
Dr. Rubi Boim

Cassandra - Advanced Topics
Big Data Systems

Cassandra advanced topics
• Counters

• Collections

• UDTs

• Batches

• Lightweight transactions

• Tunable consistency

• Deletes & tombstones
2

Cassandra advanced topics
• Counters

• Collections

• UDTs

• Batches

• Lightweight transactions

• Tunable consistency

• Deletes & tombstones
3

Cassandra counters
• A special (powerful) data type

• 64bit signed integer (long)

• Cannot be set - only increment/decrement  
(initial value == 0)

• Used with “UPDATE”

4

Cassandra counters - example

5

CREATE TABLE movie_view_counts (
movie_id BIGINT,
view_count COUNTER,
PRIMARY KEY (movie_id)

);

UPDATE movie_view_counts
SET view_count = view_count + 1
WHERE movie_id = 123

SELECT view_count FROM movie_view_counts
WHERE movie_id = 123

Cassandra counters - example

6

CREATE TABLE movie_view_counts (
movie_id BIGINT,
view_count COUNTER,
PRIMARY KEY (movie_id)

);

UPDATE movie_view_counts
SET view_count = view_count + 1
WHERE movie_id = 123

SELECT view_count FROM movie_view_counts
WHERE movie_id = 123

You can also use “-“ and values
different than 1

Cassandra counters - limitations
• Counter cannot be part of the primary key

• A table that contains a counter can only contain counters 
either all the columns of a table outside the PRIMARY KEY have the counter type, or
none of them have it

• Counters does not support expiration (TTL)

• Not idempotent by nature

• Slight consistency issues in distributed scenarios 
due to in-memory and speed optimizations to deal with “read before write”

• Counters can be deleted, but not reused 
can you think of an example this might cause a problem?

7

Cassandra counters - limitations
• Counter cannot be part of the primary key

• A table that contains a counter can only contain counters 
either all the columns of a table outside the PRIMARY KEY have the counter type, or
none of them have it

• Counters does not support expiration (TTL)

• Not idempotent by nature

• Slight consistency issues in distributed scenarios 
due to in-memory and speed optimizations to deal with “read before write”

• Counters can be deleted, but not reused 
can you think of an example this might cause a problem?

8

Think about an eCommerce store which saves a
counter for the number of views for a specific item.

The item is removed from the dataset and after a few
months it is added again with the same id (key)

Question on the example
• Previous implementation counted the total views

• How can we support the query “views per day”?

9

CREATE TABLE movie_view_counts (
movie_id BIGINT,
view_count COUNTER,
PRIMARY KEY (movie_id)

);

(previous implementation)

Question on the example - answer
• Add a timestamp column to the key

• Describe a day by rounding (down) to 00:00:00 UTC

10

// a quick version instead of using calendar...
public static long getTSDayRound(long timestamp) {
long portion = timestamp % MILLISECONDS_IN_DAY;
return timestamp - portion;

}

// returns the round day for the current time
return getTSDayRound(System.currentTimeMillis());

Question on the example - answer

11

UPDATE movie_view_counts
SET view_count = view_count + 1
WHERE movie_id = 123 AND

ts = 1627344000000

SELECT view_count FROM movie_view_counts
WHERE movie_id = 123 AND

ts = 1627344000000

CREATE TABLE movie_view_counts_by_day (
movie_id BIGINT,
ts TIMESTAMP,
view_count COUNTER,
PRIMARY KEY (movie_id, ts)

);

July 27 2021

Question on the example (2)
• How can we support the query “views per day” and

“views per month”?

12

(previous implementation)

CREATE TABLE movie_view_counts_by_day (
movie_id BIGINT,
ts TIMESTAMP,
view_count COUNTER,
PRIMARY KEY (movie_id, ts)

);

Question on the example (2) - answer
• Use the same table

• Use the same “day rounding (down)”

• Use a different query

• Group and sum results on client side

13

Client is the backend which uses
Cassandra, not the end user

Question on the example (2) - answer

14

SELECT ts, view_count FROM movie_view_counts
WHERE movie_id = 123 AND

ts >= 1625097600000 AND
ts <= 1627689600000

July 01 2021

July 31 2021

Query result
ts view_count

1625097600000 50,023
1625184000000 78,288

… …
1627689600000 28,052

final result - sum of all values (on client)

Client is the backend which uses
Cassandra, not the end user

Question on the example (3)
• How can we support the query “views per day”,

“views per month” AND “views per hour”?

