Bigtable

Dr. Rubi Boim



Bigtable

* Google’s (internal) main database

* In 2015 Google also offered it as a product



Motivation (for this course)

e First encounter with wide column database

* Understand basic usage / data model
we will go much deeper later in the course (NoSQL data modeling)

* Understand Bigtable building blocks
* Crucial for success in large scale systems

 Many are used also by Cassandra




Agenda

e History

* Data model

* Building blocks

o SSTable (and memtable)
* Chubby

* Tablet location

* Bloom filter

e Summary



Agenda

* History

* Data model

* Building blocks

e SSTable (and memtable)
* Chubby

* Tablet location

* Bloom filter

e Summary



Bigtable

» Create by Google in 2004-2006
paper: Bigtable: A Distributed Storage System for Structured Data

* [he techniques developed here are used In many

other systems
not just by Google - HBase, Cassandra...

* One of (if not the) first NoSQL database




History

* Google was on hyper growth on 2004
* Web indexes for search engine took too long to build

* A lot of growing projects
Google Search (Personalized)
Google Earth
Google Finance
Google Analytics

(later on also used in gmail, maps, YouTube and many many more)



Initial requirements

Remember this was in 2004...

* Access / mange petabytes of data in real time

e Variable data size
URLs, documents, satellite imagery...

* Wide applicability

* Highly scalable

* Highly available

* Highly compressible



Initial requirements - Data model

* Big table does NOT supports full relational model

e Simple custom API instead



Agenda

e History

* Data model

* Building blocks

e SSTable (and memtable)
* Chubby

* Tablet location

* Bloom filter

e Summary

10



Data model - TLDR

“A Bigtable is a sparse, distributed, persistent
multi-dimensional sorted map.”

* [he map Is indexed by
 Row key

* Column key

e Timestamp

<row:string, column:string, timestamp:int64> —> string

11



Data model

column column column

-

<row:string, column:string, timestamp:int64> —> string

12



Data mOdeI column column column
| — T =T

iiversions

<row:string, column:string, timestamp:int64> —> string

13



Data model

column column column

ot .
S e e e,

<row:string, column:string, timestamp:int64> —> string

14



Data model

column column column

-

iiversmns

= =

<row:string, column:string, timestamp:int64> —> string

15



Data model

column column column

-

iiversmns

= =

<row:string, column:string, timestamp:int64> —> string

16



Data model - design

* Discussion - is this model optimal®?

 What will happen if we switch the order?

<row:string, column:string, timestamp:int64> —> string

v

<row:string, timestamp:int64, column:string> —> string

17



Data model - design

* Discussion - is this model optimal®?

 What will happen if we switch the order?

<row:string, column:string, timestamp:int64> —> string

v

<row:string, timestamp:int64, column:string> —> string

The version will apply to all columns

18



Data model - Google’s requirements

* Bigtable is build by Google FOR Google...

* Optimal == Optimal for Google’s requirements



Data model - Webtable example

Used by Google’s search index

"com.cnn.www'" —

ROW
reverse url address

"anchor:my.look.ca"

"contents:” "anchor:cnnsi.com”
| | |
LYy ____ __ _V _ _ o __ o Y_____ I_ _ _ _ _ _
| | .
" |ﬂt|ﬂﬂ| ..."
. I u<_h_.t_m|_>"-u <_t t3 HCNNH - t9 "CNN.COm"
" " <« 5
<htmi>—. < | Z '
| _ _._|_6_____| _______________________ -———— -
| | |
COLUMN B COLUMN

crawled website content
according to different times

20

Name: external reference site
Value: the text from the link




Data model - Webtable example

Used by Google’s search index

why did they use "contents:” "anchor:.cnnsi.com” "anchor:my.look.ca"
“reversed” urls? . .
I I I : : I
A I A I _ _ __ _ _ oY ___ I — — — _ _
I | : , |
" |ﬂt|ﬂﬂ| ..."
| " " - t " " " "
"com.cnn.www" — = rshimis gt CNN" |=tg CNN.com" |= tg
<htmi>—. t | | : |
L S 6 e ______ o
| | | Z Z |
ROW COLUMN COLUMN |
reverse url address crawled website content Name: external reference site

