
Javaפיתוח מערכות תוכנה מבוססות

אוהד ברזילי

ohadbr@tau.ac.il

אוניברסיטת תל אביב

mailto:ohadbr@tau.ac.il

Based on: K. Beck: Extreme Programming Explained.

E. M. Burke and B.M. Coyner: Java Extreme Programming Cookbook.

L. Crispin and T. House: Testing Extreme Programming

http://www.extremeprogramming.org

And slides of: Kent Beck and Ward Cunningham,

Laurie Williams, Vera Peeters and Pascal Van Cauwenberghe,

Ian Sommerville:

http://www.comp.lancs.ac.uk/computing/resources/IanS/SE7/Presentations/index.html

http://www.extremeprogramming.org/
http://www.comp.lancs.ac.uk/computing/resources/IanS/SE7/Presentations/index.html
http://www.comp.lancs.ac.uk/computing/resources/IanS/SE7/Presentations/index.html
http://www.comp.lancs.ac.uk/computing/resources/IanS/SE7/Presentations/index.html

The Planning Game:

How it works

The Planning Game Rationale
 http://c2.com/cgi/wiki?PlanningGame

 Planning is an emotional minefield:
• Of course Development would like to program faster.

• Of course the project manager would like to be able to say exactly how fast
Development can go.

• Of course Business would like to be able to say exactly what they want.

• Of course Business would rather not change its mind.

 When any of the participants in planning begin acting these
wishes (or rather in accordance with the fears that lie behind
each wish), then planning doesn't work well.

 The Planning Game: Create a little emotional distance from planning by
treating it as a game (hence the name). The game has a goal, playing
pieces, players, and rules for allowable moves.

http://c2.com/cgi/wiki?PlanningGame
http://c2.com/cgi/wiki?PlanningGame
http://c2.com/cgi/wiki?PlanningGame

User Story

 Purpose

• To get the user tell what the system has to do first, and what it

doesn't need to do at the moment

• The user is learning. You are learning. We are learning together.

 Properties of a Good Story

• Testable -- You can write automatic tests to detect the presence

of the story.

• Progress -- The customers side of the team is willing to accept

the story as a sign of progress toward their larger goal.

• Bite-sized -- The story should be completable within the iteration.

• Estimable -- The technical side of the team must be able to

guess how much of the team's time the story will require to get

working.

The Planning Game (1)
Pieces: The basic playing piece is the UserStory. Each Story is written

on an index card. Stories have a value and a cost, although this is
a little tricky because the value of some Stories depends on the
presence or absence of other Stories (see
StoryDependenciesInXp), and the values and costs change over
time.

Goal: The goal of the game is to put the greatest possible value of
stories into production over the life of the game.

Players: The players are Business and Development.

Moves:

 Write Story: Business can write a new Story at any time. For
purpose of the Planning Game, writing a Story just means assigning
it a value (in practice, it has to have enough information for
Development to assign it a cost).

http://c2.com/cgi/wiki?UserStory
http://c2.com/cgi/wiki?StoryDependenciesInXp

 Estimate Story: Development takes every story and assigns it a

cost of 1, 2, or 3 weeks of IdealProgrammingTime (c.f.

ExtremeTimeSpans) If the estimate is higher, Business splits the

story. (This may result in the story being implemented over more

than one Iteration.) If the estimate is lower, Business merges it with

another story. (Sometimes we just batch small stories willy-nilly until

they add up to at least a week, for estimation purposes. Don't try

that at home.) We use a LoadFactor (see ProjectVelocity) of 3 real

weeks per ideal week to convert the final schedule to real time.

 Make Commitment: Business and Development work together to

decide what stories constitute the next release and when it will be

ready to put into production. There are two ways to drive the

commitment, Story Driven and Date Driven.

The Planning Game (2)

http://c2.com/cgi/wiki?IdealProgrammingTime
http://c2.com/cgi/wiki?ExtremeTimeSpans
http://c2.com/cgi/wiki?LoadFactor
http://c2.com/cgi/wiki?ProjectVelocity

 Story Driven Commitment: Business starts putting the Stories for

the next release on the table. As each Story is introduced,

Development calculates and announces the release date. This

move stops when Business is satisfied that the Stories on the table

make sense as the next release.

 Date Driven Commitment: Business picks a release date.

Development calculates and announces the cumulative cost of

Stories they can accomplish between now and the date. Business

picks Stories whose cost adds up to that number.

The Planning Game (3)

 Value (and Risk?) First: Development orders the Stories in a
commitment so:
1. A fully working but sketchy system is completed immediately (like in a

couple of weeks)

2. More valuable Stories are moved earlier in the schedule
(BusinessValueFirst)

3. Riskier Stories are moved earlier in the schedule (WorstThingsFirst)

 Overcommitment Recovery: Development had predicted they
could do 150 units of stories between now and the deadline. Based
on measuring ProjectVelocity, they find and immediately announce
that they can only do 100. Business selects the 100 units of Stories
to retain, deferring the other Stories to a future release. (Or highly
unlikely: Business decides to defer the deadline to get the extra 50
units done.)

The Planning Game (4)

http://c2.com/cgi/wiki?BusinessValueFirst
http://c2.com/cgi/wiki?WorstThingsFirst
http://c2.com/cgi/wiki?ProjectVelocity

 Change Value: Business changes the value of a Story. In

response, Development may change the order of Stories not yet

completed.

