
Javaפית וח מערכות תוכנה מבוס ס ות

אוהד ברזילי
ohadbr@mta.ac.il

 יפו–המ כל לה הא ק דמית תל אביב

mailto:ohadbr@mta.ac.il

Based on: K. Beck: Extreme Programming Explained.
E. M. Burke and B.M. Coyner: Java Extreme Programming Cookbook.
L. Crispin and T. House: Testing Extreme Programming
http://www.extremeprogramming.org

And slides of: Kent Beck and Ward Cunningham,
Laurie Williams, Vera Peeters and Pascal Van Cauwenberghe,
Ian Sommerville:

http://www.comp.lancs.ac.uk/computing/resources/IanS/SE7/Presentations/index.html

http://www.extremeprogramming.org/
http://www.comp.lancs.ac.uk/computing/resources/IanS/SE7/Presentations/index.html

The Rules

1. On Site Customer

At least one customer is always present.

This customer is available full-time to:
• Answer questions about the system.
• Negotiate the timing and scheduling of releases.
• Make all decisions that affect business goals.

The customer writes functional tests (with the help of
Development).

2. Pair Programming

All programming is done with two coders at the same
machine.

The programmers must share one mouse, keyboard,
screen, etc.

At least two people are always intimately familiar with every part of
the system, and every line of code is reviewed as it's written.

Here is how pair programming
works:

You pick out a user story for your next task
• A user story is a requirement from the customer.
• Stories are typically written on index cards, and the customer

decides which stories are the most important

You ask for help from another programmer.

The two of you work together on a small piece of
functionality:
• Try to work on small tasks that take a few hours.
• After the immediate task is complete, pick a different partner or

offer to help someone else

Pair Programming
http://www.pairprogramming.com/

With pair-programming:

•Two software engineers work on one task at one computer

•One engineer, the driver, has control of the keyboard and mouse and
creates the implementation

•The other engineer, the navigator, watches the driver’s implementation
to identify defects and participates in on-demand brainstorming

•The roles of driver and observer are periodically rotated between the two
software engineers

Pair-programming has been
popularized by the eXtreme
Programming (XP) methodology

Research Findings to Date
Strong anecdotal evidence from industry

“We can produce near defect-free code in less than half the time.”

Empirical Study
Pairs produced higher quality code

15% less defects (difference statistically significant)
Pairs completed their tasks in about half the time

58% of elapsed time (difference not statistically significant)
Most programmers reluctantly embark on pair programming

Pairs enjoy their work more (92%)
Pairs feel more confident in their work products (96%)

India Technology Company
24% increase in productivity (KLOC/Person-Month)
10-fold reduction in defects.

Pair Programming

3. Coding Standards

Agree upon standards for coding styles.

Promotes ease of understanding and
uniformity.

No idiosyncratic quirks that could complicate
understanding and refactoring by the entire team.

4. Metaphor

Use metaphors to describe how the system
should work.

These analogies express the functionality of the
system.

Provides a simple way to remember naming
conventions.

5. Simple Design

The code should pass all tests and fulfill certain
functionality while maintaining:

– Best communicate the intention (cohesion).

– No duplicate code.

– Fewest possible classes and methods.

– “Say everything once and only once.” (DRY)

Simplest thing:
XP developers always do the simplest thing that could
possibly work.

They never solve a more general problem than the
specific problem at hand.

They never add functionality sooner than needed.

6. Refactoring

The code may be changed at any time to
provide:

– Simplification.

– Flexibility.

– Reduced redundancy.

Automated unit tests are used to verify every change.

 וה פ שטהשר ו ת י ם
:ד ו גמא

public static void printOwing(double amount) {
//printBanner
System.out.println("********************");
System.out.println("*** Customer Owes **");
System.out.println("********************");

//print details
System.out.println ("name:" + name);
System.out.println ("amount" + amount);

}

public static void printOwing(double amount) {
printBanner();
printDetails(amount);

}

public static void printBanner() {
System.out.println("********************");
System.out.println("*** Customer Owes **");
System.out.println("********************");

}

public static void printDetails(double amount) {
System.out.println ("name:" + name);
System.out.println ("amount" + amount);

}

When to refactor?
Refactor constantly, throughout the lifetime of a project.

Each time you fix a bug or add a new feature, look for
overly complex code. Look for:
• Chunks of logic that are duplicated and refactor them into a

shared method.
• Try to rename methods and arguments so they make sense.
• Try to migrate poorly designed code towards better usage of

design patterns.

Writing unit tests is a great way to identify portions of
code that need refactoring. When you write tests for a
class, your test is a client of that class.

How to refactor?
1. Make sure you have a working unit test for the feature

you are about to refactor.

