
Introduction to CVS

Sivan Toledo
Tel-Aviv University

Goals of Source Management

• Ability to roll a project back if a bug was
introduced

• Release tagging
• Multiple developers
– Locking
– Or concurrent updates with merging

• Branches to fix bugs in old releases

Non Goals

• Not a build/configuration system (make,
autoconf/automake, MSVC projects, etc)

• Not a substitute for human management
–Who does what (concurrent updates hurt)
–When to commit changes, who gets notified
– when to release, etc

• Not a substitute for testing, QA, bug
tracking

• A defect in CVS: we want to track
changes to several sources, but can’t

The CVS Approach

• CVS=Concurrent Versions System
• Sources and their history are stored in a

repository
• Modules are checked out by developers
• Developers work on their local copies and

then commit changes to the repository
• Other developers can then update their

local copies

The Repository

Creating a Repository

cvs -d /home/stoledo/.../cvsroot init

• Creates an empty repository (will not
delete things in an existing repository)

• -d argument is the root; can specify a
default using CVSROOT environment
variable

More on Repositories

• You can access a repository using
– Direct access to files
/home/stoledo/.../cvsroot
w:\cvsroot

– A remote shell
setenv CVS_RSH ssh
:ext:dan@zoot.tau.ac.il/home/dan/cvsroot

– A CVS server (must be running)
:pserver:anoncvs@anoncvs.us.lyx.org/cvs/lyx
cvs login (type password, lyx in this case)

Basic CVS Usage

Starting a Project

• Create a directory with just the files you
want to source-manage
images/ main.cpp richedit.pro richedit.ui richedit.ui.h
richedit_he.ts
but not richedit.cpp since it was generated by designer

• cd to this directory & setenv CVSROOT

• Import the files and directories
cvs import —m "initial import" richedit sivan start
"initial import" is the log message for the operation
richedit is the path in the repository
sivan is a vendor tag (not really important)
start is a release tag

Checking Out a Project

• Move to a working directory
• cvs checkout richedit

• This creates a subdirectory richedit
which contains a copy of the project

• Each project directory also contains a CVS
subdirectory with CVS information; don't
touch these files

• The CVS directories contais a pointer to
the repository, so you don't need to
specify CVSROOT any more

Build and Test

• Now cd to the project's working directory
• Try to build: qmake richedit.pro; make

or whatever the build command is
• Hopefully this will work
• Run cvs update to update your sources

CVS will list files that are not up-to-date with respect to
the repository, and in particular all the generated files
(objects, etc) with a ? prefix: it knows nothing about
them

Modify and Commit

• Add some great feature to the program
• Run cvs update to update your sources
– Files that were updated by others but not by

you will be marked with a U prefix
– Files that you updated and were not touched

in the repository, or were updated by others
and the changes were successfully merged
(changed to different lines) are marked M

– Failed merges are marked C; will discuss
these later

Modify and Commit (Cont.)

• let's assume there were not conflics (C's)
• Build and test again if there were merges;

perhaps the merges resulted in sources
that don't compile or in bugs

• If everything works, cvs commit
• Like most CVS commands, commit works

recursively and will commit all your
changes; You can commit one by one

• You'll need to supply a log message using
—m or using a text editor

Revisions and Releases

Revisions of Files

• CVS takes a snapshot of each version of a
file that is committed or added. These are
called revisions and have numeric values,
starting at 1.1 (next comes 1.2, etc)

• You can retrieve any old revision using
cvs update -r 1.4 main.cpp

• CVS does not know about intermediate
states in your working directory

• CVS stores revisions compactly

Releases and Tags

• You can assign a symbolic name, called a tag,
to a particular revision of a file

• Particularly useful for tagging the current
revisions of all files of a project that participate
in a release of the product

• E.g., tag everything as belonging to release 2.0
cvs tag -c release-2-0
This tags everything and ensures (-c) that the
version we tag (in the repository) is identical to
the files in the working directory

More on Tags

• A single tag will correspond to a different
revision of each file, e.g., to 1.4 of
main.cpp and to 1.1 of richedit.pro

• You can checkout an old release
cvs checkout -r release-2-0 richedit
for example, to fix a bug in an old release
of your software

