
Dr. Rubi Boim

Data Modeling in NoSQL (C*) -
Intro
Big Data Systems

Data modeling - the most important
property for big data systems

2

TLDR (1)
• Query-driven modeling  

(model for performance - goal: minimize partition reads)

• Sacrifice space for (query) time

• Denormalization - we materialize a JOIN on write vs on read

• “Forget” RDBMS

• No JOINS

• No referential integrity
3

quick discussion - what does this means?

(example on next slides)

CREATE TABLE users_by_id (

user_id 	 BIGINT,

fname	 TEXT,

lname	 TEXT,

country 	 TEXT,

PRIMARY KEY (user_id)

);

CREATE TABLE users_by_country (

country	 TEXT,

user_id 	 BIGINT,

PRIMARY KEY (country, user_id)

);

How can we get all the data for all the users in Israel?

CREATE TABLE users_by_id (

user_id 	 BIGINT,

fname	 TEXT,

lname	 TEXT,

country 	 TEXT,

PRIMARY KEY (user_id)

);

CREATE TABLE users_by_country (

country	 TEXT,

user_id 	 BIGINT,

PRIMARY KEY (country, user_id)

);

SELECT user_id

FROM users_by_country

WHERE country = ‘Israel’

for (user:result) {

SELECT * FROM users_by_id

WHERE user_id = user

}

CREATE TABLE users_by_id (

user_id 	 BIGINT,

fname	 TEXT,

lname	 TEXT,

country 	 TEXT,

PRIMARY KEY (user_id)

);

CREATE TABLE users_by_country (

country	 TEXT,

user_id 	 BIGINT,

PRIMARY KEY (country, user_id)

);

SELECT user_id

FROM users_by_country

WHERE country = ‘Israel’

for (user:result) {

SELECT * FROM users_by_id

WHERE user_id = user

}

How many queries do we need?

CREATE TABLE users_by_id (

user_id 	 BIGINT,

fname	 TEXT,

lname	 TEXT,

country 	 TEXT,

PRIMARY KEY (user_id)

);

CREATE TABLE users_by_country (

country	 TEXT,

user_id 	 BIGINT,

PRIMARY KEY (country, user_id)

);

CREATE TABLE users_by_id (

user_id 	 BIGINT,

fname	 TEXT,

lname	 TEXT,

country 	 TEXT,

PRIMARY KEY (user_id)

);

CREATE TABLE users_by_country (

country	 TEXT,

user_id 	 BIGINT,

fname	 TEXT,

lname	 TEXT,

PRIMARY KEY (country, user_id)

);

CREATE TABLE users_by_id (

user_id 	 BIGINT,

fname	 TEXT,

lname	 TEXT,

country 	 TEXT,

PRIMARY KEY (user_id)

);

CREATE TABLE users_by_country (

country	 TEXT,

user_id 	 BIGINT,

PRIMARY KEY (country, user_id)

);

CREATE TABLE users_by_id (

user_id 	 BIGINT,

fname	 TEXT,

lname	 TEXT,

country 	 TEXT,

PRIMARY KEY (user_id)

);

CREATE TABLE users_by_country (

country	 TEXT,

user_id 	 BIGINT,

fname	 TEXT,

lname	 TEXT,

PRIMARY KEY (country, user_id)

);

SELECT *

FROM users_by_country

WHERE country = ‘Israel’

Single query…

TLDR (2)
• Relational 

focus on entities

• NoSQL 
focus on queries

9

Data Model App

App Model Data

Modeling is a Science
• Tested methodologies

• Reproducible

10

Modeling is an Art
• Multiple ways to solve design problems

• Uncommon use case —> think out of the box

11

Data modeling process
• Option A: start creating tables

• run fast and hope for the best

• Option B: follow the modeling process

• looks time consuming but in practice is faster

• all team members can help  

12

Data modeling - 10,000 foot view

13

Logical

data model

Physical

data model

entities & relations attributes and keys tables / types

Conceptual

data model

high level DB specific

REMINDER - RELATIONAL DATABASE

Data modeling - 10,000 foot view

14

Conceptual  
data model

Application  
queries

Logical

data model

Physical

data model

Evaluating &
optimizing

entities & relations

partitions & keys data types

NoSQL - Wide column

Data modeling - 10,000 foot view

15

Conceptual  
data model

Application  
queries

Logical

data model

Physical

data model

Evaluating &
optimizing

entities & relations

partitions & keys data types

NoSQL - Wide column

Conceptual data modeling
• Abstract view of entities and relations

• ER Model 
(entity-relation model)

