©%39379 >0,
persistency

Java niooian n1din Niyn NIN'S
"' THIX

?71"1DIN] NN

‘N1DINA persistency nawn? nivizna m O
Relational DB and SQL =
JDBC =
persistence layer ®
ORM ©

Java niooian n1dIN NidIyYn NIN'S
1772 THIX

Persistency

?9MUN NP0SN W' NIDINN Y¥XNNA DX NI NNl...

NIXM "2 VTN IMY? Niz7a10n NI NidIinn 2N 7y
(Qwnnn y1n) Persistent Data =
(v 9T yv1n) Transient Data =

NX YMY7 070" IR 2yTN WMy nwi D 7D nn
120XV2] YAI77 yT'An

Java niooian n1dIN NidIyYn NIN'S
1772 THIX

Persistency Challenges

System crashes
®m What is the problem?

Large data sets (say 50GB)
®m What is the problem?

Simultaneous access by many users

B Need locks: we know them from OS, but now data on disk; and is
there any fun to re-implement them?

Heterogeneous Clients

m Local and remote

m Different OS

m Different programming languages

Complex data and complex operations

Java niooian n1dIN NidIyYn NIN'S
1772 THIX

Transaction (ACID)

Atomicity: guarantee that either all of the tasks of a transaction
are performed or none of them are (COMMIT or ROLLBACK).

Consistency: ensures that the database remains in a consistent
state before the start of the transaction and after the transaction
is over (whether successful or not).

Isolation: no operation outside the transaction can ever see the
data in an intermediate state. This enables transactions to operate
independently of and transparent to each other.

Durability: once the user has been notified of success, the
transaction will persist, and not be undone. This means it will
survive system failure, and that the database system has checked
the integrity constraints and won't need to abort the transaction

Java niooian n1dIN NidIyYn NIN'S
1772 THIX

What Is a Relational Database
Management System ?

Database Management System = DBMS
Relational DBMS = RDBMS

[0 A collection of files that store the data

O A big C program written by someone else that accesses and
updates those files for you

[0 Where are RDBMS used?
B Backend for traditional “database” applications:
O CRM
0 ERP
0 Banking, insurance,...
B Backend for large Websites
B Backend for Web services

Java niooian n1dIN NidIyYn NIN'S
1772 THIX

Crash course on Relational
Databases and SQL

N710 NT AT D
N7202 NITNNY <= ivh 2w nimty N

:(schema) nix7a0n ni1an 7y Ni71wo
CREATE, ALTER, DROP =

NIX720N DIN 7V NI7IYS
INSERT, SELECT, UPDATE, DELETE =

NIN720 Nnd 7V NI7IYo
JOIN (INNER, LEFT, RIGHT) =
KEYS (PRIMARY, FOREIGN) =

Java niooian n1dIN NidIyYn NIN'S
1772 THIX

KEYS

Total Amount

Order Size

877,999
62000
1,261,450
607,000

Co] =t 2 0
[N o R
== — L0
=

o

7

n'va

TIX? X7 7901Wn yTnn

Total Amount

Order Size

a77,999

)
(=]
-

620000
1,267 450

=T =
Lo
—
_—

607,000

hb2

s
e
S
S

|
|

=
S
S
B

e
S
S

| =
| =
|

-
| =
S
o

| smmm
o

x
xaxaxaaxax
o
o
|

Address Phone

Primary Key of Order Table

Crder Table

Mame @ Address Phone

Order Number

21 West

-
o

10

116 Mike B

Order Table

Order Number Customer Number

115

116

117
118

Customer Table

Name

Customer Number

i
£
e

o (=
=
i

How SELECT works

N

r I

peoplte]

First. Name |Last_Name |Gender |Age |Phone

John Smith M 27 2-4315

Sally Jones F 27 3-1542

John White M 32 2-4315
{ Mary Smith F 472 5-4321

SELECT First_Name, Last_Name FROM People

WHERE Age > 30; Result: John White

Mary Smith

Java niooian n1dIN NidIyYn NIN'S
1772 THRIX

SQL n mann

vTinn ninw O

NIN72AV 7w At O
N7y NPl NN nirapy .