15

(previous implementation)

CREATE TABLE movie_view_counts_by_day (
movie_id BIGINT,
ts TIMESTAMP,
view_count COUNTER,
PRIMARY KEY (movie_id, ts)

);

Question on the example (3) - answer
• Use the same table

• Use the a different rounding function: 
 “hour rounding (down)”

16

// a quick version instead of using calendar...
public static long getTSHourRound(long timestamp) {
long portion = timestamp % MILLISECONDS_IN_HOUR;
return timestamp - portion;

}

Discussion (1)
• What is the partition key in the examples? 

why is this super important here?

17

CREATE TABLE movie_view_counts_by_day (
movie_id BIGINT,
ts TIMESTAMP,
view_count COUNTER,
PRIMARY KEY (movie_id, ts)

);

Discussion (1)
• What is the partition key in the examples? 

why is this super important here?

18

CREATE TABLE movie_view_counts_by_day (
movie_id BIGINT,
ts TIMESTAMP,
view_count COUNTER,
PRIMARY KEY (movie_id, ts)

);

We need to read a range of data and
we want to do it in a single (read) call

Discussion (2)
• Are there any performance differences between

using “round by hour” vs “round by day”?

19

Discussion (2)
• Are there any performance differences between

using “round by hour” vs “round by day”?

• The number of events should be the same 

(unless you allow a daily event to be saved several times during
the day)

• The number of counters can be X24

• Query / client runtime

• storage

20

Discussion (2)
• Are there any performance differences between

using “round by hour” vs “round by day”?

• The number of events should be the same 

(unless you allow a daily event to be saved several times during
the day)

• The number of counters can be X24

• Query / client runtime

• storage

21

It can be either negligible or crucial -
depends on the exact use case

Cassandra advanced topics
• Counters

• Collections

• UDTs

• Batches

• Lightweight transactions

• Tunable consistency

• Deletes & tombstones
22

Cassandra collections
• Multi value columns  

Set / List / Map

• Designed for relatively small amount of data

• Retrieved all together 
no paging / indexes

• Type is fixed for all elements

• Cannot nest (*only FROZEN) 
more on FROZEN later

23

SET
• Unique, unordered, returned sorted

24

INSERT INTO movies
VALUES (123, “Bad Boys”, {“Action”, “Comedy”})

UPDATE movies
SET genres = {“Action”, “Comedy”, “Teen”}
WHERE id = 123

UPDATE movies
SET genres = genres + {“Teen”}
WHERE id = 123

CREATE TABLE movies (
movie_id BIGINT,
title TEXT,
genres SET<text>
PRIMARY KEY (movie_id)

);

UPDATE movies
SET genres = genres - {“Teen”}
WHERE id = 123

SET
• In practice

25

INSERT INTO movies
VALUES (123, “Bad Boys”, {“Action”, “Comedy”})

CREATE TABLE movies (
movie_id BIGINT,
title TEXT,
genres SET<text>
PRIMARY KEY (movie_id)

);

123
genres:Action genres:Comedy title

Bad Boys

There are no values for the set columns

SET
• In practice

26

INSERT INTO movies
VALUES (123, “Bad Boys”, {“Action”, “Comedy”})

CREATE TABLE movies (
movie_id BIGINT,
title TEXT,
genres SET<text>
PRIMARY KEY (movie_id)

);

123
genres:Action genres:Comedy title

Bad Boys

UPDATE movies
SET genres = genres + {“Teen”}
WHERE id = 123

SET
• In practice

27

INSERT INTO movies
VALUES (123, “Bad Boys”, {“Action”, “Comedy”})

CREATE TABLE movies (
movie_id BIGINT,
title TEXT,
genres SET<text>
PRIMARY KEY (movie_id)

);

123
genres:Action genres:Comedy title

Bad Boys

UPDATE movies
SET genres = genres + {“Teen”}
WHERE id = 123

123
genres:Action genres:Comedy genres:Teen title

Bad Boys

LIST
• Duplicated, ordered

• (may) requires read before write

28

CREATE TABLE movies (
movie_id BIGINT,
title TEXT,
cast LIST<text>
PRIMARY KEY (movie_id)

);

INSERT INTO movies
VALUES (123, “Bad Boys”, {“Will Smith”, “Martin Lawrence”})

