
Dr. Rubi Boim

Cassandra - CQL
Big Data Systems

Cassandra CQL
• Terminology

• Keyspaces

• Tables

• Data types

• DDL / DML 

2

Spoiler - most slides will be on SELECT

Terminology (Cassandra)

3

Keyspace

Table

Partition

Row

similar to Schema

Column

defines the node on
which data is stored

Partition key

Clustering
column

Primary key

defines the order or
rows in a partition

Keyspace
• High level container - AKA “schemas” from rDB

• replication factor strategy
• “SimpleStrategy”: entire cluster

• “NetworkTopologyStrategy”: different settings for each DS

4

Keyspace

5

CREATE KEYSPACE BigDataCourse WITH REPLICATION = {

 'class' 	 	 :'NetworkTopologyStrategy',

 ‘israel' 	 	 : 3 , // Datacenter 1

 'us' 		 	 : 2 // Datacenter 2

};

CREATE KEYSPACE BigDataCourse WITH REPLICATION = {

 'class' 	 	 : 'SimpleStrategy',

 ‘replication_factor': 1

};

Use & Describe
• USE: switch between key spaces in CQL

• DESCRIBE: display detailed information in CQL 
(see manual for more options)

6

USE bigdatacourse

DESCRIBE KEYSPACES/KEYSPACE/TABLES/TABLE/...

JAVA:

CassandraConnectionPool connectionPool.setKeyspace(“bigdatacourse”)

CREATE TABLE

7

CREATE TABLE students (

column1 	 TEXT,

column2 	 INT,

column3 	 UUID,

PRIMARY KEY (column1)

);

CREATE TABLE [IF NOT EXISTS] [keyspace_name.]table_name (

 column_definition [, ...]

 PRIMARY KEY (column_name [, column_name ...])

[WITH table_options

 | CLUSTERING ORDER BY (clustering_column_name order])

 | ID = 'table_hash_tag'

 | COMPACT STORAGE]

Data types (basic)
• TEXT	 	 utf8

• INT	 	 signed 32bits

• BIGINT		 signed 64bits

• TIMESTAMP 	 64bits

• FLOAT 	 	 32bits floating point

• DOUBLE 		 64bits floating point

• DECIMAL 	 variable-precision decimal

• UUID	 	 universally unique identifier, 128bits

• TIMEUUID	 sortable UUID, embedded timestamp

• BLOB	 	 arbitrary bytes

8

Data types (basic)
• TEXT	 	 utf8

• INT	 	 signed 32bits

• BIGINT		 signed 64bits

• TIMESTAMP 	 64bits

• FLOAT 	 	 32bits floating point

• DOUBLE 		 64bits floating point

• DECIMAL 	 variable-precision decimal

• UUID universally unique identifier, 128bits

• TIMEUUID sortable UUID, embedded timestamp

• BLOB	 	 arbitrary bytes

9

Unique across all nodes,

regardless of the number of nodes

Note on generating unique IDs
• Not trivial for distributed systems

• UUID / TIMEUUID are great

• Downside - requires 128bit 
what’s the problem with java primitives? 

10

Note on generating unique IDs
• Not trivial for distributed systems

• UUID / TIMEUUID are great

• Downside - requires 128bit 
what’s the problem with java primitives? 

11

Max primitive is 64bit (long)

More data types
• COUNTER

• LIST

• SET

• MAP

• More on these later…

12

SELECT

• “Limited” compared to RDBMS 
sum / avg / min / max or only supported on new versions 
no joins / having / union…

13

SELECT * FROM BigDataCourse

SELECT column1,column2 FROM BigDataCourse

SELECT column1,column2 FROM BigDataCourse

WHERE column1 = “1234” LIMIT 100

SELECT count(*) FROM BigDataCourse

SELECT

• “Limited” compared to RDBMS 
sum / avg / min / max or only supported on new versions 
no joins / having / union…

14

SELECT * FROM BigDataCourse

SELECT column1,column2 FROM BigDataCourse

SELECT column1,column2 FROM BigDataCourse

WHERE column1 = “1234” LIMIT 100

SELECT count(*) FROM BigDataCourse

ANTI PATTERN

Can be very slow and expensive - when?

