
Dr. Rubi Boim

SQL
Big Data Systems

Motivation (for this course)
SQL is an important “standard”

• Used in RDBMS and most Data Warehouses

• But NOT in most NoSQL
• Each product has its own API

• BUT some are built on the same building blocks 
CQL (Cassandra) 

• Joins and normalization are crucial for RDBMS 
You should know them well as they are anti-patterns for Wide columns

2

Reminder - relational model
• Data is stored in tables of columns and rows

• A unique key identify each row

• The table is unordered (no first / last)

3

users
user_id name city brithdate

101 Rubi Boim Tel Aviv <null>
102 Tova Milo Tel Aviv <null>
103 Lebron James Los Angeles 30/12/1984
104 Michael Jordan Chicago 17/02/1963

Columns / attributes

Rows / tuples

Table / relation

Structured Query Language
• An “API” for querying and maintaining the database

• Different standards (ANSI SQL, SQL3…)

Can be classified to

• Data Definition Language (DDL) 
create / alter / delete tables

• Data Manipulation Language (DML) 
select / insert / update /delete data

4

Data Definition Language (DDL)
create / alter / delete tables

5

(We present here only the basics - there are a lot more options for each operation)

CREATE TABLE
Creates a new table

6

CREATE TABLE table(
 column1 DATATYPE,
 column2 DATATYPE,
 column3 DATATYPE,
 ...)

DATATYPES
VARCHAR(n),

INT, SMALLINT, MEDIUMINT, BIGINT,

FLOAT, DOUBLE,

DATE, DATETIME, TIMESTAMP,

BIT

…

CREATE TABLE

7

users
user_id name city brithdate

CREATE TABLE users(
 user_id INT,
 name VARCHAR(255),
 city VARCHAR(255),
 birthdate DATE
)

CREATE TABLE

8

users
user_id name city brithdate

CREATE TABLE users(
 user_id INT NOT NULL,
 name VARCHAR(255),
 city VARCHAR(255),
 birthdate DATE,
 PRIMARY KEY(user_id)
)

Oracle / SQL Server use inline
(user_id INT NOT NULL PRIMARY KEY)

MySQL syntax

DROP TABLE
Deletes an existing table

9

DROP TABLE table

Warning - A LOT of data could be delete

ALTER TABLE
Alters an existing table

10

ALTER TABLE table(
 ADD column1 DATATYPE,
 DROP column2,
 ALTER column3 newName DATATYPE

)

ALTER TABLE

11

users
user_id name city brithdateCREATE TABLE users(

 user_id INT,
 name VARCHAR(255),
 city VARCHAR(255),
 birthdate DATE

ALTER TABLE users(
 DROP city)

users (after alter)
user_id name brithdate

Data Manipulation Language (DML)
select / insert / update /delete data

12

(We present here only the basics - there are a lot more options for each operation)

SELECT
Retrieves data from the database

13

SELECT attributes
FROM tables
WHERE conditions
ORDER BY attributes

SELECT

14

users
user_id name city brithdate

101 Rubi Boim Tel Aviv <null>
102 Tova Milo Tel Aviv <null>
103 Lebron James Los Angeles 30/12/1984
104 Michael Jordan Chicago 17/02/1963

Return all users in
a descending order

SELECT

15

SELECT *
FROM users
ORDER BY name DESC

users
user_id name city brithdate

101 Rubi Boim Tel Aviv <null>
102 Tova Milo Tel Aviv <null>
103 Lebron James Los Angeles 30/12/1984
104 Michael Jordan Chicago 17/02/1963

user_id name city brithdate
102 Tova Milo Tel Aviv <null>
101 Rubi Boim Tel Aviv <null>
104 Michael Jordan Chicago 17/02/1963
103 Lebron James Los Angeles 30/12/1984

Return all users in
a descending order

SELECT

16

users
user_id name city brithdate

101 Rubi Boim Tel Aviv <null>
102 Tova Milo Tel Aviv <null>
103 Lebron James Los Angeles 30/12/1984
104 Michael Jordan Chicago 17/02/1963