UPDATE movies
SET cast[1] = {“Martin Lawrence”}
WHERE id = 123

DELETE cast[1] FROM movies = {“Martin Lawrence”} WHERE id = 123

UPDATE movies
SET cast = cast - {“Martin Lawrence”}
WHERE id = 123

// all matching elements
NOT thread-safe

LIST
• In practice

29

CREATE TABLE movies (
movie_id BIGINT,
title TEXT,
cast LIST<text>
PRIMARY KEY (movie_id)

);

INSERT INTO movies
VALUES (123, “Bad Boys”, {“Will Smith”, “Martin Lawrence”})

123
cast:u82d00…dkj

Will Smith

cast:u82d01…dkj

Martin Lawrence

title

Bad Boys

List values are column values
Column name is added with unique String

based on the list order

LIST
• In practice

30

CREATE TABLE movies (
movie_id BIGINT,
title TEXT,
cast LIST<text>
PRIMARY KEY (movie_id)

);

INSERT INTO movies
VALUES (123, “Bad Boys”, {“Will Smith”, “Martin Lawrence”})

123
cast:u82d00…dkj

Will Smith

cast:u82d01…dkj

Martin Lawrence

title

Bad Boys

List values are column values
Column name is added with unique String

based on the list order

Again - list may required read before write.
Do NOT use unless you know what you are doing

MAP
• Key-Value pair, ordered by keys

31

CREATE TABLE movies (
movie_id BIGINT,
title TEXT,
cast MAP<BIGINT, text>
PRIMARY KEY (movie_id)

);

INSERT INTO movies
VALUES (123, “Bad Boys”, {44: “Will Smith”, 45: “Martin Lawrence”})

UPDATE movies
SET cast = cast - {44}
WHERE id = 123

MAP
• In practice

32

CREATE TABLE movies (
movie_id BIGINT,
title TEXT,
cast MAP<BIGINT, text>
PRIMARY KEY (movie_id)

);

INSERT INTO movies
VALUES (123, “Bad Boys”, {44: “Will Smith”, 45: “Martin Lawrence”})

123
cast:44

Will Smith

cast:45

Martin Lawrence

title

Bad Boys

Cassandra advanced topics
• Counters

• Collections

• UDTs

• Batches

• Lightweight transactions

• Tunable consistency

• Deletes & tombstones
33

User defined types
• Attach multiple data fields to a single column

• Any type of field is valid (UDT, Collections)

• Use with FROZEN 
new versions can support non frozen UDT without collections

34

CREATE TYPE address (
country TEXT,
city TEXT,
street TEXT,
phones SET<TEXT>

);

CREATE TYPE full_name (
first_name TEXT,
last_name TEXT

);

frozen == blob for Cassandra
—> all data needs to be set at once

User defined types - example

35

CREATE TABLE users (
user_id BIGINT,
name FROZEN <full_name>,
age INT

);

CREATE TYPE full_name (
first_name TEXT,
last_name TEXT

);

INSERT INTO user
VALUES (123, {first_name: “Lebron”, last_name: “James”}, 36)

User defined types - notes
• You can love them or hate them

• Useful with collections

36

CREATE TYPE address (
country TEXT,
city TEXT,
street TEXT,
phones SET<TEXT>

);

CREATE TABLE users (
user_id BIGINT,
addresses SET<FROZEN <ADDRESS>>

);

Cassandra advanced topics
• Counters

• Collections

• UDTs

• Batches

• Lightweight transactions

• Tunable consistency

• Deletes & tombstones
37

Important note
• Batches in Cassandra are different from relational

databases

• TLDR; they are “half” relational transactions 
batch is isolate and atomic in a single partition

38

In relational databases
• Batches & Transactions are collections of commands

(Insert/Update/Delete) sent together to the server

• Batch 
- NO rollback / ACID  
- used to increase performance by reducing server calls

• Transaction 
- full ACID 

39

In relational databases

40

“DRIVER START BATCH”
INSERT INTO users VALUES(“Rubi”);
...
INSERT INTO users VALUES(“Tova”);

“DRIVER END BATCH”

START TRANSACTION
INSERT INTO flights VALUES(“Rubi”, “TLV-NY”);
...
INSERT INTO hotels VALUES(“Rubi”, “Hilton-NY”);

COMMIT

If “Tova” fails, “Rubi” is still
added

No ACID

ACID

If “Hilton-NY” fails, the flight is
NOT added

Atomicity
Consistency
Isolation
Durability

Cassandra Batch
• Executes several commands

• If statement apply to the same partition: 
atomic & isolated

41

BEGIN BATCH
INSERT INTO users_by_country VALUES(“Israel”,123, “Rubi”);
...
INSERT INTO users_by_country VALUES(“Israel”,123, “Tova”);

APPLY BATCH

If “Tova” Fails, “Rubi” will not
be added

Isolation - can NOT read “Rubi” until “Tova” is added

Same partition

Cassandra Batch - performance?
• Each batch is sent to a single coordinator (node),

logged and then executed

• What happens in each scenario?

