eXtreme Programming
NIDIN 'OZ'N9 NIN'D7 NAIZITINN

[TN NURA"T
[1"1D0N ,D'YTANI N1AI71D0N NRIINT NP7NNN
oritha@techunix.technion.ac.il

g e
eXtreme Programming
N1JIN 'O N9 NIN'O7 NAITINN

m What is eXtreme Programming

m Why eXtreme Programming?
Social analysis

Cognitive analysis

F—
eXtreme Programming
N1JIN 'O N9 NIN'O7 NAITINN

-NDIN NIN'SA DI'A TY DI1I'0") 1!‘.\0-'71) u

NN"95XNA NI'TDAINN NI‘YYyan |an

?2010IN 'V'Nd

" S
Problems in software development

m Google: "problems with software development”
Requirements are complex
Clients usually do not know all the requirements in advance
Requirements may be changing
Frequent changes are difficult to manage
Process bureaucracy (documents over development)
It takes longer
The result is not right the first time
It costs more

Applying the wrong process for the product

nN1DIN 'O'"'NS 7Y NNN"'OXN NI'va

PN N1DIN NIN'OS] N'NMMKN NIMDI'oON

(*ar'7nd0n X'71) 'YIIRN VAN

N12N ,0'aN LI ATY-'NIEYINYG 17 NN s
QIN'Y-IX ,NIIX N2AN "2 MIYPN ,NIMdIN Y

.,V ,VT'N

D"IN NIN '"O2'INS

Size of project Early On-Time Delayed Cancelled

1 function point 14.68% 83.16% 1.92% 0.25%

10 function points 11.08% 81.25% 5.67% 2.00%

100 function points 6.06% T4.77% 11.83% 7.33%
1,000 function points 1.24% 60.76% 17.67% 20.33%
10,000 function points 0.14% 28.00% 23.83% 48.00%
100,000 function points 0.00% 13.67% 21.33% 65.00%
Average 5.53% 56.94% 13.71% 23.82%

Table 1: Percentage of projects early, on-time, late, canceled
(from Patterns of Software Systems Failure and Success, by Capers Jones)

Sum
100.00%
100.00%
100.00%
100.00%
100.00%
100.00%
100.00%

D"IN) NIN '"O2'INS

D'awnl NINIEY?7 0'nwIn D™721TAN N1dIND "ximn 75%
NIYT? D'MRNN DI'RY IX 77D UIN'wd DI'RY IN 17D

JInp'

Based on: Mullet, D. (July, 1999). The Software Crisis, Benchmarks Online - a monthly

publication of Academic Computing Services 2(7).

-1 MY 772 NN A"AINA NN DN v DAt NIy
$ "2 59.5
The National Institute of Standards and Technology (NIST), New Release of June 28, 2002.

$ 1”722 200 n1dima 2"nxa wpwin 2003 v Q2 -1 nXIwN DY ®

" JE
Economics of
software development

— cost of change /

Requirements Analysis Design Implementation Testing Production

.
What if...

— cost of change

S

Time

F—
What is eXtreme Programming

.N"wyna nnny exXtreme Programming =

Differences from traditional methodologies

Emphasis on people vs. development activities & schedule

XP specifies how to behave; still leaves freedom

12 practices

4 values: feedback, simplicity, communication, courage

The meaning of ‘eXtreme’

Optimum: teams up to 12 developers; can be adjusted

to bigger teams. 10

YN M

D'NP71 DMA0POND 17ANNYW NI'DAIMIEDDIY =
nimixye?

1

Why XP?
m Survey:
31 XP/Agile-methods early adopter projects
14 firms
Findings:
m Cost reduction: 5-7% on average

m Time to market compression: 25-50% reduction

This datum will be explained later
12

'—
Why XP?

m big companies using XP in at least some capacity
=1 Ford Motor, Chrysler, IBM, HP
m smaller software houses:

0 Mayford Technologies

0 RoleModel Software

m tutorials: Industrial Logic, Object Mentor

13

" N
Project Timetable: 1 release - 3 iterations
(2 months - 9 weeks)

