
May 8, 2005 Oranit Dror

Object-Oriented
Programming with Java

Recitation No. 7:
Creational/Sharing Design

Patterns and Reference Objects

May 8, 2005 Oranit Dror

Design Patterns

�Known solutions to common problems
�Be aware of tradeoffs
�Patterns that you are familiar with:

• Factory
• Iterator
• Proxy
• Composite

May 8, 2005 Oranit Dror

Creational and Sharing Patterns

� Factory
� Abstract Factory

� Singleton
� Enumeration
� Immutability and Interning
� Flyweight
� Object Pool

� Others…

May 8, 2005 Oranit Dror

Factory

�The new operator gets a class name,
(no an interface or abstract class):
VersionedString vstring = new

LinkedVersionedString();

�A factory method returns one of several
classes with the same interface or
super-class

May 8, 2005 Oranit Dror

Factory (cont.)

interface
VersionedString

class
LinkedVersionedString

class
BoundedVersionedString

class
VersionedStringFactory

construct()

constructs different
instances of VersionedString

VersionedString vstring =

VersinedStringFactory.construct();

May 8, 2005 Oranit Dror

Abstract Factory

� Useful for creating families of related objects
without specifying their concrete classes

� Example: An application for building cars
• builds various types of cars:

Hundai-Accent, Peuget 205 GTI, Fiat-Uno etc.

• all cars have the same overall structure,
i.e. consist of the same components:
engine, wheels, brakes etc.

• The components are different.

May 8, 2005 Oranit Dror

Abstract Factory (cont.)

CarBuilder

Client

HundaiAccentFactory

createEngine()
createWheel()
…

FiatUnoFactory

createEngine()
createWheel()
…

…

CarFactory

createEngine()
createWheel()
…

abstract

Wheel

FiatUnoWheel HundaiAccentWheel…

abstract

Engine

FiatUnotEngine HundaiAccenEngine…

abstract

May 8, 2005 Oranit Dror

Abstract Factory (cont.)

� Isolates concrete classes
�Exchanging product families is easy
�Promotes consistency among products
�Supporting new kinds of products

involves changing the AbstractFactory
class and all of its subclasses.

� Typically implemented as a singleton.

May 8, 2005 Oranit Dror

Singleton

�Ensures a class has only one instance
and provides a global access point to it.
public class Logger {

private static final Logger instance = new Logger();

private Logger() {…}

public static Logger getInstance() {

return instance;

}

}

May 8, 2005 Oranit Dror

Singleton (cont.)

public class Logger {

private static Logger instance;

private Logger() {…}
`

public static Logger getInstance() {

if (instance == null)

instance = new Logger();

return instance;

}

}

Lazy evaluation
(not thread-safe)

May 8, 2005 Oranit Dror

Enumeration

�Enforces a final set of instances and
provides a global access point to them.
public final class Boolean … {

public static final Boolean FALSE = new Boolean(false);

public static final Boolean TRUE = new Boolean(true);

// Constructor
public Boolean(boolean value) {…}
// Factory Method
public static Boolean valueOf(boolean b) {…}
…

}

May 8, 2005 Oranit Dror

Enumeration (cont.)

public final class Boolean …{

public static final Boolean FALSE = new Boolean(false);

public static final Boolean TRUE = new Boolean(true);

public Boolean(boolean value) {…}

static Boolean valueOf(boolean b) {

return (b ? Boolean.TRUE : Boolean.FALSE);

}

}

private
is better

May 8, 2005 Oranit Dror

Immutability

� Cannot be changed after creation
� A thread-safe
� Examples: Java Strings, Integers
� All fields are private
� Declared as final
� No methods that change the fields
� A method that changes the attributes should

return a new instance:

public String String.toUpperCase();

May 8, 2005 Oranit Dror

Interning

�Reuses existing objects
�Reduces the number of class instances
�Permitted only to immutable objects
�Example:
public String String.intern();

May 8, 2005 Oranit Dror

Interning (cont.)

Example:
Representing an image as an array of
pixels, each of which is a color

Many pixels
A few colorsColor Pool

Canonical Color objects

May 8, 2005 Oranit Dror

Interning (cont.)

public final class Color {

…

private static Map colors = new HashMap();

private Color (int rgb) {…}

public static Color getColor(int rgb) {

if (colors.containsKey(rgb))

return (Color) colors.get(rgb);

Color color = new Color(rgb);

colors.put(rgb, color);

return color;

}

…

}

Immutable

Factory
method

May 8, 2005 Oranit Dror

Flyweight

�A generalization of interning
�Reuses existing objects
�Useful when class instances can share

most of their fields:
• Intrinsic fields (can be shared)
• Extrinsic fields (variable)

May 8, 2005 Oranit Dror

Flyweight (cont.)

