

J1'MNani N0 vVan DTN XP nina =
Game Theory: Prisoner’s Dilemma

Learning Theory: Constructivism

42




