
Version Control using

Subversion

Some slides were taken from:

http://www.stat.washington.edu/albert/presentations/2005-11-02-subversion/

By Albert Young-Sun Kim

http://www.stat.washington.edu/albert/presentations/2005-11-02-subversion/
http://www.stat.washington.edu/albert/presentations/2005-11-02-subversion/
http://www.stat.washington.edu/albert/presentations/2005-11-02-subversion/
http://www.stat.washington.edu/albert/presentations/2005-11-02-subversion/
http://www.stat.washington.edu/albert/presentations/2005-11-02-subversion/
http://www.stat.washington.edu/albert/presentations/2005-11-02-subversion/
http://www.stat.washington.edu/albert/presentations/2005-11-02-subversion/
http://www.stat.washington.edu/albert/presentations/2005-11-02-subversion/
http://www.stat.washington.edu/albert/presentations/2005-11-02-subversion/

Why use version control?

• Keep past versions of files/directories

• Manage file sharing

– Specifically: Prevent people from erasing

each other‟s modifications

1. At the Heart of Subversion:

The Repository

• Typical Client/Server

System

• The Repository is a kind

of file server.

However, Subversion

remembers every change

ever written to it!

The Problem of File Sharing

• We want to avoid the

following scenario:

Overwriting each

other’s

modifications

One Solution: Lock-Modify-Unlock

• Only one person may

modify a file at any

time.

• While this occurs,

others can read the

file, but not write to it

Problems with Lock-Modify-Unlock

• Can cause unnecessary delays

– Say Harry forgets to unlock his file before

going on vacation

• Even more unfortunate if Harry and Sally‟s

changes don‟t overlap

Better Solution: Copy-Modify-Merge

Subversion does this!

8

Case Study (1)

Harry Sally

Test.java revision 11

:

Total+=amount;

:

Test.java revision 11

:

Total+=amount;

:

if (amount > 10) {

Total+=amount;

}

: Total++;

svn update

svn commit

- new revision: 12

done

svn update

- new revision: 13

done

- Merging

differences

between 11 and 12

into Test.java

svn commit

1

2

3

4





Notes on Merge

• When changes don‟t overlap, merge is
automatic

• When they do overlap, this is called a conflict.
There are methods to efficiently handle this.

• May seem chaotic, but conflicts are rare and the
time it takes to resolve conflicts is far less than
the time lost by a locking system.

(Assuming good communication between users,
of course!)

10

Case Study (2)

Harry Sally

Test.java revision 11

:

Total+=amount;

:

Test.java revision 11

:

Total+=amount;

:

Total+=tax;

svn update

svn commit

- new revision: 12

done

svn update

- Merging differences

between 11 and 12

into Test.java

- rcsmerge: warning:

conflicts during merge

- cvs update:conflicts

found

1

2

3

4

Total+=subtotal;

2. Working Copies

• A Subversion working copy is an ordinary

directory containing checked-out copies of

files/directories in the repository

• Your working copy is your own private work

area:

Subversion will never incorporate other people's

changes, nor make your own changes available

to others, until you explicitly tell it to do so

3. Revisions

• Each time the repository accepts a commit, this
creates a new state of the filesystem tree, called
a revision.

Each revision is assigned a

unique natural number, one

greater than the number of

the previous revision

13

Tagging and Branching

• Tagging: giving meaningful name to a certain

revision

• Branch : a fork of the repository (copy)

 experimental work, release, or bug fixing

Trunk

r341r98 r344r110

firefox3-branch

r343

release

• Merge: copying changes between branches

4. Getting Started

1. Create repository

2. Import initial files and directories to

repository

3. Initial checkout in order to obtain a

working copy

4. Basic Work Cycle

5. Basic Work Cycle:

(Also most common commands)

a) Update your working copy
• svn update

b) Make changes
• svn add

• svn delete

• svn copy

• svn move

c) Examine your changes
• svn status

• svn diff

• svn revert

5. Basic Work Cycle

d) Merge other‟s changes
• svn update

• svn resolved

e) Commit your changes
• svn commit

f) (Optional) Examining History
• svn log

• svn list

• svn cat

Windows Integration (TortoiseSVN)

Eclipse Integration (subclipse)

SVN on Google Code

20

Do and Don‟t (CVS)

• Do

 Enter meaningful comments

 Check in only when files are stable

 “cvs update” before “cvs commit”

• Don‟t

 Change files in the „CVS‟ subdirectory

 Change or create files in repository directly

 Change layout of a shared file