Return the ids and names
of all Tel Aviv residences

SELECT

17

SELECT user_id, name
FROM users
WHERE city = "Tel Aviv”
ORDER BY name

users
user_id name city brithdate

101 Rubi Boim Tel Aviv <null>
102 Tova Milo Tel Aviv <null>
103 Lebron James Los Angeles 30/12/1984
104 Michael Jordan Chicago 17/02/1963

user_id name
101 Rubi Boim
102 Tova Milo

Return the ids and names
of all Tel Aviv residences

SELECT

18

users
user_id name city brithdate

101 Rubi Boim Tel Aviv <null>
102 Tova Milo Tel Aviv <null>
103 Lebron James Los Angeles 30/12/1984
104 Michael Jordan Chicago 17/02/1963

Return the ids, names
and birthdates of all who

were born post 1980

SELECT

19

SELECT user_id, name, birthdate
FROM users
WHERE birthdate >= ’01/01/1980’
ORDER BY name

users
user_id name city brithdate

101 Rubi Boim Tel Aviv <null>
102 Tova Milo Tel Aviv <null>
103 Lebron James Los Angeles 30/12/1984
104 Michael Jordan Chicago 17/02/1963

user_id name brithdate
103 Lebron James 30/12/1984

Return the ids, names
and birthdates of all who

were born post 1980

SELECT

20

users
user_id name city brithdate

101 Rubi Boim Tel Aviv <null>
102 Tova Milo Tel Aviv <null>
103 Lebron James Los Angeles 30/12/1984
104 Michael Jordan Chicago 17/02/1963

Select all cities

SELECT

21

SELECT city
FROM users
ORDER BY city

users
user_id name city brithdate

101 Rubi Boim Tel Aviv <null>
102 Tova Milo Tel Aviv <null>
103 Lebron James Los Angeles 30/12/1984
104 Michael Jordan Chicago 17/02/1963

city
Chicago

Los Angeles
Tel Aviv
Tel Aviv

Select all cities

SELECT

22

SELECT DISTINCT city
FROM users
ORDER BY city

users
user_id name city brithdate

101 Rubi Boim Tel Aviv <null>
102 Tova Milo Tel Aviv <null>
103 Lebron James Los Angeles 30/12/1984
104 Michael Jordan Chicago 17/02/1963

city
Chicago

Los Angeles
Tel Aviv

Select all cities

SELECT with Joins
• What is the connection between the tables?

23

users
user_id name city brithdate

101 Rubi Boim Tel Aviv <null>
102 Tova Milo Tel Aviv <null>
103 Lebron James Los Angeles 30/12/1984
104 Michael Jordan Chicago 17/02/1963

cities
name country population
Tel Aviv Israel 450,000
Chicago USA 3,000,000

Paris France 2,100,000
Los Angeles USA 4,000,000

SELECT with Joins
• Select all users who lives in “small” cities (<1m)

24

users
user_id name city brithdate

101 Rubi Boim Tel Aviv <null>
102 Tova Milo Tel Aviv <null>
103 Lebron James Los Angeles 30/12/1984
104 Michael

Jordan
Chicago 17/02/1963

cities
name country population
Tel Aviv Israel 450,000
Chicago USA 3,000,000

Paris France 2,100,000
Los Angeles USA 4,000,000

SELECT with Joins
• Select all users who lives in “small” cities (<1m)

25

users
user_id name city brithdate

101 Rubi Boim Tel Aviv <null>
102 Tova Milo Tel Aviv <null>
103 Lebron James Los Angeles 30/12/1984
104 Michael

Jordan
Chicago 17/02/1963

cities
name country population
Tel Aviv Israel 450,000
Chicago USA 3,000,000

Paris France 2,100,000
Los Angeles USA 4,000,000

SELECT with Joins
• Select all users who lives in “small” cities (<1m)

