
© Laurie Williams 2005

Case Study Retrospective: Kent
Beck's XP Versions 1 and 2

Laurie Williams
North Carolina State University
williams@csc.ncsu.edu

© Laurie Williams 2005

Agenda
• Extreme Programming (XP) 2nd Edition

• Values
• Principles
• Primary Practices

• Corollary Practices

• Retrospective Look at Empirical Studies of
XP1 Teams

• IBM
• Sabre

© Laurie Williams 2005

Values, Principles, and Practices

Values Practices

Principles

purpose

accountability

© Laurie Williams 2005

XP2 Values
Values are the roots of things we like and don’t like in a
given situation.

Communication: Often when a problem arises,
someone knows the solution but knowledge doesn’t
get around to person who needs it. [sustained]
Simplicity: Making a bet that it is better to do a simple
thing today and pay a little more to change it if it needs
it, than to do a more complicated thing today that may
never be used. [sustained]
Feedback: No fixed direction stays valid for long.
[sustained]
Courage: Effective action in the face of fear.
[sustained]
Respect: Team members must care about each other
and the project. [new]

© Laurie Williams 2005

XP2 Principles
Principles are domain-specific guidelines.

Humanity
Economics
Mutual benefit
Self-similarity
Improvement
Diversity
Reflection
Flow
Opportunity
Redundancy
Failure
Quality
Baby steps
Accepted responsibility

Values Practices

Principles

© Laurie Williams 2005

XP2 Practices: Primary

From Extreme Programming Explained Second Edition, Kent Beck 2005

Practices are the things you do day-to-day.

© Laurie Williams 2005

Sit Together [new]

•Develop in an open space big enough for everyone.

•Have small, private spaces nearby.

© Laurie Williams 2005

Whole Team [new]

•1st class cross-functional team

•Tipping Points [Malcolm Gladwell]

•12: # of people who can comfortably interact in a day

•150: above this you no long recognize the faces of everyone on the
team

© Laurie Williams 2005

Informative Workspace [new]

© Laurie Williams 2005

Energized Work
[was 40-Hour Week]
• Work only as many hours as you can be productive

and only as many hours you can sustain.

• Tired developers make more mistakes, which slows you
down more in the long run (remove value from product).

• If you mess with people’s personal lives (by taking it over),
in the long run the project will pay the consequences.

© Laurie Williams 2005

Pair Programming [sustained]

•Two software engineers work on one task at one computer

•One engineer, the driver, has control of the keyboard and mouse and
creates the implementation

•The other engineer, the navigator, watches the driver’s implementation
to identify defects and participates in on-demand brainstorming

•The roles of driver and observer are periodically rotated between the two
software engineers

© Laurie Williams 2005

Stories
[was Planning Game (User Stories)]

•Customer-visible functionality

© Laurie Williams 2005

Weekly cycle
[was Planning Game]

Highest priority
stories in “time
boxed” weekly
increments
Caveat: see Slack
practice

© Laurie Williams 2005

Quarterly Cycle
[was Small Releases]

• Timeboxed

• As small as possible, but still delivering business
value

• No releases to ‘implement the database’

• Get customer feedback early and often

© Laurie Williams 2005

Slack [new]
In every iteration, plan some lower-priority tasks
that can be dropped if you get behind – builds trust
if you don’t miss the “important stuff.”

Ten-Minute Build [new]
Automatically build the entire system and run all
tests in 10 minutes
Feedback, feedback!

© Laurie Williams 2005

Continuous Integration [sustained]

• Pair writes up unit test cases and code for a task (part of a user
story)

• Pair unit tests code to 100%

• Pair integrates

• Pair runs ALL unit test cases to 100%

• Pair moves on to next task with clean slate and clear mind

• Should happen once or twice a day.

• Prevents IntegrationHell [integration could take longer than
programming]

© Laurie Williams 2005

Test-first Programming [sustained]

• Test-Driven
Development (TDD)

• Write tests before code
• Tests are automated
• Often use xUnit

framework
• Must run at 100% before

proceeding

• Acceptance Testing
• Written with the

customer
• Acts as “contract”
• Measure of progress

© Laurie Williams 2005

Incremental Design
[was Simple Design and Refactoring]

• No Big Design Up Front (BDUF)

• Knowledge-based design – the most effective design is in light of
experience

• “Do The Simplest Thing That Could Possibly Work”
• “You Aren’t Gonna Need It” (YAGNI)

• Refactoring: Improve the design of existing code without changing
functionality

• Simplify code
• Opportunity for abstraction
• Remove duplicate code

• Relies on testing to ensure nothing breaks in the process of
refactoring

© Laurie Williams 2005

XP2 Primary Practice Summary

Simple Design
Refactoring

Incremental Design

TestingTest-first Programming

SustainedContinuous integration

NewTen-minute build

NewSlack

Small releasesQuarterly cycle

Planning gameWeekly cycle

Planning gameStories

SustainedPair programming

40-hour weekEnergized work

NewInformative workspace

NewWhole team

NewSit together

Sustained/New/
XP1 Name

XP2 Primary Practice

RemovedCoding standard

Corollary: Real
customer
involvement

On-site customer

Corollary: Shared
code

Collective code
ownership

RemovedMetaphor

DispositionXP1 Practice

© Laurie Williams 2005

XP2 Practices: Corollary

From Extreme Programming Explained Second Edition, Kent Beck 2005

© Laurie Williams 2005

Corollary Practices
• Real Customer Involvement [was On-Site Customer].