[0 Behind the scenes the DBMS has:
B Query optimizer
Query engine
Storage management
Transaction Management (concurrency, recovery)

ym Ay O
http://code.google.com/edu/tools101/mysqgl.html

Java niooian n1dIN NidIyYn NIN'S
1772 THIX

When RDBMS met Java

JDBC

Java Database Connectivity (JDBC)

An interface to communicate with a relational
database

B Allows database agnostic Java code

B Treat database tables/rows/columns as Java
objects

JDBC driver

B An implementation of the JDBC interface
B Communicates with a particular database

JDBC IDBC T Database
Java app —=als—, driver p—commands _, Natabase

Jay /M NIN'O

1772 THIX

JDBC Driver Types

Type 1:
JDBC-ODBC Bridge

Type 2:
Native API / Partially Java

Type 3:

Net Protocol

Pure Java / Net Protocol.

_ Native Protocol

Type 4:
Pure Java / Native Protocol.

Java niooian n1dIN NDAYnN NIN'™

1772 THRIX

O O O O 0O O

Embedding the DB - Java DB

Java DB is Sun's supported distribution of the open source
Apache Derby

B Included as part of Java SE v.6
Written in Java

Transactional, secure, easy-to-use

standards-based — SQL, JDBC API, and Java EE

Small footprint - only 2MB
Community

http://java.sun.com/developer/technicalArticles/J2SE/Deskt
op/javadb/

Java niooian n1dIN NidIyYn NIN'S
1772 THIX

Eclipse JDBC setup

Install driver

B Download MySQL JDBC driver from the Web
O http://dev.mysal.com/downloads/connector/j/5.0.html

B Unzip mysql-connector-xxx.jar

B Add mysqgl-connector-xxx.jar to Eclipse project

[0 Project - Properties - Java Build Path »>
Libraries > Add External JARs

Java niooian n1dIN NidIyYn NIN'S
1772 THIX

JDBC steps

. Connect to database

. Query database (or
insert/update/delete)

. Process results

. Close connection to database

import java.sql.*;

public class Tester {
public static void main (String[] args) {
try {
// Load JDBC driver
Class.forName ("com.mysql.jdbc.Driver") .newInstance() ;

// Make connection

String url =
“Jdbc:mysqgl://128.100.53.33/GRP?user=USER&password=PASS”

Connection conn = DriverManager.getConnection (url) ;

// Create statement
Statement stmt = conn.createStatement|() ;

// Query database
ResultSet rs = stmt.executeQuery ("SELECT * FROM users") ;

// Process results
while (rs.next()) {
<next slide...>

}

// Cleanup
rs.close(); stmt.close(); conn.close() ;

} catch (Exception e) { System.out.println ("exception " + e); }

Process Result

ResultSet rs =

while (rs.next()) {
String userid = rs.getString(1l);
String firstname =
String lastname =
String password = rs.getString(4);

rs.getString (“firstname”) ;
rs.getString(“lastname”) ;

stmt.executeQuery ("SELECT * FROM users") ;

int type = rs.getInt (“type”);
System.out.println(userid + ” ” + firstname + 7 7 +
lastname + ” ” + password + 7 7 + type);
}
users table Initial
userid firsthame |lastname |password |type <—Z S(E:ioorn
Bob Bob King cat 0 <==3 Cursor
John John Smith pass 1 after first
call to
rs.next()

Java niooian n1dIN NidIyYn NIN'S
1772 THIX

JDBC Features

JDBC 2.1
B Updates, Queries, joins

B Transactions

B Prepared Statements
B Meta Data

B Callable Statements
JDBC 3.0

B Savepoints

B Pooling

® New Data Types

B RowSets

JDBC 4.0

B ease-of-use and programmer productivity
m SQL 2003
B XML as a First-Class SQL Data Type

Java niooian n1dIN NidIyYn NIN'S
1772 THIX

Paradigm Mismatch

[1 Problems caused when objects need
to be stored in relational tables.

Granularity
Subtypes ey RO
Identity " Object-oriented pmgﬁr:‘r:n:‘nﬁ

Associations
Graph Navigation
Cost

Java niooian n1dIN NidIyYn NIN'S
1772 THIX

Problem of Granularity

Data types can have various kinds of granularity
B STREET is a field in CUSTOMER

VS.

B STREET is a field in ADDRESS

Performance vs. Modeling

Poor support for used defined types (UDT) in SQL.
B No implementation is portable.

Forces developers to use less flexible representations
on the object model.

| Address |<—e User — BillingDetails |

1772 THIX

BillingDetails

Problem of Subtypes !

Java obllects implements inheritance (super
& sub classes)

Each sub or super class will define different
data & completely different functionality.

An object can be associated with objects of

different classes, but of same type
(polymorphism).