• Same (*) as for relational databases

• “Independent” from specific DB

16

ER Model
• Entities

• Attributes

• Relations 
between entities 
 
 
 
 
 

17

users

birthdate

Purchases

emailsgenres

few values

Purchases Purchases

many-many

many-one one-one
* There are more types like ISA (is a)

Example use case
• We are building a simple video streaming service

18

19

videos

actors

birthdate

user_id

device

title video_id

emailsgenres

release_date

cast

name

actor_id

character

view_id

users views

views

country

20

videos

actors

birthdate

user_id

device

title video_id

emailsgenres

release_date

cast

name

actor_id

character

view_id

users views

views

country

Other options? Other options?

Data modeling - 10,000 foot view

21

Conceptual  
data model

Application  
queries

Logical

data model

Physical

data model

Evaluating &
optimizing

entities & relations

partitions & keys data types

Application queries
• Goal: model the application workflow

• Not only client workflow 
recommendation engine for example

• Defined by queries

22

Application queries - example
Client workflow

• Q1:	 Show new videos

• Q2: 	 Show videos by a genre

• Q3:	 Show video full details

 
For recommendation engine (online/offline workflow)

• Q4:	 Show views by user 
	 watch again / continue watching

• Q5:	 Show views by country and day 
	 regional trending

• Q6:	 Show views by video  
	 people who watch X also watched

23

Application workflow - example

24

show new
videos

show videos
by genre

show video
full details

show views
by user

show views by
country and day

show views
by video

Q1 Q2 Q4 Q5

Q3

Q6

Q3

Q4

Data modeling - 10,000 foot view

25

Conceptual  
data model

Application  
queries

Logical

data model

Physical

data model

Evaluating &
optimizing

entities & relations

partitions & keys data types

Logical data model
Mapping conceptual and queries to tables:

1. queries —> tables  

use “by” convention (for example users_by_country)

2. Identify primary keys 
partition key columns and clustering columns

3. Add additional attributes

26

 unlike relational DBs,

entities does not convert to tables automatically

Chebotko diagrams notation

27

table_name
column_1 K

column_2 🔻C

column_3 🔺C

column_4 S

column_5 ++

[column_6]

{column_7}

<column_8>

column_9

column_10

Partition key

Clustering key (desc)

Clustering key (asc)

