A Universal Music Translation Network

NOAM MOR, LIOR WOLF, ADAM POLYAK, YANIV TAIGMAN FACEBOOK AI RESEARCH

Liron London

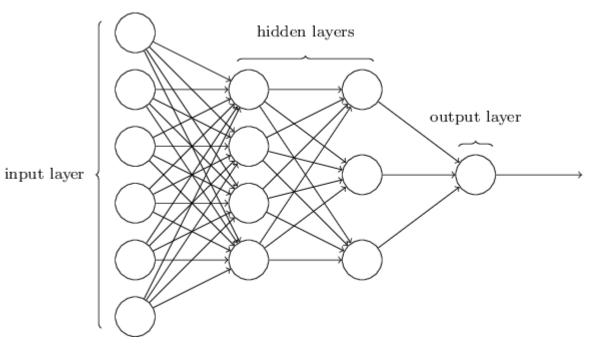
Some images were taken from <u>Jaley Dholakiya's blog post</u>

Computers Love Music

Can Computers Mimic Music?

Music Translation

- The goal: translating music across instruments, genres and styles
- The method: neural networks multi-domain wavenet autoencoder
- The challenge: no data!


Technical Background

In order to understand the research, we'll discuss some concepts and terms first:

Neural networks	•
Domain transfer	•

Neural Networks

Neural Networks - Types

- Convolutional (CNN): in our case

 a classifier that receives an
 input and determines which class
 it belongs to
 - Can provide a clear-cut or a probable answer

Hedgehog97%Erinaceidae95%Domesticated Hedgehog94%Mammal93%Porcupine86%Fauna83%Snout61%

Neural Networks - Types

•Auto-regressive (AR): creates the next frame in time, adds it to history, thus lengthening the history and building the "future" upon it.

Output Hidden
Layer Output Hidden
Layer Output Output

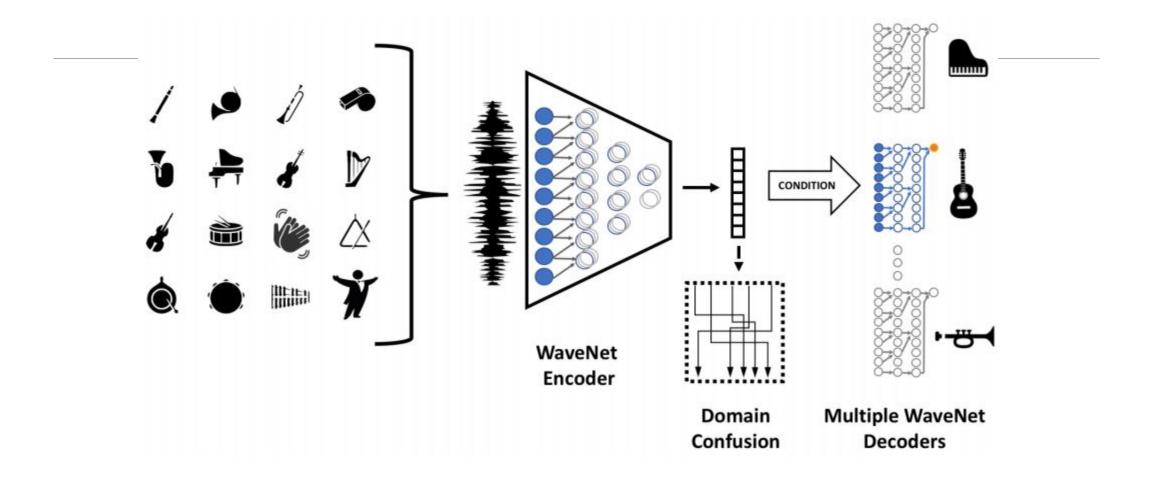
Domain Transfer

- The challenge of translating input f one domain to another
- Can be unsupervised