26

users
user_id name city brithdate

101 Rubi Boim Tel Aviv <null>
102 Tova Milo Tel Aviv <null>
103 Lebron James Los Angeles 30/12/1984
104 Michael

Jordan
Chicago 17/02/1963

cities
name country population
Tel Aviv Israel 450,000
Chicago USA 3,000,000

Paris France 2,100,000
Los Angeles USA 4,000,000

SELECT users.*
FROM users, cities
WHERE users.city = cities.name AND
 cities.population < 1000000 user_id name city brithdat

e101 Rubi Boim Tel Aviv <null>
102 Tova Milo Tel Aviv <null>

SELECT with Joins
• Find all users who lives in “small” cities (<1m) in Europe

27

users(user_id, name, city, birthdate)
cities(name, country, population)
countries(name, region, population)

SELECT with Joins
• Find all users who lives in “small” cities (<1m) in Europe

28

SELECT users.*
FROM users, cities, countries
WHERE users.city = cities.name AND
 cities.population < 1000000 AND
 cities.country = countries.name AND
 countries.region = “Europe”

users(user_id, name, city, birthdate)
cities(name, country, population)
countries(name, region, population)

SELECT with Joins
• find all 2nd degree friends of Lebron (103)

29

users(user_id, name, city, birthdate)
cities(name, country, population)
countries(name, region, population)
friends(user_id, friend_user_id, since_date)

SELECT with Joins
• find all 2nd degree friends of Lebron (103)

30

SELECT f1.user_id
FROM friends AS f1, friends AS f2
WHERE f1.friend_user_id = f2.user_id AND
 f2.friend_user_id = 103

users(user_id, name, city, birthdate)
cities(name, country, population)
countries(name, region, population)
friends(user_id, friend_user_id, since_date)

SELECT with Joins
• find all 2nd degree friends of Lebron (103)

31

SELECT f1.user_id
FROM friends AS f1, friends AS f2
WHERE f1.friend_user_id = f2.user_id AND
 f2.friend_user_id = 103

users(user_id, name, city, birthdate)
cities(name, country, population)
countries(name, region, population)
friends(user_id, friend_user_id, since_date)

Is this ok?

SELECT with Joins
• find all 2nd degree friends of Lebron (103)

32

users(user_id, name, city, birthdate)
cities(name, country, population)
countries(name, region, population)
friends(user_id, friend_user_id, since_date)

SELECT DISTINCT f1.user_id
FROM friends AS f1, friends AS f2
WHERE f1.friend_user_id = f2.user_id AND
 f2.friend_user_id = 103

SELECT with Joins
• find all 2nd degree friends of Lebron (103)

33

users(user_id, name, city, birthdate)
cities(name, country, population)
countries(name, region, population)
friends(user_id, friend_user_id, since_date)

SELECT DISTINCT f1.user_id
FROM friends AS f1, friends AS f2
WHERE f1.friend_user_id = f2.user_id AND
 f2.friend_user_id = 103

What about first degree
friends?

SELECT with Joins
• find all 2nd degree friends of Lebron (103)

34

users(user_id, name, city, birthdate)
cities(name, country, population)
countries(name, region, population)
friends(user_id, friend_user_id, since_date)

SELECT DISTINCT f1.user_id
FROM friends AS f1, friends AS f2
WHERE f1.friend_user_id = f2.user_id AND
 f2.friend_user_id = 103 AND
 f1.friend_user_id <> 103

SELECT with Joins
• find all 2nd degree friends of Lebron (103)

35

users(user_id, name, city, birthdate)
cities(name, country, population)
countries(name, region, population)
friends(user_id, friend_user_id, since_date)

SELECT DISTINCT f1.user_id
FROM friends AS f1, friends AS f2
WHERE f1.friend_user_id = f2.user_id AND
 f2.friend_user_id = 103 AND
 f1.friend_user_id <> 103

Can you do it with subqueries
instead of joins?