Static column

Counter

List

Set

UDT

Regular column

Map
* Image from Wikipedia

Chewbacca != Chebotko

28

videos

actors

birthdate

user_id

device

title video_id

emailsgenres

release_date

cast

name

actor_id

character

view_id

users views

views

country

Logical data model - example

29

Q3

videos

title video_id

emailsgenres

release
date

• Q1: Show new videos

• Q2: Show videos by genre

• Q3: Show video full details

• Q4: Show views by user

• Q5: Show views by country and day

• Q6: Show views by video

Logical data model - example

30

videos_by_id
video_id K
release_date
title
{genres}

Q3

videos

title video_id

emailsgenres

release
date

• Q1: Show new videos

• Q2: Show videos by genre

• Q3: Show video full details

• Q4: Show views by user

• Q5: Show views by country and day

• Q6: Show views by video

Logical data model - example

31

videos_by_id
video_id K
release_date
title
{genres}

Q3 Q1

videos

title video_id

emailsgenres

release
date

• Q1: Show new videos

• Q2: Show videos by genre

• Q3: Show video full details

• Q4: Show views by user

• Q5: Show views by country and day

• Q6: Show views by video

Logical data model - example

32

videos_by_id
video_id K
release_date
title
{genres}

videos_by_releasedate
release_date K
video_id
title

Q3 Q1

Application logic - title
is needed but genres

are not

videos

title video_id

emailsgenres

release
date

• Q1: Show new videos

• Q2: Show videos by genre

• Q3: Show video full details

• Q4: Show views by user

• Q5: Show views by country and day

• Q6: Show views by video

Logical data model - example

33

videos_by_id
video_id K
release_date
title
{genres}

videos_by_releasedate
release_date K
video_id
title

Q3 Q1

What do you think? Application logic - title
is needed but genres

are not

videos

title video_id

emailsgenres

release
date

• Q1: Show new videos

• Q2: Show videos by genre

• Q3: Show video full details

• Q4: Show views by user

• Q5: Show views by country and day

• Q6: Show views by video

Altering the partition key

34

videos_by_id
video_id K
release_date
title
{genres}

videos_by_releasedate
release_year K
release_date 🔻

video_id
title

Q3 Q1

Year / month / anything else
depends on the application logic

videos

title video_id

emailsgenres

release
date

• Q1: Show new videos

• Q2: Show videos by genre

• Q3: Show video full details

• Q4: Show views by user

• Q5: Show views by country and day

• Q6: Show views by video

Altering the partition key

35

videos_by_id
video_id K
release_date
title
{genres}

videos_by_releasedate
release_year K
release_date 🔻

video_id
title

Q3 Q1

Is this ok?

videos

title video_id

emailsgenres

release
date

• Q1: Show new videos

• Q2: Show videos by genre

• Q3: Show video full details

• Q4: Show views by user

• Q5: Show views by country and day

• Q6: Show views by video

Altering the clustering columns

36

videos_by_id
video_id K
release_date
title
{genres}

videos_by_releasedate
release_year K
release_date 🔻

video_id 🔻

title

Q3 Q1

Adding uniqueness!

videos

title video_id

emailsgenres

release
date

• Q1: Show new videos

• Q2: Show videos by genre

• Q3: Show video full details

• Q4: Show views by user

• Q5: Show views by country and day

• Q6: Show views by video

More denormalization

37

videos_by_id
video_id K
release_date
title
{genres}

videos_by_releasedate
release_year K
release_date 🔻

video_id 🔻

title

Q3 Q1 Q2

videos

title video_id

emailsgenres

release
date

• Q1: Show new videos

• Q2: Show videos by genre

• Q3: Show video full details

• Q4: Show views by user

• Q5: Show views by country and day

• Q6: Show views by video

More denormalization

38

videos_by_id
video_id K
release_date
title
{genres}

videos_by_releasedate
release_year K
release_date 🔻

video_id 🔻

title

Q3 Q1
videos_by_genre

genre K
release_date 🔻

video_id 🔻

title

Q2

videos

title video_id

emailsgenres

release
date

• Q1: Show new videos

• Q2: Show videos by genre

• Q3: Show video full details

• Q4: Show views by user

• Q5: Show views by country and day

• Q6: Show views by video

Other queries

39

• Q1: Show new videos

• Q2: Show videos by genre

• Q3: Show video full details

• Q4: Show views by user

• Q5: Show views by country and day

• Q6: Show views by video

Q4

videos
birthdate

user_id

device

title video_id

genres

release_date

view_id

users views

views

country

Other queries

40

• Q1: Show new videos

• Q2: Show videos by genre

• Q3: Show video full details

• Q4: Show views by user

• Q5: Show views by country and day

• Q6: Show views by video

views_by_user
user_id K
view_id 🔻

device
video_id
title

Q4

videos
birthdate

user_id

device

title video_id

genres

release_date

view_id

users views

views

country

We need also the title,
not just the video_id

(denormalization)

Other queries

41

• Q1: Show new videos

• Q2: Show videos by genre

• Q3: Show video full details

• Q4: Show views by user

• Q5: Show views by country and day

• Q6: Show views by video

views_by_user
user_id K
view_id 🔻

device
video_id
title

Q4

videos
birthdate

user_id

device

title video_id

genres

release_date

view_id

users views

views

country

We need also the title,
not just the video_id

(denormalization)

Side note

In real life - do we store the title?