Business Da

Business Day |

n'oMy

0D 4 7y NNNYIN A7ITInNn
(feedback) alwn =

(Simplicity) nivwos =
(Communication) mniwpn =
(Courage) ynix m

M ,NDIN NN 12 2 0'xvnn 178 0D
D210 YN NTIAY

15

Business Day

m On-site customer

m Planning game

m Small releases @
m Simple design =

Source : http://www.rolemodelsof tware.com/

m Metaphor

16

Business Day —

m 5 practices (out of 12)
Planning game
On-site customer
Small releases
Simple design
Metaphor

Reflection

m Planning game

All developers participate
All have the same load

All developers get an
overview of the entire
development process

Simple means
Very detailed

Levels of abstraction
17

Business Day —

m 5 practices (out of 12)
Planning game
On-site customer
Small releases
Simple design
Metaphor

Reflection

m On-site customer

Customer’s on-going
feedback

m Small releases

On-going opportunity to
update/change
requirements

18

10

Business Day — Reflection

m 5 practices (out of 12)
Planning game
On-site customer
Small releases
Simple design
Metaphor

m Simple design

Develop only what is
needed for your
development task

m Metaphor

Bridges customers-

developers-business gaps

19

Development Day

Pair programming
Code standards
Refactoring

Simple design

Collective ownership

Source: http://www.rolemodelsoftware.com/

Test driven development (acceptance, unit-test)

Continuous integration (one integration machine)

Sustainable pace (40-hour week)

20

11

* N

nTIAVn N2'a0

21

JF——
Development Day - Reflection

m The development environment
1 All see all; fosters communication
m Stand-up meeting
o All know what all do
m Pair programming
1 Each task is thought on two levels of abstraction
m Unit test (automatic test first)
O First: improves understanding; Automatic: testing is easy
1 Developers program and test
[Testing becomes manageable
[Success vs. failure

22

" S
Development Day - Reflection

m Continuous integration

Reduces integration risks in later stages

Collective ownership

Important in companies with high turnover

Coding standards

Refactoring and simple design

Code improvement is part of the methodology (though it doesn't
produce code), gradual process

Sustainable pace (40-hour week)

Intense and productive work, developers are not tired 23

Development and Business Days — Reflection

Code/Technical Human/Social
Perspective Perspective

Refactoring Collective ownership
Simple design Pair programming
Coding standards Sustainable pace
Testing On-site customer
Continuous integration |Planning game
Small releases Metaphor

24

13

The 12 XP practices

On=3nte CUSTOMER,

PlANN]NingE

TONT

A0 HovrWeeg

METApHOR,

Note:

_ nothing is new;
SIMple Desien gathering the
practices

together is XP
»Taf.m\-r"'smk‘ RELSas9 uniqueness

CollecniVE OWNERSH i <l CoNTINUOUS TNTEGR ATADN

FIGURE 4. The practices support each other

Source: Beck, K. (2000). eXtreme Programming explained, Addison Wesley.
25

" S
What is eXtreme Programming

m Differences from traditional methodologies
All developers are involved with requirements-design-code-testing

Emphasis on people vs. development activities & schedule

XP specifies how to behave; still leaves freedom and place for creativity
m The meaning of ‘eXtreme’
m 12 practices

m 4 values: feedback, simplicity, communication, courage

26

14

.
What is eXtreme Programming

m Agile Software Development Methodology
Other agile methods: SCRUM, Feature Driven
Development, DSDM
All acknowledge that the main issue of software

development is people: customers, communication

m Manifesto for Agile Software Development:

http://agilemanifesto.orqg/

m eXtreme Programming: Kent Beck, 1996, Chrysler

27

Why XP?
m You do not do XP to save money;

However, XP shortens time to market

m XP is a mature software development

method

28

15

Why XP?
m Survey:
31 XP/Agile-methods early adopter projects, 14 firms
Findings:
m Cost reduction: 5-7% on average

m [ime to market compression: 25-50% reduction in

time

29

Why XP? — Analysis
m Shorter development period:

Code is easy-to-work with:
m less bugs: unit tests
m code is more readable & workable (invest now to gain benefits
later):pair programming, refactoring, coding standards
Development is manageable and controlled:
= accurate estimation: small releases

= meets customer needs: customer on-site, planning game,

acceptance tests 30

16

Why XP? — Analysis
m Shorter development period (cont):

Knowledge sharing, if one leaves everything continues
as usual: pair programming, collective ownership
Production is increased: pair programming (work all the time),

sustainable pace

Cost for requirements change/update/elaboration is

CONSTANT: simple design, planning game (redundant features

are not added by customer and developers)

31

Why XP?