SELECT with Joins
• find all 2nd degree friends of Lebron (103)

36

users(user_id, name, city, birthdate)
cities(name, country, population)
countries(name, region, population)
friends(user_id, friend_user_id, since_date)

SELECT DISTINCT user_id
FROM friends
WHERE friend_user_id IN
 (SELECT user_id
 FROM friends WHERE friend_user_id = 103)

SELECT with Joins
• find all 2nd degree friends of Lebron (103)

37

users(user_id, name, city, birthdate)
cities(name, country, population)
countries(name, region, population)
friends(user_id, friend_user_id, since_date)

SELECT DISTINCT user_id
FROM friends
WHERE friend_user_id IN
 (SELECT user_id
 FROM friends WHERE friend_user_id = 103)

What about first degree
friends?

SELECT with Joins
• find all 2nd degree friends of Lebron (103)

38

users(user_id, name, city, birthdate)
cities(name, country, population)
countries(name, region, population)
friends(user_id, friend_user_id, since_date)

SELECT DISTINCT user_id
FROM friends
WHERE friend_user_id IN
 (SELECT user_id FROM friends
 WHERE friend_user_id = 103)
AND user_id NOT IN
 (SELECT user_id FROM friends
 WHERE friend_user_id = 103)

SELECT logic - Cartesian product

39

companies
id title
1 Apple
2 Samsung

items
item_id title company_id

2003 iPad 1
2004 iPhone 1
2005 55’ LED TV 2

SELECT * FROM items, companies

SELECT logic - Cartesian product

40

companies
id title
1 Apple
2 Samsung

items
item_id title company_id

2003 iPad 1
2004 iPhone 1
2005 55’ LED TV 2

SELECT * FROM items, companies

item_id title company_id id title
2003 iPad 1 1 Apple
2003 iPad 1 2 Samsung
2004 iPhone 1 1 Apple
2004 iPhone 1 2 Samsung
2005 55’ LED TV 2 1 Apple
2005 55’ LED TV 2 2 Samsung

SELECT logic - Cartesian product

41

companies
id title
1 Apple
2 Samsung

items
item_id title company_id

2003 iPad 1
2004 iPhone 1
2005 55’ LED TV 2

SELECT * FROM items, companies
WHERE company_id = id

item_id title company_id id title
2003 iPad 1 1 Apple
2003 iPad 1 2 Samsung
2004 iPhone 1 1 Apple
2004 iPhone 1 2 Samsung
2005 55’ LED TV 2 1 Apple
2005 55’ LED TV 2 2 Samsung

SELECT logic - Cartesian product

42

companies
id title
1 Apple
2 Samsung

items
item_id title company_id

2003 iPad 1
2004 iPhone 1
2005 55’ LED TV 2

SELECT * FROM items, companies
WHERE company_id = id

item_id title company_id id title
2003 iPad 1 1 Apple
2004 iPhone 1 1 Apple
2005 55’ LED TV 2 2 Samsung

INSERT / UPDATE / DELETE

43

(We present here only the basics - there are a lot more options for each operation)

INSERT
Insert data to the database

• Without attributes all values are required in order

• Missing attributes will be added as NULL

44

INSERT INTO table(A1,…,An)
VALUES (V1,…,Vn)

INSERT

45

users
user_id name city brithdate

101 Rubi Boim Tel Aviv <null>
103 Lebron James Los Angeles 30/12/1984

INSERT INTO users(user_id, name, city)
VALUES (101, ‘Rubi Boim’, ‘Tel Aviv’)

INSERT INTO users
VALUES (103, ‘Lebron James’, ‘Los Angeles’, ’30/12/1984’)

DELETE
Deletes data from the database

Warnings

• double check the conditions

• If no conditions are set, ALL DATA will be deleted
46

DELETE FROM table
WHERE conditions

DELETE

47

DELETE FROM users WHERE user_id = 104
DELETE FROM users WHERE city = ‘Tel Aviv’

user_id name city brithdate
101 Rubi Boim Tel Aviv <null>
102 Tova Milo Tel Aviv <null>
103 Lebron James Los Angeles 30/12/1984
104 Michael Jordan Chicago 17/02/1963

DELETE

48

user_id name city brithdate
103 Lebron James Los Angeles 30/12/1984

DELETE FROM users WHERE user_id = 104
DELETE FROM users WHERE city = ‘Tel Aviv’

user_id name city brithdate
101 Rubi Boim Tel Aviv <null>
102 Tova Milo Tel Aviv <null>
103 Lebron James Los Angeles 30/12/1984
104 Michael Jordan Chicago 17/02/1963