•  
 

•

42

1000+
nodes

BEGIN BATCH
INSERT INTO users VALUES(123, “Rubi”);
...
INSERT INTO users VALUES(456, “Tova”);

APPLY BATCH

INSERT INTO users VALUES(123, “Rubi”);
...
INSERT INTO users VALUES(456, “Tova”);

users
user_id K
name

Cassandra Batch - performance?
• Each batch is send to a single coordinator (node),

logged and then executed

• What happens in each scenario?

•  
 

•

43

1000+
nodes

BEGIN BATCH
INSERT INTO users VALUES(123, “Rubi”);
...
INSERT INTO users VALUES(456, “Tova”);

APPLY BATCH

INSERT INTO users VALUES(123, “Rubi”);
...
INSERT INTO users VALUES(456, “Tova”);

users
user_id K
name

Contact the node of the first
partition key (123) and log the

batch.

Then that node contacts the node
of partition 456

Cassandra Batch - performance?
• Each batch is send to a single coordinator (node),

logged and then executed

• What happens in each scenario?

•  
 

•

44

1000+
nodes

BEGIN BATCH
INSERT INTO users VALUES(123, “Rubi”);
...
INSERT INTO users VALUES(456, “Tova”);

APPLY BATCH

INSERT INTO users VALUES(123, “Rubi”);
...
INSERT INTO users VALUES(456, “Tova”);

users
user_id K
name

Each insert calls directly the
relevant node

Cassandra Batch - performance?
• Each batch is send to a single coordinator (node),

logged and then executed

• What happens in each scenario?

•  
 

•

45

1000+
nodes

BEGIN BATCH
INSERT INTO users VALUES(123, “Rubi”);
...
INSERT INTO users VALUES(456, “Tova”);

APPLY BATCH

INSERT INTO users VALUES(123, “Rubi”);
...
INSERT INTO users VALUES(456, “Tova”);

users
user_id K
name

Batches in Cassandra almost always do not help
with performance

Use it only if you need single partition isolation

Cassandra advanced topics
• Counters

• Collections

• UDTs

• Batches

• Lightweight transactions

• Tunable consistency

• Deletes & tombstones
46

Lightweight Transactions
• Checks a condition prior to Insert/Update/Delete

• Expensive (more than a read and write)

• An “ACID Transaction” at the partition level

47

Lightweight Transactions - examples

48

INSERT INTO movies
VALUES(3,“American Pie”,1999,96)
IF NOT EXISTS

movies
id K

title

year

duration

UPDATE movies
SET duration = 96
WHERE id = 3
IF year = 1999

Cassandra advanced topics
• Counters

• Collections

• UDTs

• Batches

• Lightweight transactions

• Tunable consistency

• Deletes & tombstones
49

Recap - CAP
• Consistency 

Every read receives the most recent write or an error

• Availability 
Every request receives a (non-error) response, 
without the guarantee that it contains the most recent write

• Partition tolerance 
The system continues to operate despite an arbitrary number of
messages being dropped (or delayed) by the network

50

Consistency

Availability Partition
tolerance

CA

AP

CP
X

Recap - CAP
• TLDR; If a node is down/unreachable

• Cancel the operation (CP)

• Return result with (maybe) inconsistency (AP)

51

Consistency

Availability Partition
tolerance

CA

AP

CP
X

Tunable consistency in Cassandra
• When performing read/write, consistency level can

be specified 
Consistency level = # of nodes (replicas) needs to response 
 

• ONE/TWO/QUORUM/LOCAL_QUORUM/ALL/…

52

Tunable consistency in Cassandra

53

// within cqlsh session
CONSISTENCY QUORUM
INSERT INTO movies VALUES(3,“American Pie”,1999,96)

When to use which level?
• A function of application logic & resources (money)

54

When to use which level?
• A function of application logic & resources (money)

• For example:

• A “like” event should get ONE or QUORUM?

55

1000+
nodes

When to use which level?
• A function of application logic & resources (money)

• For example:

• A “like” event should get ONE or QUORUM?

• A “buy” event should get ONE or QUORUM?

56

1000+
nodes

When to use which level?
• A function of application logic & resources (money)

• For example:

• A “like” event should get ONE or QUORUM?