OO Document Editor Example:
�Use objects to represent documents,

pages, lines, tables, images, etc.
�What about representing each character

by an object?
• A flexible representation

• The naïve design requires huge memory

May 8, 2005 Oranit Dror

Flyweight (cont.)

�The naïve design (memory consuming):
class Character ... {

private int x, y;

private char c;

private int size;

private Font font;

private Color color;

...

draw() {…}

...

}

Most characters in a
document use the same
size, font, color etc.
Thus, can be shared.

extrinsic

intrinsic

May 8, 2005 Oranit Dror

Flyweight (cont.)

�A better design:
• The class is broken into two classes:

- a class that holds the intrinsic fields
(the flyweight class)

- The original class holds the extrinsic
fields and a reference to the flyweight.

• The flyweight class is interned

May 8, 2005 Oranit Dror

Flyweight (cont.)

The Flyweight class:

final class CharacterAttributes {

private char c;

private int size;

private Font font;

private Color color;

...

draw(int x, int y) {…}

...

}

May 8, 2005 Oranit Dror

Flyweight (cont.)

The original class:
class Character ... {

private int x, y;

CharacterAttrbutes attributes;

Character(int x, int y, char c, int size, Font font, Color color) {

…

attributes = CharacterAttributeFactory.construct(c, size, font, color);

}

draw() {

attributes.draw(x,y);

}

}

Holds a pool of shared
CharacterAttributes objects.

If possible, it is better
to remove these fields

May 8, 2005 Oranit Dror

Flyweight (cont.)

�A better approach (if possible):

final class Character ... {

private char c;
private int size;
private Font font;
private Color color;

private Character();

...
draw(int x, int y) {…}
...

}

-Only one class, the original one
-A flyweight class (interned)

The extrinsic fields are supplied by
the client

Clients should not instantiate the
class directly. They must obtain
objects from a factory.

May 8, 2005 Oranit Dror

Flyweight (cont.)

Consequences:
�may introduce run-time costs
�Storage saving is a function of:

• the reduction in the total number of instances
• the amount of intrinsic state per object
• whether extrinsic state is computed or stored

May 8, 2005 Oranit Dror

Object Pool

Database Example:
�Task: Design a class for accessing a DB

Client

Database
Database

Server

Client

…
…

.

Network
Connections

Our Class

May 8, 2005 Oranit Dror

Object Pool (cont.)

�Constraints:
• Establishing and cleaning up connections

to a database are time-consuming
• Connecting/Disconnecting time may depend

on the number of open connections.
• The number of open connections may be

limited (server capacity, DB license)

�Solution:
• Maintain a pool of open connections for reuse

May 8, 2005 Oranit Dror

Object Pool (cont.)

DBConnection

protected DBConnection();

DBConnectionPool

private DBConnectionPool();
public static DBConnectionPool getInstance();
public int getMaxSize();
public DBConnection acquire();

public release(BPConnection connection);

Client
Singleton

may throw an

EmptyPoolException cannot be constructed

by clients.

May 8, 2005 Oranit Dror

Reference Objects

�Consider the following case:
• we have an unlimited pool of DB connections
• we may end up in an out of memory situation

�To overcome this problem:
• The pool will use soft references to hold DB

connections
• Unused connections will be cleared by the

garbage collector if memory is required.

May 8, 2005 Oranit Dror

Reference Objects (cont.)

�Specified in the java.lang.ref package
�Provide special references to objects for

a limited interaction with the garbage
collector.

�Four types of references to objects:
• Regular references
• Soft references
• Weak references
• Phantom references

Strength
Level

Specified by
Reference objects

May 8, 2005 Oranit Dror

Reference Objects (cont.)

abstract class
Reference

WeakReferenceSoftRefernece

� Class Hierarchy:

PhantomReference

Specifies the
common operations

May 8, 2005 Oranit Dror

Reference Objects (cont.)

After finalizationPhantom reachable

AutomaticallyWeakly reachable

If memory is tightSoftly reachable

NeverStrongly reachable

When garbage-collectedObject Type

May 8, 2005 Oranit Dror

Reference Objects (cont.)

scheduling pre-mortem cleanupPhantomReference

canonicalizing mappingsWeakReference

memory-safe cachesSoftReference

Useful for…Reference Object

May 8, 2005 Oranit Dror

Reference Objects (cont.)

�Usage Example:
• DBConnection connection = new DBConnection();

SoftReference connectionRef = new SofReference(connection);

• connection = (DBConnection) (connectionRef.get());

if (connection == null) {

connection = new DBConnection();

connectionRef = new SoftReference(connection);

}

May 8, 2005 Oranit Dror

Books

�The Gang of Four (GoF) book:
Erich Gamma, Richard Helm, Ralph Johnson,
and John Vlissides, Design Patterns:
Elements Of Reusable Object-Oriented
Software. 1995.