Content: Neckarfront in Tübingen, Germany

Style: The Starry Night, Vincent van Gogh

Style: The Shipwreck of the Minotaur, JMW Turner



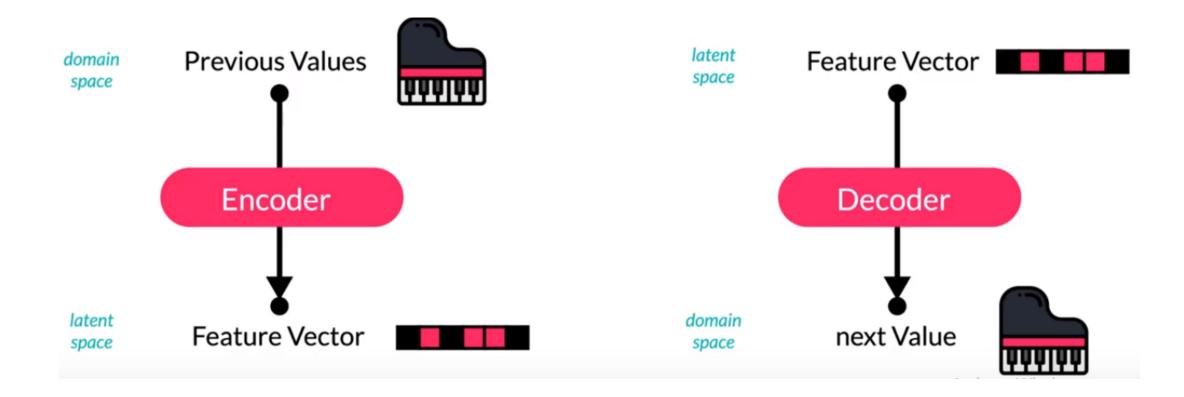
Style: Der Schrei, Edvard Munch

The method

LET'S HEAR SOME MUSIC 🎵

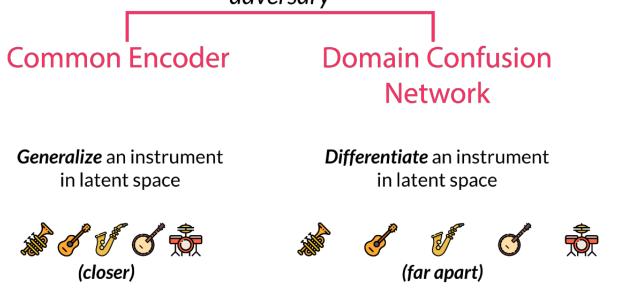
Data

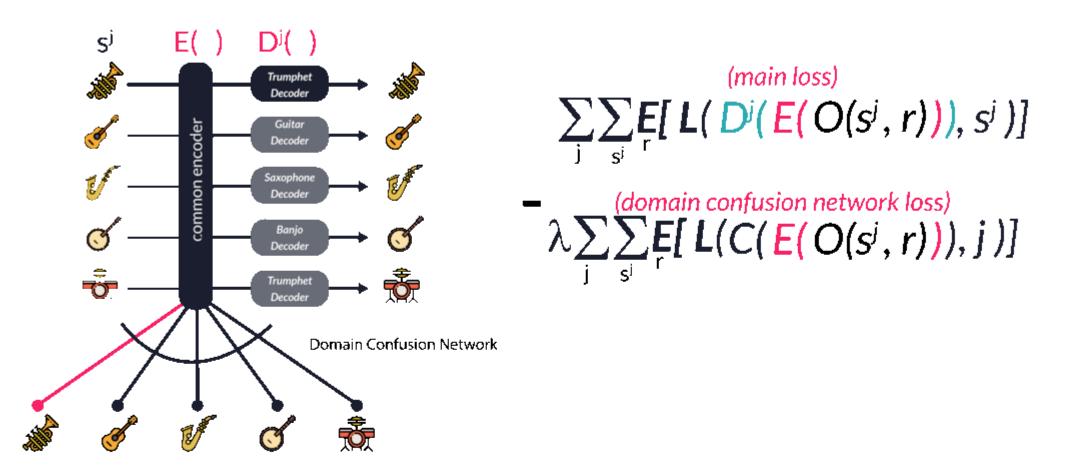
- 6 input musical domains: Mozart symphonies, Bach orchestra and choir, Bach - organ, Bach - harpsichord, Beethoven - piano
- Data separated to train and test sets
- Each musical piece split to 1-second segments



Encoding

- NNs work on numbers, not music
- Need to encode the music to numbers
- Can't do notes too specific, too complicated, existing results for simpler tasks are not good enough
- One encoder to rule them all




- Based on WaveNet
- Input music is encoded to latent space
- In order to prevent the encoder from memorizing music noise was added to the data
 - In each 1-sec file, the pitch of a randomly chosen segment length of between 0.25-0.5 seconds gets modulated by a -0.5 to 0.5 half-tone

Data Augmentation

- The goal: prevent the system from encoding data that is domainspecific
- The means: confusion network another network, used only during training, which is responsible for minimizing the classification loss adversary

Training

Loss Function, Explained

In red - the decoder is given an encoded sample, outputs a "cover" in the same style

In blue - the domain confusion network is given an encoded sample, and outputs which domain it belonged to

Evaluating the New Music

- How do you give a score to a cover version?
- Compare the network's results to the same task performed by human musicians
 - The task convert 60 segments of 1 second each, to piano
- Comparison done by both human listeners and automatic score

Results

• The human scoring was done using CrowdMOS (mean opinion score), an open source tool for Mechanical Turk that helps detect and discard inaccurate scores

- The users were asked 2 questions: on a scale of 1 to 5 -
 - what's the quality of the audio?
 - How well does the converted version match the original?

	$Harpsichord {\rightarrow} Piano$		$Orchestra {\rightarrow} Piano$		New domains \rightarrow Piano	
Converter	Audio quality	Translation success	Audio quality	Translation success	Audio quality	Translation success
Е	3.89 ± 1.06	$4.10{\pm}~0.94$	$4.02 {\pm}~0.81$	$4.12{\pm}~0.97$	$4.44{\pm}0.82$	4.13 ± 0.83
M	3.82 ± 1.18	3.75 ± 1.17	$4.13 {\pm}~0.89$	4.12 ± 0.98	4.48 ± 0.72	3.97 ± 0.88
A	3.69 ± 1.08	3.91 ± 1.16	4.06 ± 0.86	3.99 ± 1.08	4.53±0.79	3.93 ± 0.95
Our	2.95 ± 1.18	$3.07{\pm}~1.30$	$2.56{\pm}~1.04$	$2.86{\pm}\ 1.16$	$2.36{\pm}1.17$	$3.18{\pm}~1.14$

Table 1: MOS scores (mean \pm SD) for the conversion tasks.

Results

- The automatic scoring was done by pitch matching
- The system was more true-to-source than the pianists

Converter	$Harpsichord {\rightarrow} Piano$		$Orchestra{\rightarrow}\ Piano$		New domains \rightarrow Piano	
	NCC	DTW	NCC	DTW	NCC	DTW
Е	0.82	0.98	0.78	0.97	0.76	0.97
Μ	0.69	0.96	0.65	0.95	0.72	0.95
Α	0.76	0.97	0.73	0.95	0.75	0.94
Our	0.84	0.98	0.82	0.97	0.88	0.98

Table 2: Automatic quality scores for the conversion task.

Significance of This Research

- Superior results compared to existing methods
- Breaking ground in the field of musical AI
- Democratization of music
- Changing what was considered possible