
Object Oriented Programming in Java: exercises © Sivan Toledo and Amiram Yehudai, Tel-Aviv University, 2004 

Structure & Performance 
In this exercise we will examine the performance of various implementations of the 
same interface. The exercise has three goals: 

• To help you relate the structure of the code to the performance of the program. 
For example, what is the performance cost (or benefit) of immutability, what is 
the performance costs of using interfaces, and so on. 

• To help you understand non-structural issues that affect performance. There are 
other things besides the structure of the program that affect performance, and 
the experiments in this exercise should help you understand at least some of 
them. 

• To demonstrate a robust experimental methodology for performance 
experiments. To be able to draw conclusions from a performance experiment, 
you must be confident that it indeed measures what you think it does and that 
the measurements represent some useful metric, such as average running time. 
It takes some care to ensure that this is indeed the case. The methodology that 
we use in this exercise is not the best possible, but it is reasonable. 

In the exercise, you will implement several classes that model rectangular real 
matrices. All of the classes are subclasses of the abstract base class Matrix, with 
the following contract: 

public abstract class Matrix { 
  Abstract state: an m-by-n matrix A 
  public final int m; number of rows 
  public final int n; number of columns 
 
  public Matrix(int m, int n) {…} sets m and n; requires m>0 and n>0 
 
  abstract public void set(int i, int j, double v); sets Aij 
    requires: 0 <= i < m and 0 <= j < n 
    ensures: Aij == v 
 
  abstract public double get(int i, int j); returns Aij 
    requires: 0 <= i < m and 0 <= j < n 
    ensures: returns Aij  
 
  public void random() {…} sets all the elements to random values 
    requires: nothing 
    ensures: for all i and j sets Aij to a random value 
 
  public String multiply(Matrix B, Matrix C) {…} matrix multiply add 
    requires: A.m == B.m and A.n == C.n and B.n == C.m 
    ensures: A = A + B*C  and  

  returns the name of the class that actually computed the product 

} 



Object Oriented Programming in Java: exercises © Sivan Toledo and Amiram Yehudai, Tel-Aviv University, 2004 

You will get this abstract base class, as well as two complete working 
implementations and a testing class. The testing class is called MatrixTest. Its main 
procedure creates triplets of three 350-by-350 matrices and calls a testing 
procedure (test) three times on each triplet. The testing procedures fills the 
matrices with random numbers, saves a copy of one matrix (A), and then multiplies 
A=A+A*B. Finally, the testing procedure verifies that the matrix multiply-add was 
computed correctly. If the product is incorrect (more precisely, if it is very 
inaccurate), the testing routine throws an arithmetic exception. This should help 
you test you code. The main procedure also prints out the vendor and version of 
the Java virtual machine and of the operating system, to help identify the platform 
where the experiments  were carried out. 

The testing procedures measures the running time of the matrix multiply-add and 
prints out the name of the class that performed the multiplication, the running 
time in milliseconds, and the computational rate in millions of floating-point 
operations per second. 

We provide you with two subclasses of the abstract base class. One is called 
DoubleMatrix. It represents the matrix using a two-dimensional array (really an 
array of arrays) of references to java.lang.Double objects. These Double objects 
contain a single double primitive value, and are immutable. The class overrides the 
multiply method: if the two arguments are also of the type DoubleMatrix, it casts 
them and multiplies them directly and returns the name of the class 
(DoubleMatrix) by calling getClass().getName(). Otherwise, it calls 
super.multiply. All your implementations should follow this pattern. 

The second subclass that we provide is called NativeMatrix. It represents the 
matrix using a one dimensional array of double primitive values (stored column by 
column), and it performs the matrix multiply-add operation by calling a so-called 
native procedure, a procedure that is implemented in C, not in Java. We will 
provide you with the C code, that you have to compile into a shared library (.dll 
on Windows, .so on Linux and Unix), and with a compiled shared library for 
windows. 

The Assignment 

1. Study carefully the code in Matrix, MatrixTest, and DoubleMatrix. Why do you 
think we print the value that multiply returns rather than print fixed labels? 
Why do we print the version of the Java virtual machine directly from the 
program? 

2. We have also provided you with an interface Real that models real numbers. It 
declares three methods, double get(), void set(double), and  void 
mutiplyAdd(Real,Real). Calling x.multiplyAdd(y,z) should set x to the value 
x+y*z. Implement a final class DoubleReal that implements Real using a single 
double. Objects from this class should be mutable, but the class itself should be 
declared final. In this class, add a method multiplyAddDoubleReal( 
DoubleReal,DoubleReal), which should be more efficient than multiplyAdd. 

3. Now implement a class FinalMatrix that extends Matrix. It should be fairly 
similar to DoubleMatrix, except that it should use an array of references to 
DoubleReal, not Double, and it should exploit the method 



Object Oriented Programming in Java: exercises © Sivan Toledo and Amiram Yehudai, Tel-Aviv University, 2004 

multiplyAddDoubleReal. To test it, comment out in MatrixTest.main the 
creation and testing calls to the yet-unimplemented classes InterfaceMatrix 
and PrimitiveMatrix. 

4. Next, implement a class InterfaceMatrix that is similar to FinalMatrix except 
that it should use references to the interface Real, not to the class DoubleReal. 
The constructor of InterfaceMatrix should construct DoubleReal directly (we 
could have used a factory, but let's keep things simple). 

5. Finally, implement a class PrimitiveMatrix that also extends extends Matrix. 
Make it as fast as you can, but implement it in Java (no C code). We will give 
you two hints. First, a representation like the one we used in NativeMatrix, a 
one-dimensional array of double's, is probably the most effective. Second, 
suppose that you multiply the matrices using three nested loops of the form 
for i=0..m-1 
  for j=1..n-1 
    for k=1..l-1 
     Aij = Aij + Bik * Ckj 
    end 
  end 
end 
then any ordering of the loops is valid. Reordering the loops affects two issues: 
the distance, in elements, between consecutive elements of A, B, and C that you 
use, and the number of times Aij is mutated. If you store the elements of 
matrices column after column in a one-dimensional array, then the j-k-I ordering 
accesses all three arrays sequentially (A and C are accessed once, C is accessed 
B.n times). 

6. Now run the program to collect results. Use the results of the experiments to 
tune the code, especially to tune class PrimitiveMatrix. Try to run the program 
under more than one Java virtual machine, and perhaps under more than one 
machine. Submit all the outputs, and document the machine that ran each 
experiment (processor and processor speed). 

7. Try to explain the results as best you can. In particular, try to explain why the 
different implementations perform differently, why different JVMs behave 
differently (if they do), why different runs of exactly the same code behave 
differently (if they do), and so on. Try to draw useful conclusions, but do not 
draw more conclusions that the data supports; if you need to, collect more 
data. 

8. (Extra Credit) Make the C implementation faster. You almost certainly can. 
Remember that compiler optimization options also play a big role, not just the 
code that you write. 

9. (Extra Credit) Extend the program to multiply matrices of different sizes to 
inspect size-dependent behavior, and explain the behaviors that you find. 
Graphing the results can probably help. 

 