SELECT

• “Limited” compared to RDBMS 
sum / avg / min / max or only supported on new versions 
no joins / having / union…

15

SELECT * FROM BigDataCourse

SELECT column1,column2 FROM BigDataCourse

SELECT column1,column2 FROM BigDataCourse

WHERE column1 = “1234” LIMIT 100

SELECT count(*) FROM BigDataCourse

ANTI PATTERN

Can be very slow and expensive - when?

Even if counting a single row, it can be
expensive (on a really big wide row)

SELECT - partitions and keys

• TLDR; provide the partition key to the query

16

SELECT * FROM users

WHERE user_id = “1234”

users

user_id K

name

birth_year

…
1000+
nodes

SELECT - partitions and keys

• What happens if no partition is given?

17

SELECT * FROM users
 users

user_id K

name

birth_year

…
1000+
nodes

SELECT - partitions and keys

• What happens if no partition is given?

18

SELECT * FROM users
 users

user_id K

name

birth_year

…
1000+
nodes

We need to contact all servers
(as all partitions are valid)

SELECT - partitions and keys

• What happens if no partition is given?

19

SELECT * FROM users
 users

user_id K

name

birth_year

…
1000+
nodes

We need to contact all servers
(as all partitions are valid)

This is valid!
Lets see some examples

SELECT - partitions and keys

• What happens if no partition is given?

20

SELECT * FROM users
 users

user_id K

name

birth_year

…
1000+
nodes

Each user “creates” a partition (user_id is partition_key)

Assume there are 10k nodes in the cluster and no replication

 - If there are 100k users, would the query be optimal? 
	 (that is, we would not check unnecessary nodes/partitions)

SELECT - partitions and keys

• What happens if no partition is given?

21

SELECT * FROM users
 users

user_id K

name

birth_year

…
1000+
nodes

Each user “creates” a partition (user_id is partition_key)

Assume there are 10k nodes in the cluster and no replication

 - If there are 100k users, would the query be optimal? 
	 (that is, we would not check unnecessary nodes/partitions)

YES - why?

SELECT - partitions and keys

• What happens if no partition is given?

22

SELECT * FROM users
 users

user_id K

name

birth_year

…
1000+
nodes

Each user “creates” a partition (user_id is partition_key)

Assume there are 10k nodes in the cluster and no replication

 - If there are 100k users, would the query be optimal? 
	 (that is, we would not check unnecessary nodes/partitions)

YES - why?

There are 100k partitions which are distributed on 10k nodes

SELECT - partitions and keys

• What happens if no partition is given?

23

SELECT * FROM users
 users

user_id K

name

birth_year

…
1000+
nodes

Each user “creates” a partition (user_id is partition_key)

Assume there are 10k nodes in the cluster and no replication

 - If there are 10 users, would the query be optimal? 
	 (that is, we would not check unnecessary nodes/partitions)

SELECT - partitions and keys

• What happens if no partition is given?

24

SELECT * FROM users
 users

user_id K

name

birth_year

…
1000+
nodes

Each user “creates” a partition (user_id is partition_key)

Assume there are 10k nodes in the cluster and no replication

 - If there are 10 users, would the query be optimal? 
	 (that is, we would not check unnecessary nodes/partitions)

NO - why?

SELECT - partitions and keys

• What happens if no partition is given?

25

SELECT * FROM users
 users

user_id K

name

birth_year

…
1000+
nodes

Each user “creates” a partition (user_id is partition_key)

Assume there are 10k nodes in the cluster and no replication

 - If there are 10 users, would the query be optimal? 
	 (that is, we would not check unnecessary nodes/partitions)

NO - why?

The there are 10 partitions which are distributed on 10k
nodes. We will initiate 9990 unnecessary calls

SELECT - partitions and keys

• What happens if no partition is given?

26

SELECT * FROM users
 users

user_id K

name

birth_year

…
1000+
nodes

Each user “creates” a partition (user_id is partition_key)

Assume there are 10k nodes in the cluster and no replication

 - If there are 10 users, would the query be optimal? 
	 (that is, we would not check unnecessary nodes/partitions)

NO - why?