according to different times Value: the text from the link

21




Data model - Webtable example

data is stored on

column name

Used by Google’s search index

why did they use "contents:” "anchor:.cnnsi.com” "anchor:my.look.ca"
“reversed” urls?
I I I I
A I A I _ _ __ _ _ oY ___ I — — — _ _
I | I | | : , |
" ..."
| " " - t " " " "
"com.cnn.www" — rshtmbs et . CNN" (= tg CNN.com" | tg
<htmi>— t | | : |
o 6 - __ o _____ o
| | | Z Z |
ROW COLUMN COLUMN |
reverse url address crawled website content Name: external reference site

according to different times Value: the text from the link

22




Rows

* Row key is up to 64KB (usually 10-100 bytes)

* Every read/write of data under a single row is atomic
regardless to the number of columns read/written

e Stored by lexicographic order of row key
—> read of short rows are efficient

(can be on the same server)
more on tablets later on



Rows - locality exploit

Model the data based on
how data Is accessed _ _“contents” “language:”

M — L L

Sl — L



Rows - range

* (“short”) Rows can be read together/sequentially

read users by city




Column Family / Columns

e Column family - group of column
usually of the same time for compression

e Column name - family:qualifier

Column family 1 Column family 2
Column 1 Column 2 Column 1

Row key 1

Row key 2

26

Column 2

tl

t2

t3



Column Family / Columns

* Column family - group of column —
usually of the same time for compression

e Column name - family:qualifier

Column family 1 Column family 2

Column 1 Column 2 Column 1 Column 2

tl
Row key 1 t2

t3
Row key 2

27



Column Family / Columns

* Column family - group of Column

usually of the same time for compression

e Column name - family:qualifier

Column family 1 Column family 2

Column 1 Column 2 Column 1 Column 2

tl
Row key 1 t2

t3
Row key 2

28



Column Family / Columns

e Column family - group of column NOTE - wo can store data I
usually of the same time for compression the qualifier

e Column name - family:qualifier

Column family 1 Column family 2

Column 1 Column 2 Column 1 Column 2

tl
Row key 1 t2

t3
Row key 2

29



Column Family / Columns

"com.cnn.www"

"contents:”

We use the URL as the qualifier

30

We use the URL as the qualifier

|

"anchor:.cnnsi.com” "anchor:my.look.ca"




Timestamp

e Used to store different version of the same cell
optional - current time is used if not passed

* For reads:
- return all versions
- return top k recent versions
- return all versions between timestamps

 Automatic “garbage collect”
- save only top k versions
- save only versions in the past 7 days

31



Bigtable API

e [t is not SQL
* Basic management / data manipulation

« BUT also support querying range of rows

« RTFM... :-)



HI, THIS 1S

YOUR SON'S SCHOOL.
WERE HAVING SOME
COMPUTER TROUBLE.

T

OH, DEAR - DID HE
BREAK SOMETHING?

IN A WAY - /

N

i

Il

Speaking about API/SQL

!

DID YOU REALLY
NAME YOUR SON
Robert'); DROP
TABLE Students;-~ 7

~OH.YES LITTLE
ROBBY TABLES,
WE CALL HIM.

WELL, WEVE LOST THIS

YEAR'S STUDENT RECORDS.
I HOPE YOURE HAPPY.

{

AND I H(PE
- YOUVE LEARNED
L TOSANMIZE YOUR
DATARASE INPUTS.

https://xkcd.com/327/

33



https://xkcd.com/327/

Agenda

e History

* Data model

* Building blocks

e SSTable (and memtable)
* Chubby

* Tablet location

* Bloom filter

e Summary

34



Bigtable Building blocks

* How to manage rows across servers”?
* How to manage servers?
* How to manage replication?

* How to manage actual data?