Other queries

42

• Q1: Show new videos

• Q2: Show videos by genre

• Q3: Show video full details

• Q4: Show views by user

• Q5: Show views by country and day

• Q6: Show views by video

views_by_user
user_id K
view_id 🔻

device
video_id
title

Q4

videos
birthdate

user_id

device

title video_id

genres

release_date

view_id

users views

views

country

We need also the title,
not just the video_id

(denormalization)

Side note

In real life - do we store the title?

Probably not.

(We would not be able to “change” millions of rows of the title changes)

So how would we display the title (and image are more) for a user to view
her history?

Other queries

43

• Q1: Show new videos

• Q2: Show videos by genre

• Q3: Show video full details

• Q4: Show views by user

• Q5: Show views by country and day

• Q6: Show views by video

views_by_user
user_id K
view_id 🔻

device
video_id
title

Q4

videos
birthdate

user_id

device

title video_id

genres

release_date

view_id

users views

views

country

We need also the title,
not just the video_id

(denormalization)

Side note

In real life - do we store the title?

Probably not.

(We would not be able to “change” millions of rows of the title changes)

So how would we display the title (and image are more) for a user to view
her history?

We would need a caching with all the video details

(This is basically a really fast join)

Other queries

44

• Q1: Show new videos

• Q2: Show videos by genre

• Q3: Show video full details

• Q4: Show views by user

• Q5: Show views by country and day

• Q6: Show views by video

views_by_user
user_id K
view_id 🔻

device
video_id
title

Q4 Q6

videos
birthdate

user_id

device

title video_id

genres

release_date

view_id

users views

views

country

Other queries

45

• Q1: Show new videos

• Q2: Show videos by genre

• Q3: Show video full details

• Q4: Show views by user

• Q5: Show views by country and day

• Q6: Show views by video

views_by_user
user_id K
view_id 🔻

device
video_id
title

Q4
views_by_video

video_id K
view_id 🔻

device
user_id

Q6

videos
birthdate

user_id

device

title video_id

genres

release_date

view_id

users views

views

country

Other queries

46

• Q1: Show new videos

• Q2: Show videos by genre

• Q3: Show video full details

• Q4: Show views by user

• Q5: Show views by country and day

• Q6: Show views by video

views_by_user
user_id K
view_id 🔻

device
video_id
title

Q4 Q5
views_by_video

video_id K
view_id 🔻

device
user_id

Q6

videos
birthdate

user_id

device

title video_id

genres

release_date

view_id

users views

views

country

Other queries

47

• Q1: Show new videos

• Q2: Show videos by genre

• Q3: Show video full details

• Q4: Show views by user

• Q5: Show views by country and day

• Q6: Show views by video

views_by_user
user_id K
view_id 🔻

device
video_id
title

views_by_country_day
country K
day K
view_id 🔻

device
video_id
user_id

Q4 Q5
views_by_video

video_id K
view_id 🔻

device
user_id

Q6

videos
birthdate

user_id

device

title video_id

genres

release_date

view_id

users views

views

country

What is the difference
between K and 🔻 for “day”

All together

48

show new
videos

show videos
by genre

show video
full details

show views
by user

show views by
country and day

show views
by video

Q1 Q2 Q4 Q5

Q3

Q6

Q3

Q4

All together

49

views_by_user

user_id K

view_id 🔻

device

video_id

title

views_by_country_day

country K

day K

view_id 🔻

device

video_id

user_id

views_by_video

video_id K

view_id 🔻

device

user_id

videos_by_id

video_id K

release_date

title

{genres}

videos_by_releasedate

release_year K

release_date 🔻

video_id 🔻

title

videos_by_genre

genre K

release_date 🔻

video_id 🔻

title

Q1 Q2 Q4 Q5 Q6

Q3

Q3

Q4

Note about “ghost” entities
• We did not create any

table for “actors” 
why?