The there are 10 partitions which are distributed on 10k
nodes. We will initiate 9990 unnecessary calls

The right way for this scenario is to
create a single partition for these

10 users, then read 1 partition

SELECT - partitions and keys

• What happens if no partition is given?

27

SELECT * FROM users
 users

user_id K

name

birth_year

…
1000+
nodes

Each user “creates” a partition (user_id is partition_key)

Assume there are 10k nodes in the cluster and no replication

 - If there are 10 users, would the query be optimal? 
	 (that is, we would not check unnecessary nodes/partitions)

NO - why?

The there are 10 partitions which are distributed on 10k
nodes. We will initiate 9990 unnecessary calls

SELECT * from <TABLE> - Summary

Although this is allowed - this is in general anti pattern

Use with caution

The right way for this scenario is to
create a single partition for these

10 users, then read 1 partition

SELECT - partitions and keys

• Try a different model

28

SELECT * FROM users

WHERE country = “israel”

users

country K

user_id 🔻C

name

birth_year

…
1000+
nodes

Note

K is the partition key (NOT the key)

🔻C is the clustering column,

Together both are the key

SELECT - partitions and keys

• Try a different model

29

SELECT * FROM users

WHERE country = “israel”

users

country K

user_id 🔻C

name

birth_year

…
1000+
nodes

Reading the users from Israel is fast

SELECT - partitions and keys

• Try a different model

30

SELECT * FROM users

WHERE country = “israel”

users

country K

user_id 🔻C

name

birth_year

…
1000+
nodes

What happen if the country is India?

SELECT - partitions and keys

• Try a different model

31

SELECT * FROM users

WHERE country = “israel”

users

country K

user_id 🔻C

name

birth_year

…
1000+
nodes

What happen if the country is India?

How can you solve this issue?

SELECT - partitions and keys

• Try a different model

32

SELECT * FROM users

WHERE country = “israel”

users

country K

user_id 🔻C

name

birth_year

…
1000+
nodes

What happen if the country is India?

We can add “buckets” - more on this laterHow can you solve this issue?

SELECT - partitions and keys

• What happens now?

33

SELECT * FROM users

WHERE country = “israel”

AND birth_year = 1982

users

country K

user_id 🔻C

name

birth_year

…
1000+
nodes

SELECT - partitions and keys

• What happens now?

34

SELECT * FROM users

WHERE country = “israel”

AND birth_year = 1982

users

country K

user_id 🔻C

name

birth_year

…
1000+
nodesError - why?

SELECT - partitions and keys

• What happens now?

35

SELECT * FROM users

WHERE country = “israel”

AND birth_year = 1982

users

country K

user_id 🔻C

name

birth_year

…
1000+
nodesError - why?

Cassandra will need to read the entire partition.

If there are 1m users, and only 10k were born in 1982,

there would be an unnecessary read/filter of 990k users

SELECT - partitions and keys

• What happens now?

36

SELECT * FROM users

WHERE country = “israel”

AND birth_year = 1982

ALLOW FILTERING

users

country K

user_id 🔻C

name

birth_year

…
1000+
nodes

With “ALLOW FILTERING” Cassandra will approve the query 
(ANTI PATTERN)

SELECT - partitions and keys

• What happens now?

37

SELECT * FROM users

WHERE country = “israel”

AND birth_year = 1982

ALLOW FILTERING

users

country K

user_id 🔻C

name

birth_year

…
1000+
nodes

With “ALLOW FILTERING” Cassandra will approve the query 
(ANTI PATTERN)

How can you support the query without
“ALLOW FILTERING”?

SELECT - partitions and keys

• Solved with denormalization

• (we will talk about correct modeling later)
38

SELECT * FROM users_by_birth_year

WHERE country = “israel”

AND birth_year = 1982

users

country K

user_id 🔻C

name

birth_year

…

1000+
nodes

users_by_birth_year

country K

birth_year 🔻C

user_id 🔻C

name

…

SELECT - partitions and keys

• And what about this case?

39

SELECT * FROM users

WHERE city = “tel aviv”

1000+
nodes

users

country K

city K

neighborhood K

user_id 🔻C

name

birth_year

SELECT - partitions and keys

• And what about this case?