• A “buy” event should get ONE or QUORUM?

• # of available rooms in a hotel should get ONE or QURUM?

57

1000+
nodes

When to use which level?
• A function of application logic & resources (money)

• For example:

• A “like” event should get ONE or QUORUM?

• A “buy” event should get ONE or QUORUM?

• # of available rooms in a hotel should get ONE or QURUM?

• Critical for performance on large scale
58

1000+
nodes

Cassandra advanced topics
• Counters

• Collections

• UDTs

• Batches

• Lightweight transactions

• Tunable consistency

• Deletes & tombstones
59

Deletes in a distributed system
• A hard problem. 

Why?

60

Delete example - distributed system
• 3 nodes, replication factor = 3, consistency=quorum

• A client sends a delete command

61

1

2

3

client
Delete from…

Delete example - distributed system
• 3 nodes, replication factor = 3, consistency=quorum

• A client sends a delete command

62

1

2

3

client
Delete from…

ack

X - network issue

Delete example - distributed system
• 3 nodes, replication factor = 3, consistency=quorum

• A client sends a delete command

• Client receives success (2 out of 3)

63

1

2

3

client
Delete from…

ack

X - network issue ack

Delete example - distributed system
• 3 nodes, replication factor = 3, consistency=quorum

• The client now sends a select command

64

1

2

3

client
Select from…

Delete example - distributed system
• 3 nodes, replication factor = 3, consistency=quorum

• The client now sends a select command

65

1

2

3

client
Select from…

ack

X - network issue

Delete example - distributed system
• 3 nodes, replication factor = 3, consistency=quorum

• The client now sends a select command

• Conflict! Node 3 contains data, Node 1 does not 
 

66

1

2

3

client
Select from…

ack

X - network issue

Delete example - distributed system
• 3 nodes, replication factor = 3, consistency=quorum

• The client now sends a select command

• Conflict! Node 3 contains data, Node 1 does not 
 
—> Cassandra will return “zombie” / “ghost” data

67

1

2

3

client
Select from…

ack

X - network issue

Cassandra solution (simplified)
• When deleting, create a “delete entry" - tombstone

• Solves 2 problems:

• the “ambiguous read”

• immutable storage (SSTables)

• Before reads - Cassandra checks for relevant tombstones 

68

Tomestones
• Created when

• DELETE

• Setting TTLs

• Inserting NULLs (avoid!)

• Inserting data into a collection 
when inserting the entire collection

69

Why?

Tombstone & SET

70

INSERT INTO movies
VALUES (123, “Bad Boys”, {“Action”, “Comedy”})

CREATE TABLE movies (
movie_id BIGINT,
title TEXT,
genres SET<text>
PRIMARY KEY (movie_id)

);

123
genres:Action genres:Comedy title

Bad Boys

Tombstone & SET

71

INSERT INTO movies
VALUES (123, “Bad Boys”, {“Action”, “Comedy”})

CREATE TABLE movies (
movie_id BIGINT,
title TEXT,
genres SET<text>
PRIMARY KEY (movie_id)

);

123
genres:Action genres:Comedy title

Bad Boys

INSERT INTO movies
VALUES (123, “Bad Boys”, {“Teen”, “Drama”})

Tombstone & SET

72

INSERT INTO movies
VALUES (123, “Bad Boys”, {“Action”, “Comedy”})

CREATE TABLE movies (
movie_id BIGINT,
title TEXT,
genres SET<text>
PRIMARY KEY (movie_id)

);

123
genres:Action genres:Comedy title

Bad Boys

INSERT INTO movies
VALUES (123, “Bad Boys”, {“Teen”, “Drama”})

As data is stored in separate
columns, we need to delete all

previous existing columns

Tomestones - how long do we keep them?
Any ideas?

73

Tomestones - how long do we keep them?
Tombstones can be removed once:

• Creation time is longer than gc_grace_seconds
default is 10 days

• A repair should run at least once every gc_grace_seconds  
repairs assures consistency among all nodes

• All sstables that could contain the relevant data are
involved in the compaction

74

Tomestones - problem
• Tombstones had performance hit for queries

• Warning in 1k tombstones per partition query

• Error in 100k tombstones per partition query

75

Tomestones - problem - SOLUTION
• It all comes down to the data model

• Adjusting and gc_grace_seconds and Repairs 
if you are doing this —> probably problems in production :(

• More on this later… 
modeling multi tenants for example

76