Barry W. Boehm (1981). Software Engineering Economics,
Englewood Cliffs, N.J.: Prentice Hall.

63 software development projects in corporations such as IBM.

Phase of requirement change Cost Ratio
Requirements 1
Design 3-6
Coding 10
Development testing 15-40
Acceptance testing 30-70
Operation 40-1000 .

17

Why XP?

m Under the assumption that “the later a requirements is
introduced the more expensive it is”, customers (and

developers) try to make a “complete” list of requirements.

m Under the assumption that “cost for introducing an update in
the requirements is constant”, customers (and developers)
do not assume what the customer will need and develop

exactly and only what is needed.
33

Why XP?
m You do not use XP to save money;

However, XP shortens time to market

m XP is a mature software development

method (at least CMM level 3)

34

18

XP in Practice: Conceptual Changes

m XP encourages:
Cooperation (vs. knowledge-is-power)
Simplicity (vs. habit-of-high-complexity)

Change in work habits

35

v X
P 4 - Extreme Programming Project

Extreme Pro;pre mming
Test Scenatios

Mew Llser Story

User Stories ")
Requiraments Froject Velocity Bugs

Latest r

. Syst Release Custome
Architcctural, o Release “pign \-fersion Acceptanee approval . Small
. — e - :

Spike Plamnng@\ Tests Releases
Uncertain Confident
Estimates Ecstimates

Splkc Capyright 2008 . Doavan Wells

36

19

v '1 . ~
» 4« = , Planning/Feedback Loops &zmos
Release Plan
Months
Iteration Plan
Weeks

Acceptance Test

Extra‘ma Programming

Days
Stand Up Meeting
One Day
Pair Negotiation
Hoursj
Unit Test
Minutes
Pair Programming
Seconds
Copyright 20001 1. Donovan Wells Code
37
" JE
v '1
20 Iteration @eomou
rF.
Extreme Frogramming N U St
ew User Story,
Release Project Velocity
Plan)
Yser Stories Unfinished Tasks Leatn and
Cammunicate
Project . Iteration Functionality
Next welocity Iteration Flan Devel ; —aLatest
Iteration Planning evelopmen ;:M?—'Verswn
Failed Acceptance
Tests Day by Day
BUgS Capyright 2000 1. Deavas Wells
38

20

* JE
v _1
P 4 - | Development @gZoom out
Extreme Prourammmlj
Learn and
Communicate
Unfinished Pair Programming
Tteration Tasks Refactor M ercilessly New
Plan Too Much hove People Around . .
Tasks To Do Share CRC Cards Functionality
: 700% Unit
Stand Up Collective Tocts Passed
_ Meeting MextTask | Code Ownership
Failed Acceptance &"Q\ ar Failed &
TEV' ™ Acceptance Test i Accepm‘
Test Passed 1
Da'y by Day Capyright 2000 1. Doavan Wells Bug FlXeS
39
" JE
v 1 . .
P 4 - Collective Code Ownership @zuomout
Extreme Pro;_]remmln{:
Move People
CRC 0
Card Around 100%
Simple e 1 Unit
Design Chane We Tests
Complex Pgir Nead Passed
Froblem ailed Help Run All Unit
Next Task par peate Unit : New Unit Tests
or Failed Us . Test Pair _T , Continuoug |Run
aUnltaﬁ P m—- . Failed
Acceptance Test %S:ne Progrfmmlng Mew .Integratlon Acceptance
Test {Q\ Test Functionality Test
Simple Complex
Code Code
Acceptance
M Test
Refz_a,ctor Passed
Copright 2000 1 Dovan Wells Mercilessly
40

21

F—
A Day in the Life...

Standup Meeting @ 9AM
T
Pair Up
/ l
/

Test =— Q&A

AN

Cade — Refactor

/

Integrate or Toss

¢

Go Home (@ 5PM 41

" J
Why XP? — Cognitive and Social Analysis

J1'MNani N0 vVan DTN XP nina =
Game Theory: Prisoner’s Dilemma

Learning Theory: Constructivism

42