Tablet

* A range of rows is called a tablet

* Data is stored on special files - SSTables (later on this)

* A set of SSTables and a range comprise a tablet



Tablet - Iinitialize

* When a table Is created, there is 1 empty tablet

tablet



Tablet - Iinitialize

* When a table Is created, there is 1 empty tablet

| telavivérubi ey et e

tablet
_ tel-avivitova e



* When the table grows, the tablet Iis split /

tablet

Tablet - Split

. telavivialon  mmp st
| telavivideni  mmmlp s e
| telavivielsa  mmp e
| telavivirami  melpy e
| telavivhrubi  mep e
. telavivitova  mep s e

Approximate size: 100-200MB
per tablet (default)




Approximate size: 100-200MB
per tablet (default)

Tablet - Split

* When the table grows, the tablet Iis split /
| telavivkalon ey e o

tablet | [telaviviideninn) === NG
_ telavivtelsa  wmmlp o e
_ tel-avivérami  wemlp o e
tablet | telaviviubil) == UGN e

| teavivitova  memp e



Tablet - components

e SSTable - the files that stored the tablet’s data

more on this later

* A set of SSTables over a matching range
comprise a tablet

start key: israel#a end key: israel#d

tablet
SSTable files @ SSTable files I SSTable files @ SSTable files




Tablet - mapping

 Fach tablet is assighed to a single node
also known as “Bigtable node” / “tablet server”

 But what is a Bigtable node???



Bigtable design by components

* Bigtable is built on several different layers
* Management
* Processing

e Storage



Bigtable design by components

* Management - Master node (CUbbY) / “Single master distributed system”
 Manage Bigtable nodes

 Manage Data mapping (tablets —> nodes)

 Processing - Bigtable nodes

 Manage read/writes (without actual storage)

o Storage - GFS / Colossus (Google File System)

 Manage actual storage files (SSTables)

44




Bigtable design by components

« Management - Master node (Cubby)

 Manage Bigtable nodes
In Dynamo / Cassandra

 Manage Data mapping (tablets —> nodes) each node handles everything

This is a BIG difference

 Processing - Bigtable nodes

 Manage read/writes (without actual storage)

o Storage - GFS / Colossus (Google File System)

 Manage actual storage files (SSTables)

45



Components by layers

i [l o [ i [l o

SSTable SSTable SSTable SSTable SSTable SSTable
files files files files files files
46

Bigtable nodes

GFS




Components by layers

3 3

SSTable SSTable SSTable SSTable SSTable SSTable
files files files files files files
47

Bigtable nodes

GFS




Components by layers

i [l o [ i [l o

SSTable SSTable SSTable SSTable SSTable SSTable
files files files files files files

48 layer from the tablets

Bigtable nodes

GFS

The actual storage is on a different




Components by layers

Chubby

Bigtable nodes

Each tablet is assigned to 1 node

SSTable SSTable SSTable
files files files

GFS SSTable SSTable SSTable
files files files

49



Components by layers

Chubby

Bigtable nodes

assume more data is added here

SSTable SSTable SSTable
files files files

GFS SSTable SSTable SSTable
files files files

50



Components by layers

Chubby

Bigtable nodes

GFS SSTable SSTable SSTable SSTable SSTable SSTable SSTable
files files files files files HIEES files

51



Components by layers

Chubby

Bigtable nodes

GFS SSTable SSTable SSTable SSTable SSTable SSTable SSTable SSTable
files files files files files HIEES files files

52



Components by layers

Chubby

Bigtable nodes

tablet is too big - a split is needed

GFS SSTable SSTable SSTable
files files files

SSTable SSTable SSTable SSTable SSTable
files files files files files

53



Components by layers

Chubby

Bigtable nodes

GFS SSTable SSTable SSTable SSTable SSTable SSTable SSTable SSTable
files files files files files HIEES files files

54



Components by layers

Chubby

Bigtable nodes

SSTable SSTable SSTable SSTable SSTable

GFS SSTable SSTable SSTable
files files files files files

files files files

55



Components by layers

Chubby

Processing is too slow - we need to
another node

Bigtable nodes

GFS SSTable SSTable SSTable
files files files

SSTable SSTable SSTable SSTable SSTable
files files files files files

56



Components by layers

Chubby

Bigtable nodes

GFS SSTable SSTable SSTable SSTable SSTable SSTable SSTable SSTable
files files files files files HIEES files files

57



Components by layers

Chubby

Bigtable nodes

GFS SSTable SSTable SSTable SSTable SSTable SSTable SSTable SSTable
files files files files files HIEES files files