UPDATE
Update data in the database

Warnings

• double check the conditions

• If no conditions are set, ALL DATA will be updated
49

UPDATE table
SET attr1 = <value>,
 attr1 = <value>
WHERE conditions

UPDATE

50

UPDATE users SET city = ‘Tel-Aviv’
WHERE city = ‘Tel Aviv’

user_id name city brithdate
101 Rubi Boim Tel Aviv <null>
102 Tova Milo Tel Aviv <null>
103 Lebron James Los Angeles 30/12/1984
104 Michael Jordan Chicago 17/02/1963

UPDATE

51

UPDATE users SET city = ‘Tel-Aviv’
WHERE city = ‘Tel Aviv’

user_id name city brithdate
101 Rubi Boim Tel Aviv <null>
102 Tova Milo Tel Aviv <null>
103 Lebron James Los Angeles 30/12/1984
104 Michael Jordan Chicago 17/02/1963

user_id name city brithdate
101 Rubi Boim Tel-Aviv <null>
102 Tova Milo Tel-Aviv <null>
103 Lebron James Los Angeles 30/12/1984
104 Michael Jordan Chicago 17/02/1963

Aggregation / Grouping / Union /
Subqueries

52

Aggregation
Aggregates the rows and calculate a function

Popular operations

• COUNT, AVG, SUM, MIN, MAX, AVG

53

SELECT AVG(attr)
FROM table
WHERE conditions

Aggregation

54

name country population
Tel Aviv Israel 450,000
Chicago USA 3,000,000

Paris France 2,100,000
Los Angeles USA 4,000,000

What is the average
population of all cities?

Aggregation

55

avg(population)
2,387,500

SELECT avg(population)
FROM cities

name country population
Tel Aviv Israel 450,000
Chicago USA 3,000,000

Paris France 2,100,000
Los Angeles USA 4,000,000

What is the average
population of all cities?

Aggregation

56

avg(population)
2,387,500

SELECT avg(population)
FROM cities

name country population
Tel Aviv Israel 450,000
Chicago USA 3,000,000

Paris France 2,100,000
Los Angeles USA 4,000,000

What is the average
population of all cities?

How many “big cities”
(>1m) are in the DB?

Aggregation

57

avg(population)
2,387,500

SELECT avg(population)
FROM cities

name country population
Tel Aviv Israel 450,000
Chicago USA 3,000,000

Paris France 2,100,000
Los Angeles USA 4,000,000

SELECT count(*)
FROM cities
WHERE population > 1000000

count(*)
3

What is the average
population of all cities?

How many “big cities”
(>1m) are in the DB?

GROUP BY
Aggregates on specific attributes

• SELECT contains only aggregates / group by attributes

• GROUP BY is performed after the WHERE

• HAVING contains only aggregates attributes and performed finally

58

SELECT attributes
FROM table
WHERE conditions
GROUP BY attributes
HAVING aggregates

GROUP BY

59

name country population
Tel Aviv Israel 450,000
Chicago USA 3,000,000

Paris France 2,100,000
Los Angeles USA 4,000,000

For each country,  
how many cities are in

the DB?

GROUP BY

60

SELECT country, count(*)
FROM cities
GROUP BY country

name country population
Tel Aviv Israel 450,000
Chicago USA 3,000,000

Paris France 2,100,000
Los Angeles USA 4,000,000

For each country,  
how many cities are in

the DB?

country count(*)
Israel 1

France 1
USA 2

GROUP BY

61

name country population
Tel Aviv Israel 450,000
Chicago USA 3,000,000

Paris France 2,100,000
Los Angeles USA 4,000,000

What is the average
population of all cities 

per country?

GROUP BY

62

SELECT country, avg(population)
FROM cities
GROUP BY country

name country population
Tel Aviv Israel 450,000
Chicago USA 3,000,000

Paris France 2,100,000
Los Angeles USA 4,000,000

country avg(population)
Israel 450,000
USA 3,500,000

France 2,100,000

What is the average
population of all cities 

per country?