Branches

• The revisions of a file need not be a
simple chain; they can form a tree

• Suppose we are working on release 2.0
but a customer discovered a bug in
release 1.0 that must be fixed

• We create a branch at the release 2.0 tag
• Release 2.0 revisions have two children
– revisions in the chain leading to the 2.0

release
– revisions that are 1.0 bug fixes

Branches and Merging

• CVS allows you to merge branches
• E.g., to port a new feature of 2.0 back

into release 1.0 (perhaps a customer
needs the feature but cannot upgrade for
some technical reason)

• Don't count on this in your project
planning: you'll have to resolve conflicts

• More on branches and merging in the
manual; this is an advanced feature

Adding and Removing Files

Adding Files to the Repository

• cvs add newclass.cpp

• Not recursive! you can't cvs add
src/newclass.cpp, you must be in that
directory

• Still not in the repository
• cvs commit newclass.cpp

(cvs commit src/newclass.cpp will
work)

Removing Files from the
Repository

• rm oldclass.cpp
cvs remove newclass.cpp

• Will only remove non-existing files, or
cvs remove —f oldclass.cpp

• Still not in the repository
• cvs commit

• To rename, remove then add and commit

Removing Files from the
Working Directory

• Use cvs update —dP to ensure that files
that were deleted in the repository are
deleted in your working directory

• and that empty directories are removed

Conflicts and How
to Resolve Them

Conflicts

• If CVS discovers during update that your
changes overlap changes made in the
repository (relative to your revision), it will
put both changes in the file and ask you to
resolve
...
<<<<<<< main.cpp file name
exit(error==0 ? SUCCESS : FAILURE); your code

=======
exit(!!error); new code

>>>>>>> 1.5 repository rev

Resolving Conflicts

• Select one version or the other, or write
new code to replace the conflicting code
exit(error==0 ? SUCCESS : FAILURE);

• CVS will not commit the file until all the
conflict markers are gone (<<<<<<< etc)

• As in other situations, it's best to avoid
conflicts altogether

• CVS helps, but you still have to do the
hard work

Text Files, Binary Files

CVS assumes that
files contain text

• it automatically converts between line
separators (\n in linux and unix, \r\n in
windows, \r in MacOS)

• it assumes changes don't conflict if they
are on different lines

• it performs keyword substitution
$Author$, $Revision$, Id, etc

• it modifies your local copy to show
conflicts and to allow you to resolve them

This Can Cause Trouble

• A binary file (e.g. an image or sound file)
may become corrupted by line-separator
substitution

• A binary file may become corrupted by
keyword substitution; e.g., PDF files have
pointers in them

Or May be Useless

• Some files are text, but are not meant to
be edited by a text editor
– Qt Designer .ui files; these are xml files (text),

but are meant to be edited in Qt Designer
– you probably won't be able to resolve the

conflict in a text editor

Dealing with “Binary” Files

• Specify -kb flag to commands to prevent
substitution and merging

• Better yet, specify as a sticky tag: a tag
that gets propagated through revisions,
and that gets used as a command option
cvs admin -kb images/textleft.png
or
cvs add -kb images/textleft.png

Other CVS Tools

Additional CVS Commands

• cvs admin
• cvs diff
• cvs export
• cvs history/annotate/log/status/
editors/watchers

• cvs edit/unedit/watch
• cvs rdiff
• cvs rtag
• cvs release

.cvsrc

• A .cvsrc file in your home directory
allows you to specify default options to
cvs and its subcommands

• cvs -z6
update -dP
diff -u

Reservations and Notifications

• CVS supports reserved checkouts
(locking) but not very well
cvs admin -l

• CVS supports notification about who is
editing a file, when it is checked in, etc
cvs watch on
cvs edit
cvs unedit

CVS and other Source
Management Systems

Other Systems

• SourceSafe: MicroSoft product,
integrated with Visual Studio

• ClearCase: transparent, takes over file-
system functionality, commercial

• BitKeeper: new, now used to manage
Linux, both free and commercial licenses

• Aegis: free, better change control than
CVS

• ...

CVS’s Advantages

• Already installed on most Linux/Unix
systems; means you can always grab a
copy, fix it, and commit, even at a
customer’s site

• Available for Windows and MacOS
• Free
• Mature; used since approximately 1986
• GUI interfaces
• Web interfaces

That’s it, folks