2. Do the refactoring, or a portion of the refactoring.

3. Run the test again to ensure you did not break anything.

4. Repeat steps 2-4 until you are finished with the
refactoring.

מקורות

:האנשים שזיהו את חשיבות הרעיון
• Ward Cunningham, Kent Beck

:ספר
• Martin Fowler, Refactoring, Improving the Design of Existing Code,

Addison Wesley 2000. (2nd edition 2005)

:אתר
• http://www.refactoring.com/

http://www.refactoring.com/

 refactoringsדו ג מאות מקטלוג ה
extract method / inline method
Introduce Explaining Variable
Move method/Field
Rename method
Add/Remove Parameter
Pull up/Push down Field/Method
Extract Subclass/Superclass/Interface
Collapse Hierarchy
Replace Inheritance with Delegation / vice versa

7. Testing
Tests are continuously written with the system.

All tests are run together at every step.

Customers write tests that will convince them
the system works.

Don’t proceed until current system passes ALL
tests.

Testing

Every piece of code has a set of automated unit tests, which are
released into the code repository along with the code.

The programmers write the unit tests before they write the code,
then add unit tests whenever one is found to be missing.

No modification or refactoring of code is complete until 100% of the
unit tests have run successfully.

Acceptance tests validate larger blocks of system functionality,
such as user stories.

When all the acceptance tests pass for a given user story, that
story is considered complete.

Unit tests
A unit test is a programmer-written test for a single piece
of functionality in an application.

Unit tests should be fine grained, testing small numbers
of closely-related methods and classes.

Unit tests should not test high-level application
functionality.

Testing application functionality is called acceptance
testing, and acceptance tests should be designed by
people who understand the business problem better than
the programmers.

Writing tests
All tests must be pass/fail style tests.

Grouping tests into test suites:

Now Testing Person.java:
Failure: Expected Age 2, but was 1 instead

Now Testing Account.java:
Passed!

Now Testing Deposit.java:
Passed!

Summary: 2 tests passed, 1 failed.

The entire suite of unit tests must always pass at 100% before any
code is integrated into the source repository.
Acceptance tests do not have to pass at 100%.

8. Continuous Integration
Newly finished code is integrated immediately. Unit tests
must run 100% successfully, both before and after each
integration.

System is rebuilt from scratch for every addition.

New system must pass all tests or new code is discarded.

Additions and modifications to the code are integrated into
the system on at least a daily basis.

9. Small Releases

A functional system is produced after a few
months.

System is released before the whole problem
is solved.

New releases regularly (daily to monthly).

Small releases

The smallest useful feature set is identified for the first
release.

Releases are performed as early and often as possible.

Each release: a few new features added each time.

10. The Planning Game
Schedule small tasks to be completed during
the current completed iteration.

Programmers will focus their attention on the
tasks at hand.

List of tasks is updated regularly.

11. Collective Ownership

All workers can access any of the code.

Any programmer can change any part of the
system if an opportunity for improvement exists.

The TEAM makes the product.

It works…
… in disciplined XP teams.

More info: http://www.xp.be/

12. Sustainable pace: 40 Hour Weeks

Consecutive weeks of overtime is not
allowed.

The need for overtime is a symptom of a
deeper problem.

Just Rules

These rules are just rules.

XP teammates agree to follow all of the rules.

An agreement can be made to change the
rules.

– Must address side effects of rule change.

Dependency of Practices

Source: Beck, K. (2000). eXtreme Programming explained,
Addison Wesley.

Open Workspace

Work on computers set up in the middle
of a large room with cubicles around the
edges.

Question: With how many people do you
want to work in one room?

Daily Standup Meeting
Stand up to keep it short.

Everybody
• Agrees what they will work on
• Raises problems & difficulties
• Knows what’s going on

Initial pairing.

More info: http://www.xp.be/

More info: http://www.xp.be/

More info: http://www.xp.be/

	פיתוח מערכות תוכנה מבוססות Java
	1. On Site Customer
	2. Pair Programming
	Here is how pair programming works:
	Pair Programming�http://www.pairprogramming.com/
	Research Findings to Date
	Pair Programming
	3. Coding Standards
	4. Metaphor
	5. Simple Design
	Simplest thing:
	6. Refactoring
	שרותים והפשטה�דוגמא:
	When to refactor?
	How to refactor?
	מקורות
	דוגמאות מקטלוג ה refactorings
	7. Testing
	Testing
	Unit tests
	Writing tests
	8. Continuous Integration
	9. Small Releases
	Small releases
	10. The Planning Game
	11. Collective Ownership
	12. Sustainable pace: 40 Hour Weeks
	Just Rules
	Dependency of Practices
	Open Workspace
	Daily Standup Meeting