GROUP BY

63

name country population
Tel Aviv Israel 450,000
Chicago USA 3,000,000

Paris France 2,100,000
Los Angeles USA 4,000,000

Which are the countries
with exactly 1 city in the

DB?

GROUP BY

64

SELECT country, count(*)
FROM cities
GROUP BY country
HAVING count(*) = 1

name country population
Tel Aviv Israel 450,000
Chicago USA 3,000,000

Paris France 2,100,000
Los Angeles USA 4,000,000

country count(*)
Israel 1

France 1

Which are the countries
with exactly 1 city in the

DB?

GROUP BY

65

name country population
Tel Aviv Israel 450,000
Chicago USA 3,000,000

Paris France 2,100,000
Los Angeles USA 4,000,000

For each country,  
how many “big cities”
(>1m) are in the DB?

GROUP BY

66

SELECT country, count(*)
FROM cities
WHERE population > 1000000
GROUP BY country

name country population
Tel Aviv Israel 450,000
Chicago USA 3,000,000

Paris France 2,100,000
Los Angeles USA 4,000,000

For each country,  
how many “big cities”
(>1m) are in the DB?

country count(*)
Israel 0
USA 2

France 1

GROUP BY

67

SELECT country, count(*)
FROM cities
WHERE population > 1000000
GROUP BY country

name country population
Tel Aviv Israel 450,000
Chicago USA 3,000,000

Paris France 2,100,000
Los Angeles USA 4,000,000

For each country,  
how many “big cities”
(>1m) are in the DB?

country count(*)
Israel 0
USA 2

France 1

What is the problem here?

GROUP BY

68

SELECT country, count(*)
FROM cities
WHERE population > 1000000
GROUP BY country

name country population
Tel Aviv Israel 450,000
Chicago USA 3,000,000

Paris France 2,100,000
Los Angeles USA 4,000,000

For each country,  
how many “big cities”
(>1m) are in the DB?

country count(*)
USA 2

France 1

GROUP BY

69

SELECT country, count(*)
FROM cities
WHERE population > 1000000
GROUP BY country

name country population
Tel Aviv Israel 450,000
Chicago USA 3,000,000

Paris France 2,100,000
Los Angeles USA 4,000,000

For each country,  
how many “big cities”
(>1m) are in the DB?

country count(*)
USA 2

France 1

HW - how to return the query
with <Israel,0>?

UNION, INTERSECTION, DIFFERENCE

• Attribute names must be the same (use “AS”)
70

SELECT name
FROM cities
WHERE country = ‘USA’

UNION

SELECT name
FROM cities
WHERE country <> ‘USA’ AND
 population < 1000000

name country population
Tel Aviv Israel 450,000
Chicago USA 3,000,000

Paris France 2,100,000
Los Angeles USA 4,000,000

?

UNION, INTERSECTION, DIFFERENCE

• Attribute names must be the same (use “AS”)
71

SELECT name
FROM cities
WHERE country = ‘USA’

UNION

SELECT name
FROM cities
WHERE country <> ‘USA’ AND
 population < 1000000

name country population
Tel Aviv Israel 450,000
Chicago USA 3,000,000

Paris France 2,100,000
Los Angeles USA 4,000,000

name
Tel Aviv
Chicago

Los Angeles

Subqueries

72

name country population
Tel Aviv Israel 450,000
Chicago USA 3,000,000

Paris France 2,100,000
Los Angeles USA 4,000,000

Which cities has a lower
population than all the

cities in USA?

Subqueries

73

SELECT name
FROM cities
WHERE population < ALL
 (SELECT population
 FROM cities
 WHERE country = ‘USA’)

name country population
Tel Aviv Israel 450,000
Chicago USA 3,000,000

Paris France 2,100,000
Los Angeles USA 4,000,000

name
Tel Aviv
Paris

Which cities has a lower
population than all the

cities in USA?