40

SELECT * FROM users

WHERE city = “tel aviv”

1000+
nodes

Error - why?

users

country K

city K

neighborhood K

user_id 🔻C

name

birth_year

SELECT - partitions and keys

• And what about this case?

41

SELECT * FROM users

WHERE city = “tel aviv”

1000+
nodes

Error - why?

Cassandra will need to contact all nodes and to check
if such partition exists

users

country K

city K

neighborhood K

user_id 🔻C

name

birth_year

SELECT - partitions and keys

• And what about this case?

42

SELECT * FROM users

WHERE city = “tel aviv”

ALLOW FILTERING

1000+
nodes

With “ALLOW FILTERING” Cassandra will approve the query 
(again - ANTI PATTERN)

users

country K

city K

neighborhood K

user_id 🔻C

name

birth_year

SELECT - ALLOW FILTERING

• Almost always ANTI PATTERN

• We saw these use cases

• To “filter” columns in a single partition

• To “filter” partitions across nodes

43

users

country K

city K

neighborhood K

user_id 🔻C

name

birth_year

1000+
nodes

SELECT - ALLOW FILTERING

• Almost always ANTI PATTERN

• We saw these use cases

• To “filter” columns in a single partition

• To “filter” partitions across nodes

• Can you think of another example?

44

users

country K

city K

neighborhood K

user_id 🔻C

name

birth_year

1000+
nodes

SELECT - ALLOW FILTERING

• Almost always ANTI PATTERN

• We saw these use cases

• To “filter” columns in a single partition

• To “filter” partitions across nodes

• To “filter” columns across partitions

45

users

country K

city K

neighborhood K

user_id 🔻C

name

birth_year

1000+
nodes

SELECT * FROM users

WHERE name = “rubi boim"

ALLOW FILTERING

INSERT
• Primary key is obviously required

46

INSERT INTO BigDataCourse(column1,column2)
VALUES (123,”name”)

INSERT - IF NOT EXISTS
• Requires read before write!

• Use with caution

47

INSERT INTO BigDataCourse(column1,column2)

IF NOT EXSITS

VALUES (123,”name”)

INSERT - IF NOT EXISTS
• Requires read before write!

• Use with caution

48

INSERT INTO BigDataCourse(column1,column2)

IF NOT EXSITS

VALUES (123,”name”)

Note - writes are cheaper than reads. If there are not
too many writes, it is better to overwrite the same data

instead of using “if not exists”

INSERT - USING TTL
• Time To Live - allows for automatic expiration (delete) 

in seconds

49

INSERT INTO BigDataCourse(column1,column2)
VALUES (123,”name”)

USING TTL 86400 	 // 24 hours

INSERT - USING TTL
• Time To Live - allows for automatic expiration (delete) 

in seconds

50

INSERT INTO BigDataCourse(column1,column2)
VALUES (123,”name”)

USING TTL 86400 	 // 24 hours

Creates tombstones 
more on this later

UPDATE
• Primary key is obviously required

51

UPDATE BigDataCourse

SET column2 = “name”, column3 = “abc”

WHERE column1 = 123

DELETE
• Warning: 

DELETEs in distributed databases is NOT TRIVIAL

• In Cassandra in particular

• Deleted data is not removed immediately 
a tombstone is created

• More on this later

52

DELETE
• Delete data from a row

• Delete an entire row

53

users

country K

user_id 🔻C

name

birth_year

…

DELETE name FROM users

WHERE country = “israel”

AND user_id = “123”

DELETE FROM users

WHERE country = “israel”

Truncate
• Removes all SSTables holding data

• Use with care

• (Avoids tombstones)

54

TRUNCATE users

ALTER TABLE
• Add / drop / rename existing columns

• *change datatypes (with restrictions)

• Change table properties

• Can NOT alter PRIMARY KEY columns

• RTFM :)

55

ALTER TABLE [keyspace_name.] table_name
[ALTER column_name TYPE cql_type]
[ADD (column_definition_list)]
[DROP column_list | COMPACT STORAGE]
[RENAME column_name TO column_name]
[WITH table_properties];