58



Agenda

e History

* Data model

* Building blocks
 SSTable (and memtable)
* Chubby

* Tablet location

* Bloom filter

e Summary

59



Memtable

* On updates (insert/update/delete):

» \Writes to a log (to redo on failures)

 Updates the memtable

 Memtable: a sorted buffer In memory

e Once the memtable reaches a threshold

e it is saved to an immutable SSTable file

A new empty one is initialized



Sorted String Table (SSTable)

e A flle format

e Immutable

* Provides a persistent ordered map (key-value)



Sorted String Table (SSTable)

SSTable _
file

offset
offset




Sorted String Table (SSTable)

- . . . ." .

<row:string, column:string, timestamp:int64> —> string

SSTable
file

offset

offset
key key
63




Sorted String Table (SSTable

In practice, there is a different more efficient format.
For example, for a long row with 10k columns, there is
no need to save the row key 10k times

SSTable
file

Index

<row:string, column:string, timestamp:int64> —> string

offset
offset

key

64



Minor Compaction

The process of saving the memtable into an SSTable

* Goals:
* Shrinks the memory usage of the node

* Reduce the data that needs to be read from the log
on failures



Minor Compaction

The process of saving the memtable into an SSTable

How many SSTables would
ima?
o Goals: we have over time*

* Shrinks the memory usage of the node

* Reduce the data that needs to be read from the log
on failures



Merging Compaction

The process of merging two (or more) SSTables into a
single new file

* A process that runs automatically in the background
* Optimization - can read also from the memtable

* The old SSTables (and maybe the memtable) can be
deleted once merging compaction completes



Major Compaction

The process of merging all SSTables into a single new
file

* Data Is actually deleted only on major compactions

* pefore that, deleted values are only flag

(by tombstones)



Agenda

e History

* Data model

* Building blocks

o SSTable (and memtable)

 Chubby
e Tablet location
e Bloom filter

e Summary

69



Reminder - Components by layers

Chubby

Bigtable nodes

GFS SSTable SSTable SSTable SSTable SSTable SSTable SSTable SSTable
files files files files files HIEES files files

70



Chubby

A highly available and persistent distributed lock
service

* 5 servers, uses the PAXOS algorithm for consistency
- & @& &> =

* Provides a namespace for directories and small files

* API for read/write (atomic) and locks
on directories / files




Opensource: ©

Ch”bby B> APACHE .

: ‘ ZooKeeper
A highly available and persistent distributed lock
service

* 5 servers, uses the PAXOS algorithm for consistency
- & @& &> =

* Provides a namespace for directories and small files

* API for read/write (atomic) and locks
on directories / files



Chubby - Bigtable usage

Bigtable uses chubby to:
1. Select a node (from Chubby) as Master
+ this is done by creating a “lock” on a fixed file
2. Stores bootstraps data (new cluster/table)

3. Stores schema data (table / column families)

4. Discover / manage Bigtable nodes
* There is a directory “servers” and each server has a matching file with a lock
* As long as the lock is active, the server is live

 |f the sessions with Chubby is lost, the lock is released and the Bigtable server is
considered down

/3



Chubby - Bigtable usage

If Chubby becomes unavailable for

Bigtable uses chubby to: an extended period of time

1. Select a node (from Chubby) as Master BamigdleiCl R EaelnEELENETC

* this is done by creating a “lock” on a fixed file

2. Stores bootstraps data (new cluster/table)
3. Stores schema data (table / column families)

4. Discover / manage Bigtable nodes
* There is a directory “servers” and each server has a matching file with a lock
* As long as the lock is active, the server is live

 |f the sessions with Chubby is lost, the lock is released and the Bigtable server is
considered down

74



Master node

The master node is responsible to

1. Assigning tablets to Bigtable nodes
root tablet for METADATA table - more on this next

2. Detecting the addition / expiration of Bigtable nodes

3. Balancing Bigtable nodes
moving tablets

4. Schema management
tables / column families



Agenda

e History

* Data model

* Building blocks

o SSTable (and memtable)
* Chubby

* Tablet location

* Bloom filter

e Summary

/6



Reminder - Tablet

* A set of SSTables over a matching range
comprise a tablet

start key: israel#a end key: israel#d

tablet
SSTable files @ SSTable files I SSTable files [l SSTable files

’r’



Tablet location

 How Bigtable stores the mapping between tablets
and nodes”

Bigtable nodes

tablet tablet tablet tablet




- For example, where is the tablet for the
Ta b I et I 0 catl o n key “tel-aviv#rubi” for table users?