Subqueries

74

SELECT name
FROM cities
WHERE population < ALL
 (SELECT population
 FROM cities
 WHERE country = ‘USA’)

name country population
Tel Aviv Israel 450,000
Chicago USA 3,000,000

Paris France 2,100,000
Los Angeles USA 4,000,000

name
Tel Aviv
Paris

Which cities has a lower
population than all the

cities in USA?

Can you think of another
version?

Subqueries

75

SELECT name
FROM cities
WHERE population <
 (SELECT min(population)
 FROM cities
 WHERE country = ‘USA’)

name country population
Tel Aviv Israel 450,000
Chicago USA 3,000,000

Paris France 2,100,000
Los Angeles USA 4,000,000

name
Tel Aviv
Paris

Which cities has a lower
population than all the

cities in USA?

Quick questions

76

Question (1)
Find all action movies

77

users(id, name, city, birthdate)
movies(id, name, rating, genre)
views(user_id, movie_id, view_timestamp)

Question (1)
Find all action movies

78

SELECT movies.*
FROM movies
WHERE genre = ‘action’

users(id, name, city, birthdate)
movies(id, name, rating, genre)
views(user_id, movie_id, view_timestamp)

Question (2)
Find all action movies viewed by Lebron (id = 103)

79

users(id, name, city, birthdate)
movies(id, name, rating, genre)
views(user_id, movie_id, view_timestamp)

Question (2)
Find all action movies viewed by Lebron (id = 103)

80

SELECT movies.*
FROM views, movies
WHERE views.user_id = 103 AND
 views.movie_id = movies.movie_id AND
 movies.genre = ‘action’

users(id, name, city, birthdate)
movies(id, name, rating, genre)
views(user_id, movie_id, view_timestamp)

Question (2)
Find all action movies viewed by Lebron (id = 103)

81

SELECT movies.*
FROM views, movies
WHERE views.user_id = 103 AND
 views.movie_id = movies.movie_id AND
 movies.genre = ‘action’

users(id, name, city, birthdate)
movies(id, name, rating, genre)
views(user_id, movie_id, view_timestamp)

Do we need DISTINCT?

Question (3)
Find all action movies viewed by Lebron (id = 103)

82

users(id, name, city, birthdate)
movies(id, name, rating, genre)
views(view_id, user_id, movie_id, view_timestamp)

What is the difference?

Question (3)
Find all action movies viewed by Lebron (id = 103)

83

SELECT DISTINCT movies.*
FROM views, movies
WHERE views.user_id = 103 AND
 views.movie_id = movies.movie_id AND
 movies.genre = ‘action’

users(id, name, city, birthdate)
movies(id, name, rating, genre)
views(view_id, user_id, movie_id, view_timestamp)

Question (4)
“people who watched American pie (id = 23) also watched"

84

users(id, name, city, birthdate)
movies(id, name, rating, genre)
views(view_id, user_id, movie_id, view_timestamp)

Question (4)
“people who watched American pie (id = 23) also watched"

85

SELECT DISTINCT m.*
FROM movies AS m, views AS v1, views AS v2
WHERE m.id = v1.movie_id AND
 m.id <> 23 AND
 v1.user_id = v2.user_id AND
 v2.movie_id = 23

users(id, name, city, birthdate)
movies(id, name, rating, genre)
views(view_id, user_id, movie_id, view_timestamp)

Question (5)
“people who watched American pie (id = 23) also watched" 
(ordered by weekly popularity)

86

users(id, name, city, birthdate)
movies(id, name, rating, genre)
views(view_id, user_id, movie_id, view_timestamp)

Question (5)
“people who watched American pie (id = 23) also watched" 
(ordered by weekly popularity)

87

SELECT m.id, m.name, count(*)
FROM movies AS m, views AS v
WHERE m.id = v.movie_id AND
 v.timestamp > 123456789 AND
 v.id IN (<QUESTION4>)
GROUP BY m.id, m.name
ORDER BY count(*) DESC

users(id, name, city, birthdate)
movies(id, name, rating, genre)
views(view_id, user_id, movie_id, view_timestamp)