SQL provides no support for inheritance or
polymorphism.

Java niooian n1dIN NidIyYn NIN'S
1772 THIX

Problem of Identity

[0 Checking if objects are identical

[0 Java defines two notations:
[0 Object identity [==
[0 Equality of value [.equals()]

0 In SQL it is just checking if the two primary keys are
the same

[0 Two or more objects can represent the same row of
data

[0 SQL surrogate keys are not part of the model

Java niooian n1dIN NidIyYn NIN'S
1772 THIX

o

Problem of Association

Associations represent relation between entities

Object references represents associations
In SQL association is by foreign keys

Object references are directional, foreign keys are
not

It isn’t possible to determine multiplicity of a
association just by looking at a class

SQL multiplicity is always one-to-one or one-to-
many, and can be determined by looking at the
foreign key

Java niooian n1dIN NidIyYn NIN'S
1772 THIX

Object Graph Navigation

[] Difference in the way objects are
accessed in Java and SQL

1

obj.getDetails () .getFirstField()

In SQL it would be a set of select
statements with joins.

—

[0 “n+1 select problem”

Java niooian n1dIN NidIyYn NIN'S
1772 THIX

Cost

Of The Mismatch

[1 Requires significant time & effort
[0 Up to 30%* of code is devoted to

handle ted

ious SQL/JDBC

[1 Difficulty i
entities

N modeling the business

[1 Need to bridge Object/Relational

mismatch

* Java Persistence with Hibernate, Christian Bauer and Gavin King

Layered Architecture

[0 A layered architecture
defines interfaces

bEtween Vva rious Presentation Layer \
concerns l Interceptors,
Utility,
Business Layer —» and
i cHEIpEr
I I
[1 Layers communicate P Bonee
top tO bOttom Persistence Layer
ey
[0 A layer is dependent
only on the layer

directly below it

Java niooian n1dIN NidIyYn NIN'S
1772 THIX

Implementing A Layered
Architecture

Hand-coding a persistence layer
Using serialization

Other technologies

B Object-oriented database systems
B XML

Object/Relational Mapping framework
B Using EJB entity beans
B Hibernate

Java niooian n1dIN NidIyYn NIN'S
1772 THIX

Hand-coding a persistence layer

[1 Typically using design patterns such
as DAO

[1 Involves manual coding of the
persistence layer

B Hibernate is about 80,000 LOC + 25,000
ines of Unit test code

Using Serialization

[1 Used by RMI
[1 Data can only be accessed as a whole
[1 Serial access

Other leads

Object-oriented database systems

B An object-oriented database management
system (OODBMS) is more like an extension to
the application environment than an external
data store

B The Object Data Management Group (ODMG) is
no longer active

B The Java Data Objects (JDO) specification
(published in April 2002)

XML persistence
B A variation on the serialization theme
B object/hierarchical mismatch

Java niooian n1dIN NidIyYn NIN'S
1772 THIX

Why relational DB survives?

“Relational technology is a known quantity, and this
alone is sufficient reason for many organizations to
choose it”. (Java Persistence with Hibernate, Christian Bauer and Gavin King)

Relational databases are entrenched because:

B they're an incredibly flexible and robust approach
to data management.

B Due to the complete and consistent theoretical
foundation of the relational data model, relational
databases can effectively guarantee and protect the
integrity of the data, among other desirable
characteristics

Data independence: data lives longer than any
application does.

Java niooian n1dIN NidIyYn NIN'S
1772 THIX

Object/Relational Mapping (ORM)

[0 Object/Relational Mapping is the automated (and
transparent) persistence of objects in a Java
application to the tables in a relational database,
using metadata that describes the mapping between
the objects and the database

[0 ORM, in essence, works by (reversibly) transforming
data from one representation to another

JavaObject
int id;

String name; . . .
String getName () < »/1d [int] primary key,
int getId()
void setName (String) name [varchar(50)]
vold setId(int)

SQL Table

vVa niooian N1dIN NidDIYN NIN'S
1772 THIX

Using EJB 2.1 as ORM

EJB 2.1 specification describes:

B bean-managed persistence (BMP)

M container-managed persistence (CMP)

Deficiencies:

B CMP beans are defined in one-to-one correspondence to the tables of
the relational model. Thus, they’re too coarse grained

®m On the other hand, CMP beans are also too fine grained to realize the
stated goal of EJB: the definition of reusable software components. A
reusable component should be a very coarse-grained object, with an
external interface that is stable in the face of small changes to the
database schema.