 How Bigtable stores the mapping between tablets
and nodes”

Bigtable nodes

tablet tablet tablet tablet

79



- For example, where is the tablet for the
Ta b I et I 0 catl o n key “tel-aviv#rubi” for table users?

 How Bigtable stores the mapping between tablets
and nodes”

* Using “3-level hierarchy” index similar to B+ trees
B+ trees are search trees with “a lot of children”

Bigtable nodes

tablet tablet tablet tablet

80



Tabl et Io cati On For example, where is the tablet for the
key “tel-aviv#rubi” for table users?
High fanout —>
less I/0O operation to find element —>

 How Bigtal great for indexes between tablets
and nodes?

* Using “3-level hierarchy” index similar to B+ trees
B+ trees are search trees with “a lot of children”

Bigtable nodes

tablet tablet tablet tablet

81



This Index is implement by

* A system Bigtable table (METADATA)

* the row key is [table]#|last range] of a user tablet

* A Chubby file (root tablet)
* A single file holding the tablet of METADATA tablet

* |t is never split



Chubby file

|

root tablet

table2fc === tabiet location
tableSiq s tabiet location

METADATA table

tablet

 tabletfa s> tablet location

tablet

 table2fu s tabiet location

. tableS#d  wmmmmp> tabiet location
tableStq s tabiet location

tablet

tablet

tablet

tablet

tablet

tablet

tablet

tablet

tablet

table1

table1

table3



Some numbers

« Fach METADATA row stores ~1KB
 Assume 128MB per METADATA tablet
e 217 records per tablet

* 3 level hierarchy - 234 tablets
e 17,179,8069,184 user tablets



Agenda

e History

* Data model

* Building blocks

o SSTable (and memtable)
* Chubby

* Tablet location

* Bloom filter

e Summary

85



Bloom filters

e Probabilistic data structure that used to test whether
an element iIs a member of a set

* |f the filter returns true - the element is present with
high probability, but not 100% (false positive)

e |f the filter return false - the element is NOT In the set



Bloom filters in Bigtable

* A read operation may read from all SSTables of a tablet
can you think of an example?

e If these SSTables are not cached, a lot of disk access
may happen

* To reduce these 10s, Bigtable uses Bloom filters for each
SSTable (and keep them in memory) to reduce the
number of 10s



Bloom filters - how they work

* Initialize (0) an array of m bits
* There are k different hash functions of the rang [0, m-1]

* For every element added to the set, apply the k hash
functions and mark the matching bits in the array

 To check If an element exists, run the k hash functions
and check the matching bits

o If all are flagged, return true.

* If any of the bits are 0, return false



Bloom filters - example

e M=18, k=3
{x,¥z }




Agenda

e History

* Data model

* Building blocks

o SSTable (and memtable)
* Chubby

* Tablet location

e Bloom filter

e Summary

90



Bigtable

* “A Bigtable is a sparse, distributed, persistent multi-
dimensional sorted map.”

<row:string, column:string, timestamp:int64> —> string

* Built on 3 different layers
 Management (Chubby)
* Processing (Bigtable nodes)
e Storage (GFS)

91



Data model

column column column

-

iiversmns

= =

<row:string, column:string, timestamp:int64> —> string

92



Schema design points (1)

* Bigtable is a key/value store, not relational
no joins, atomic operation only within a single row

* Each table has only one index, the row key
Nno secondary indexes

* Rows are sorted lexicographically by row key
from the lowest to the highest byte string



Schema design points (2)

* Column families are not stored in any specific order.

* Columns are grouped by column family and sorted in
lexicographic order within the column family

e The intersection of a row and column can contain

multiple timestamped cells
different versions



Schema design points (3)

* |deally, both reads and writes should be distributed

evenly
across the row space of a table

e Bigtable tables are sparse

A column doesn't take up any space in a row that doesn't use the
column