• Homework: add missing
elements so we would create
some actor table

50

videos

actors

title video_id

emailsgenres

release_date

cast

name

actor_id

character

Data modeling - 10,000 foot view

51

Conceptual  
data model

Application  
queries

Logical

data model

Physical

data model

Evaluating &
optimizing

entities & relations

partitions & keys data types

Physical data model
All we have to do:

• Add CQL data types

• Add create table statement

52

Physical data model - example

53

videos_by_releasedate

release_year K

release_date 🔻

video_id 🔻

title

videos_by_releasedate

release_year INT K

release_date TIMESTAMP 🔻

video_id BIGINT 🔻

title TEXT

CREATE TABLE videos_by_releasedate (

release_year	INT,

release_date	TIMESTAMP,

video_id 	 BIGINT,

title	 TEXT,

PRIMARY KEY ((release_year), release_date, video_id)

) WITH CLUSTERING ORDER BY (release_date DESC, video_id DESC);

All together

54

views_by_user

user_id K

view_id 🔻

device

video_id

title

views_by_country_day

country K

day K

view_id 🔻

device

video_id

user_id

views_by_video

video_id K

view_id 🔻

device

user_id

videos_by_id

video_id K

release_date

title

{genres}

videos_by_releasedate

release_year K

release_date 🔻

video_id 🔻

title

videos_by_genre

genre K

release_date 🔻

video_id 🔻

title

Q1 Q2 Q4 Q5 Q6

Q3

Q3

Q4

All together

55

views_by_user

user_id BIGINT K

view_id TIMEUUID 🔻

device TEXT

video_id BIGINT

title TEXT

views_by_country_day

country TEXT K

day TIMESTAMP K

view_id TIMEUUID 🔻

device TEXT

video_id BIGINT

user_id BIGINT

views_by_video

video_id BIGINT K

view_id TIMEUUID 🔻

device TEXT

user_id BIGINT

videos_by_id

video_id BIGINT K

release_date TIMESTAMP

title TEXT

{genres} SET<TEXT>

videos_by_releasedate

release_year INT K

release_date TIMESTAMP 🔻

video_id BIGINT 🔻

title TEXT

videos_by_genre

genre TEXT K

release_date TIMESTAMP 🔻

video_id BIGINT 🔻

title TEXT

Q1 Q2 Q4 Q5 Q6

Q3

Q3

Q4

Homework: add matching
CREATE statements

Note: TIMEUUID & Set<TEXT>

Data modeling - 10,000 foot view

56

Conceptual  
data model

Application  
queries

Logical

data model

Physical

data model

Evaluating &
optimizing

entities & relations

partitions & keys data types

Evaluating and optimizing
An ongoing process

Usually as you scale

• there are new product requirements

• you find new problems

57

Evaluating and optimizing - example (1)
• The streaming service is a big hit

• More users

• More usage

The product team requires to add the view count next to each video

 

58

Refining

59

views_by_user

user_id BIGINT K

view_id TIMEUUID 🔻

device TEXT

video_id BIGINT

title TEXT

views_by_country_day

country TEXT K

day TIMESTAMP K

view_id TIMEUUID 🔻

device TEXT

video_id BIGINT

user_id BIGINT

views_by_video

video_id BIGINT K

view_id TIMEUUID 🔻

device TEXT

user_id BIGINT

videos_by_id

video_id BIGINT K

release_date TIMESTAMP

title TEXT

{genres} SET<TEXT>

videos_by_releasedate

release_year INT K

release_date TIMESTAMP 🔻

video_id BIGINT 🔻

title TEXT

videos_by_genre

genre TEXT K

release_date TIMESTAMP 🔻

video_id BIGINT 🔻

title TEXT

Q1 Q2 Q4 Q5 Q6

Q3

Q3

Q4

Where will we add the view count?