B Support only implementation inheritance, but don’t support
polymorphic associations and queries

B Entity beans aren’t portable in practice. Capabilities of CMP engines
vary widely between vendors, and the mapping metadata is highly
vendor-specific

B Entity beans aren’t serializable. We must define additional data transfer
objects (DTOs, also called value objects) when we need to transport
data to a remote client tier

B EJBis an intrusive model; it mandates an unnatural Java style and

makes reuse of code outside a specific container extremely difficult

Java niooian n1dIN NidIyYn NIN'S
1772 THIX

Hibernate

[0 Popular Open Source (LGPL) Object/Relational Mapping
(ORM) tool

0 Lightweight
[0 Non-intrusive

[0 Transparent persistence for POJOs
(Plain Old Java Objects)

[0 Core of JBoss CMP 2.0 impl.

[0 Used as an “inspiration” for EJB 3.0 and JPA

Java niooian n1dIN NidIyYn NIN'S
1772 THIX

A persistent class

[JEvent.java is a simple example for a
class whose objects can be made
persistent

It needs
B AN ID field

B A parameterless constructor
H...that's alll

Java niooian n1dIN NidIyYn NIN'S
1772 THIX

Event.java (1)

package events;

import java.util.Date;

/**

* This sample class uses Hibernate to make its state persistent.
*/
public class Event {

// This id is unique system-wide.

// Such unique ids are required by Hibernate for all persistent
// classes.

private Long id;

private String title;
private Date date;

// A constructor without arguments is required by Hibernate
// so that it can recreate this class using Reflection.

// It should have package visibility "or greater".

public Event() {}

Java niooian n1dIN NidIyYn NIN'S
1772 THRIX

Event.java (2)

public Long getId() {
return id;

}

private void setId(Long id) {
this .id = id;
}

public Date getDate() {
return date;

}

public void setDate(Date date) {
this .date = date;

}

public String getTitle() {
return title;

}

public void setTitle(String title) {
this .title = title;
}

Storing, Querying, Recalling

[DEventManager.java shows how to do
B Transactions
B Queries

OWe'll take a look at two methods, the
simple createAndStoreEvents () and

the more complex addPersonToEvent ()

Storing

private Long createAndStoreEvent(String title, Date theDate) {

Session session =
HibernateUtil.getSessionFactory().getCurrentSession();

session.beginTransaction();
Event theEvent = new Event();
theEvent.setTitle(title);
theEvent.setDate(theDate);

session.save(theEvent);
session.getTransaction().commit();

return theEvent.getId();

Java niooian n1dIN NidIyYn NIN'S
1772 THIX

Querying...

private void addPersonToEvent(Long personld, Long eventId) {

Session session =
HibernateUtil.getSessionFactory().getCurrentSession();

session.beginTransaction();

Person aPerson = (Person) session
.createQuery("select p from Person p left join fetch
p.events where p.id = :pid")
.setParameter("pid", personld)
.uniqueResult();

Event anEvent = (Event) session.load(Event.class, eventId);

session.getTransaction().commit(); // End of first unit of work

Java niooian n1dIN NidIyYn NIN'S
1772 THIX

...and Updating

aPerson.getEvents().add(anEvent); // aPerson is detached

// Begin second unit of work

Session session2 =
HibernateUtil.getSessionFactory().getCurrentSession();

session2.beginTransaction();
session2.update(aPerson); // Reattachment of aPerson
session2.getTransaction().commit();

Java niooian n1dIN NidIyYn NIN'S
1772 THIX

NNIpN

http://www.cs.tau.ac.il/~jackassa/db/DBHomePage.htm

http://www.cis.upenn.edu/~matuszek/cit597-2003/

http://code.google.com/edu/tools101/mysqgl.html

http://www.eecqg.utoronto.ca/~vinod/mie456/jdbctut.ppt

B http://java.sun.com/docs/books/tutorial/jdbc/basics/index.html
B http://otn.oracle.co.kr/admin/seminar/data/otn-jdbc.ppt

B http://notes.corewebprogramming.com/student/JDBC.pdf

http://www.hibernate.org/hib docs/v3/reference/en/html/tutor
ial.html

Java niooian n1dIN NidIyYn NIN'S
1772 THRIX

Persistency

?09"YW NXII9 DX NI NNl...

Java niooian n1dIN NidIyYn NIN'S
1772 THIX

