
28-May-07

RMI

Remote Method Invocation

Written by: Dave Matuszek

appeared originally at:
http://www.cis.upenn.edu/~matuszek/cit597-2003/

mailto:matuszek@central.cis.upenn.edu
http://www.cis.upenn.edu/~matuszek/cit597-2003/

2

“The network is the computer”*

Consider the following program organization:

If the network is the computer, we ought to be able to
put the two classes on different computers

* For an opposing viewpoint, see http://www.bbspot.com/News/2001/04/network.html

SomeClass AnotherClass

method call

returned object

RMI is one technology that makes this possible

computer 1 computer 2

3

RMI and other technologies

CORBA (Common Object Request Broker
Architecture) has long been king

CORBA supports object transmission between virtually any
languages
Objects have to be described in IDL (Interface Definition
Language), which looks a lot like C++ data definitions
CORBA is complex and flaky

Microsoft supported CORBA, then COM, now .NET
RMI is purely Java-specific

Java to Java communications only
As a result, RMI is much simpler than CORBA

4

What is needed for RMI

Java makes RMI (Remote Method Invocation) fairly
easy, but there are some extra steps
To send a message to a remote “server object,”

The “client object” has to find the object
Do this by looking it up in a registry

The client object then has to marshal the parameters (prepare
them for transmission)

Java requires Serializable parameters
The server object has to unmarshal its parameters, do its computation,
and marshal its response

The client object has to unmarshal the response

Much of this is done for you by special software

5

Terminology

A remote object is an object on another computer
The client object is the object making the request
(sending a message to the other object)
The server object is the object receiving the request
As usual, “client” and “server” can easily trade roles
(each can make requests of the other)
The rmiregistry is a special server that looks up objects
by name

Hopefully, the name is unique!

rmic is a special compiler for creating stub (client) and
skeleton (server) classes

6

Processes

For RMI, you need to be running three processes
The Client
The Server
The Object Registry, rmiregistry, which is like a DNS
service for objects

You also need TCP/IP active

7

RMI Architecture

8

Interfaces
Interfaces define behavior
Classes define implementation

Therefore,
In order to use a remote object, the client must know its
behavior (interface), but does not need to know its
implementation (class)
In order to provide an object, the server must know both its
interface (behavior) and its class (implementation)

In short,
The interface must be available to both client and server
The class should only be on the server

9

Classes

A Remote class is one whose instances can be accessed
remotely

On the computer where it is defined, instances of this class
can be accessed just like any other object
On other computers, the remote object can be accessed via
object handles

A Serializable class is one whose instances can be
marshaled (turned into a linear sequence of bits)

Serializable objects can be transmitted from one computer to
another

It probably isn’t a good idea for an object to be both
remote and serializable

10

Conditions for serializability

If an object is to be serialized:
The class must be declared as public
The class must implement Serializable
The class must have a no-argument constructor
All fields of the class must be serializable: either
primitive types or serializable objects

11

Remote interfaces and class

A Remote class has two parts:
The interface (used by both client and server):

Must be public
Must extend the interface java.rmi.Remote
Every method in the interface must declare that it throws
java.rmi.RemoteException (other exceptions may also
be thrown)

The class itself (used only by the server):
Must implement a Remote interface
Should extend java.rmi.server.UnicastRemoteObject
May have locally accessible methods that are not in its
Remote interface

12

Remote vs. Serializable

A Remote object lives on another computer (such as
the Server)

You can send messages to a Remote object and get responses
back from the object
All you need to know about the Remote object is its interface
Remote objects don’t pose much of a security issue

You can transmit a copy of a Serializable object
between computers

The receiving object needs to know how the object is
implemented; it needs the class as well as the interface
There is a way to transmit the class definition
Accepting classes does pose a security issue

13

Security

It isn’t safe for the client to use somebody else’s code
on some random server

Your client program should use a more conservative security
manager than the default
System.setSecurityManager(new RMISecurityManager());

Most discussions of RMI assume you should do this on
both the client and the server

Unless your server also acts as a client, it isn’t really
necessary on the server

14

The server class
The class that defines the server object should extend
UnicastRemoteObject

This makes a connection with exactly one other computer
If you must extend some other class, you can use exportObject() instead
Sun does not provide a MulticastRemoteObject class

The server class needs to register its server object:
String url = "rmi://" + host + ":" + port + "/" + objectName;

The default port is 1099
Naming.rebind(url, object);

Every remotely available method must throw a RemoteException
(because connections can fail)
Every remotely available method should be synchronized

15

Hello world server: interface

import java.rmi.*;

public interface HelloInterface extends Remote {
public String say() throws RemoteException;

}

16

Hello world server: class
import java.rmi.*;
import java.rmi.server.*;

public class Hello extends UnicastRemoteObject
implements HelloInterface {

private String message; // Strings are serializable

public Hello (String msg) throws RemoteException {
message = msg;

}

public String say() throws RemoteException {
return message;

}
}

17

Registering the hello world server
class HelloServer {

public static void main (String[] argv) {
try {

Naming.rebind("rmi://localhost/HelloServer",
new Hello("Hello, world!"));

System.out.println("Hello Server is ready.");
}
catch (Exception e) {

System.out.println("Hello Server failed: " + e);
}

}
}

18

The hello world client program
class HelloClient {

public static void main (String[] args) {
HelloInterface hello;
String name = "rmi://localhost/HelloServer";
try {

hello = (HelloInterface)Naming.lookup(name);
System.out.println(hello.say());

}
catch (Exception e) {

System.out.println("HelloClient exception: " + e);
}

}
}

19

rmic

The class that implements the remote object should be
compiled as usual
Then, it should be compiled with rmic:

rmic Hello

This will generate files Hello_Stub.class and
Hello_Skel.class
These classes do the actual communication

The “Stub” class must be copied to the client area
The “Skel” was needed in SDK 1.1 but is no longer necessary

20

Trying RMI

In three different terminal windows:
1. Run the registry program:

• rmiregistry
2. Run the server program:

• java HelloServer
3. Run the client program:

• java HelloClient

If all goes well, you should get the “Hello, World!”
message

21

Summary

1. Start the registry server, rmiregistry
2. Start the object server

1. The object server registers an object, with a name, with the
registry server

3. Start the client
1. The client looks up the object in the registry server

4. The client makes a request
1. The request actually goes to the Stub class
2. The Stub classes on client and server talk to each other
3. The client’s Stub class returns the result

22

References

Trail: RMI
by Ann Wollrath and Jim Waldo

http://java.sun.com/docs/books/tutorial/rmi/index.html

Fundamentals of RMI Short Course
by jGuru

http://developer.java.sun.com/developer/onlineTraining/
rmi/RMI.html

Java RMI Tutorial
by Ken Baclawski

http://www.ccs.neu.edu/home/kenb/com3337/rmi_tut.html

	RMI
	“The network is the computer”*
	RMI and other technologies
	What is needed for RMI
	Terminology
	Processes
	RMI Architecture
	Interfaces
	Classes
	Conditions for serializability
	Remote interfaces and class
	Remote vs. Serializable
	Security
	The server class
	Hello world server: interface
	Hello world server: class
	Registering the hello world server
	The hello world client program
	rmic
	Trying RMI
	Summary
	References