 Introduce New Story: Business writes a new Story. Development

estimates it. Business defers Stories in the current Commitment

whose cumulative cost is the cost of the new Story. Development

re-evaluates Value and Risk First.

 Split Story: Business splits a Story into two or more. Business

assigns a value to each, and Development assigns a cost to each.

Typically this is done because resources do not permit the whole

story to be done soon enough.

The Planning Game (5)

 Spike: Business can divert Project resources to do a

throwaway Spike to fight a fire or prove a concept. If this

Spike is anything more than a temporary fix, Business

makes a UserStory to account for it. That Story is

scheduled according to Value And Risk First. Regular

spikes, especially fire-fighting ones, will affect the

LoadFactor.

 Re-estimate: Development estimates the remaining

stories in the Commitment again. This can spark an

OvercommitmentRecovery.

The Planning Game (6)

http://c2.com/cgi/wiki?UserStory
http://c2.com/cgi/wiki?LoadFactor
http://c2.com/cgi/wiki?OvercommitmentRecovery

Story Cards for a Coffee Maker

Story Cards for a Coffee Maker

Story card for document

downloading

Downloading and pr inting an article

First, you se lect the a rtic le that you want from a dis played lis t. You
then have to te ll the sys tem how you will pay for it - this can e ither
be through a s ubs cription, through a company account or by credit
card.

After this, you ge t a copyright form from the sys tem to fill in and,
when you have submitted this, the a rtic le you want is downloaded
onto your computer.

You then choos e a printer and a copy of the article is printed. You
tell the system if printing has been successful.

If the article is a print-only article, you canױt keep the PDF vers ion
so it is automatically deleted from your computer.

Release Planning

A release round includes 3 phases:

• Exploration phase

• Commitment Phase

• Steering Phase

Release Planning

Exploration phase:
 Goal: Next release planned that maximizes value/effort
 Result: list of stories (and tasks) to be included in next release
 Moves: Write a story, estimate a story, split a story.

Commitment phase:
• Goal: Customer sorts stories by value;

Programmers sort stories by risk.

• Moves: sort by value, sort by risk, set velocity, choose scope.

Steering phase:
• Goal: Update the plan.

• Moves: iteration, recovery, new story, re-estimate.

Iteration Planning

 An iteration takes from 1-3 weeks.

 Stories are split into tasks.

 Same game as in the release round.

Task cards for document

downloading

Task 1: Implement principal workflow

Task 2: Implement article catalog and selection

Task 3: Implement payment collection

Payment may be made in 3 different ways. The user
selects which way they wis h to pay. If the user
has a library subs cription, then they can input the
subscriber key which should be checked by the
system. Alternatively, they can input an organis ational
account number. If this is valid, a debit of the cos t
of the article is pos ted to this account. Finally, they
may input a 16 digit credit ca rd number and expiry
date. This should be checked for validity and, if
valid a debit is posted to that credit ca rd account.

Project parameters and evaluation

 4 control variables:

• Cost.

• Time

• Quality

• Scope

 3 control variables – selected by Customers, Managers.

The remaining variable – selected by the Development team.

 Suggestion: Fix Cost, Time, Quality

 Tune Scope accordingly.

XP and Fixed Price

 How can you do a fixed price / fixed date / fixed scope contract if
you play the Planning Game?

 You will end up with a

fixed price / fixed date / roughly variable scope
contract.

 Beck says: “Every project I've worked on that had fixed price
and scope ended with both parties saying, "The requirements
weren't clear.“

 Instead of fixed price/date/scope, the XP team offers something
more like a subscription.

 A 12-month contract might put the system into production after three
or four months, with monthly or bimonthly releases thereafter.

XP and Visual Design

 Advantages of visual design: Provides

• Clues on a design problem:
» Too many elements in the picture.

» Obvious asymmetry.

» Many more lines than boxes (high coupling).

• Speed.

 Problems of visual design: No feedback about
• Test passing.

• Simple code.

 Strategy:

• Draw a few pictures at a time.

• Implement in testing + code (+ refactoring).

• Do not save implemented pictures, since the decisions will probably
change.

• Draw pictures on a whiteboard.
•

 Possibly: Use a reverse engineering tool for getting a visual description of the
system, If needed.

XP Roles and responsibilities

Programmer - writes tests and then code.

Customer - writes stories and functional tests.

Tester - helps customer write tests and runs them.

Tracker - gives feedback on estimates and process on iterations.

Coach - person responsible for whole process.

Consultant - supplies specific technical knowledge needed.

Manager - makes decisions.

Handling Problems

Underestimation

 Sometimes too great a commitment will be made.

 Check to see if rules are being followed.

 If stories cannot be completed, ask the user to choose a

subset.

– Other stories will be finished later.

Uncooperative Customers

 Some customers won’t play the game.

 XP relies on trust.

 Don’t move on based on guesses.

 If customer never makes an effort, perhaps the system

isn’t worth being built.

Turnover

 If programmers leave, they don’t take any information

that only they have.

 Tests exist for every feature, so nothing can be broken

by ignorance.

 New people can be trained by pairing with experienced

programmers.

Changing Requirements

 This isn’t a problem for XP as it is for other development

models.

 Have only planned for today, won’t have to change our

plans.

 New features will just be added to the stories.

XP Planning/Feedback times