Refining

60

views_by_user

user_id BIGINT K

view_id TIMEUUID 🔻

device TEXT

video_id BIGINT

title TEXT

views_by_country_day

country TEXT K

day TIMESTAMP K

view_id TIMEUUID 🔻

device TEXT

video_id BIGINT

user_id BIGINT

views_by_video

video_id BIGINT K

view_id TIMEUUID 🔻

device TEXT

user_id BIGINT

videos_by_id

video_id BIGINT K

release_date TIMESTAMP

title TEXT

{genres} SET<TEXT>

videos_by_releasedate

release_year INT K

release_date TIMESTAMP 🔻

video_id BIGINT 🔻

title TEXT

videos_by_genre

genre TEXT K

release_date TIMESTAMP 🔻

video_id BIGINT 🔻

title TEXT

Q1 Q2 Q4 Q5 Q6

Q3

Q3

Q4

videos_view_count

video_id BIGINT K

ts TIMESTAMP 🔻

view_count COUNTER ++
Q7

support count by hour/day/month…

Evaluating and optimizing - example (2)
• The streaming service is a big hit

• More users

• More usage

Suddenly

• Queries are getting slower

• Large partitions warnings on the logs

• Adding more Cassandra servers does not help
61

Do you see a problem?

62

views_by_user

user_id BIGINT K

view_id TIMEUUID 🔻

device TEXT

video_id BIGINT

title TEXT

views_by_country_day

country TEXT K

day TIMESTAMP K

view_id TIMEUUID 🔻

device TEXT

video_id BIGINT

user_id BIGINT

views_by_video

video_id BIGINT K

view_id TIMEUUID 🔻

device TEXT

user_id BIGINT

videos_by_id

video_id BIGINT K

release_date TIMESTAMP

title TEXT

{genres} SET<TEXT>

videos_by_releasedate

release_year INT K

release_date TIMESTAMP 🔻

video_id BIGINT 🔻

title TEXT

videos_by_genre

genre TEXT K

release_date TIMESTAMP 🔻

video_id BIGINT 🔻

title TEXT

Q1 Q2 Q4 Q5 Q6

Q3

Q3

Q4

videos_view_count

video_id BIGINT K

ts TIMESTAMP 🔻

view_count COUNTER ++
Q7

Do you see a problem?

63

views_by_video

video_id BIGINT K

view_id TIMEUUID 🔻

device TEXT

user_id BIGINT

Q6

Popular videos creates
large partitions

How can we solve this?

Altering the schema
• We need to partition the data differently

64

views_by_video

video_id BIGINT K

view_id TIMEUUID 🔻

device TEXT

user_id BIGINT

views_by_video

video_id BIGINT K

ts_partition TIMESTAMP K

view_id TIMEUUID 🔻

device TEXT

user_id BIGINT

The ts_partition can be per day/week/month
or any other time frame

(Configurable by the backend logic)

Altering the schema
• We need to partition the data differently

• We will need to issue more than 1 query to retrieve the data 
how much?

• Not an issue as this query is done during a model build of the
recommendation engine and not in real time

65

views_by_video

video_id BIGINT K

view_id TIMEUUID 🔻

device TEXT

user_id BIGINT

views_by_video

video_id BIGINT K

ts_partition TIMESTAMP K

view_id TIMEUUID 🔻

device TEXT

user_id BIGINT

Altering the schema
• We need to partition the data differently

• We will need to issue more than 1 query to retrieve the data 
how much?

• Not an issue as this query is done during a model build of the
recommendation engine and not in real time

66

views_by_video

video_id BIGINT K

view_id TIMEUUID 🔻

device TEXT

user_id BIGINT

Note - this might not be the optimal solution.

We will talk about more ways to partition the data soon

views_by_video

video_id BIGINT K

ts_partition TIMESTAMP K

view_id TIMEUUID 🔻

device TEXT

user_id BIGINT

Fixing the tracks of a moving train
• The table cannot be altered - a new one is needed

• You service works 24x7, you cannot stop it

• An “online merge” is required

• Not a trivial update 
Happens all the time for growing products

67

More “popular problems”
• Large partitions

• Application logic changes 
new entities, new queries

• Imbalanced data

• Unforeseen hotspots

68