Customer available on site to clarify stories and to make
critical business decisions.

• Incremental Deployment [new]. Gradually deploy
functionality. Big deployment is high risk and can have
high human and economic costs.

• Team Continuity [new]. Keep effective teams together.

• Shrinking Team [new]. As a team grows in capability,
keep the workload constant but gradually reduce the
size (e.g. with attrition).

© Laurie Williams 2005

Corollary Practices (cont’d)
Root-Cause Analysis [new]. (1) write failing automatic
system test; (2) write failing automatic unit test; (3) get
each to pass; (4) examine how defect was created and
not caught

Shared Code [was Collective Code Ownership]. Anyone
on the team can improve any part of the system at any
time. [prereq: pair programming, continuous
integration; test-first programming]

Code & Tests [was Simple Design]. Maintain only the
code and tests as permanent artifacts. Rely on social
mechanisms to keep alive the important history of the
project.

Single Code Base [new]. Have only one code stream.

© Laurie Williams 2005

Corollary Practices (cont’d)

Daily Deployment [new]. Put new code into
production every night.

Negotiated Scope Contract [new]. Fix time, cost, and
quality but call for on-going negotiation of precise
scope.

Pay-per-use [new]. Charge for every time the system
is used.

© Laurie Williams 2005

Extreme Programming Examination

Extreme Programming Evaluation Framework
XP-EF (said X-pef)

XP-Context
Factors (XP-cf)

XP-Adherence
Metrics (XP-am)
(said X-pam)

XP-Outcome
Measures (XP-om)
(said X-pom)

•Reusable framework for reporting:

•the extent to which an organization has adopted XP practices;
and

•the result of this adoption

© Laurie Williams 2005

IBM: XP-Context Factors (XP-cf)

Small team (7-10)
Co-located
Web development (toolkit)
Supplier and customer
distributed (US and
overseas)

Examined one release “old”
(low XP) to the next “new”
(more XP)

© Laurie Williams 2005

IBM: XP-Outcome Measures (XP-om)

1.111.0 Morale (via survey)

High (qualitative)NACustomer Satisfaction

1.34
1.70
1.92

1.0
1.0
1.0

Productivity (stories / PM)
Relative KLOEC / PM
Putnam Product. Parameter

0.611.0Post-release Quality
(released defects/KLOEC of code)

0.501.0Pre-release Quality
(test defects/KLOEC of code)

0.23NAResponse to Customer Change
(Ratio (user stories in + out) /total)

New Old XP Outcome Measures

© Laurie Williams 2005

Sabre: XP-Context Factors (XP-cf)

Small team (6-10)
Co-located
Scriptable GUI environment
Customer remote,
multinational, several time
zones

Examined third release “old”
(low XP) to the ninth release
“new” (sustained XP)

© Laurie Williams 2005

Sabre: XP-Outcome Measures (XP-om)

68.1%N/AMorale (via survey)

High (anecdotal)NACustomer Satisfaction

N/A
1.46
2.89

N/A
1.0
1.0

Productivity (stories / PM)
Relative KLOEC / PM
Putnam Product. Parameter

0.701.0Post-release Quality
(released defects/KLOEC of code)

0.251.0Pre-release Quality
(test defects/KLOEC of code)

N/ANAResponse to Customer Change
(Ratio (user stories in + out) /total)

New Old XP Outcome Measures

© Laurie Williams 2005

Summary
Two characteristically-agile teams:

N/AYesteam morale

N/AYescustomer satisfaction

YesYesprogrammer productivity

YesYes post-release quality

YesYes pre-release quality

Sabre case study
evidence?

IBM Case study
evidence?

Hypothesis

When used by teams operating within the specified context, the use of a
specified subset of XP practices leads to an improvement in . . .

© Laurie Williams 2005

XP2 Primary Practices

No design doc
Limited refactoring

SDUF
Limited refactoring

Incremental Design

Progress in unit testing
Some automated acceptance

testing

Progress in unit testing
No automated acceptance

testing

Test-first Programming
DailyNightly or moreContinuous integration
No (hours to build)NoTen-minute build
Not likelyNot likelySlack
Yes5 monthsQuarterly cycle

10 day YesWeekly cycle
YesYesStories
50% anecdotal50% anecdotalPair programming
Sustainable paceSustainable paceEnergized work
Yes (many big visible charts)NoInformative workspace

Yes (customer rep sitting at
times)

NoWhole team
YesNo – adjoining cubesSit together
SABRE-AIBMXP2 Primary Practice

© Laurie Williams 2005

XP1 Primary Practice Rejects

Naming standardYesCoding standard

On-site marketing rep
(1/2 time; email)

No
(remote, responsive to

email)

On-site customer

YesYesCollective code
ownership

System of namesNoMetaphor

SABRE-AIBMXP1 Practice

© Laurie Williams 2005

Conclusions
XP2 has 13 primary practices

– Can do individually, work best together

XP2 has 11 corollary practices
– Best to start using these once have a core set of primary practices

XP2 seems more “reasonable” than XP1
Two small, co-located, successful XP1 teams were
studied

– IBM team used:
» ~8 of the 13 XP2 primary practices
» 2 of 4 XP1 rejected XP1 primary practices

– Sabre team used:
» ~12 of 13 XP2 primary practices
» ~3 of 4 XP1 rejected XP1 primary practices

