Data Modeling in NoSQL (C*) -
Advanced

Happens to the best

* |n 2019 Jennifer Aniston joined Instagram and posted a
single photo

* 1m followers after 5 hour and 16 minutes from registering
world record

* More than 7m follower (24 hours)

* More than 9m likes for that photo (24 hours)

* Instagram crashed temporarily

Previously we learned

* Each query should be satisfied by one partition
denormalization...

videos_by _genre
genre K
release_date A4
video_id v
videos by id
video_id K

release date

title

rating

duration

{genres}

Previously we learned

* Each query should be satisfied by one partition
denormalization...

videos_by_genre SELECT video id
genre K FROM videos by genre
release_date v WHERE genre = "action
video_Id v *
for (video : result) {
videos by id SELECT *
video id K FROM videos_by_id

WHERE video i1d = wvideo
release date —

title } /\

rating

_ How many queries can this
duration generate?

{genres}

Previously we learned

* Each query should be satisfied by one partition

denormalization...

videos_by _genre

videos_by genre

genre K
release date v
video id v
videos by id
video_id K

genre K
release_date v
video_id v
title

rating

duration

release date

title

rating

duration

{genres}

Previously we learned

* Each query should be satisfied by one partition

denormalization...

videos_by _genre

genre

release date

video id

SELECT *

FROM videos by genre
WHERE genre = “action”

A

videos_by genre

genre

release date

video id

videos by id

video_id

We add (“duplicate”) all the
attributes we need for the

query

title

rating

release date

title

rating

duration

{genres}

duration

But what happens if the partition is “large”

* [here can be more than 10m rows In this partition

views_by video
video_id BIGINT K
view_id TIMEUUID V
device TEXT
user_id BIGINT

*images by Wikipedia

But what happens if the partition is “large”

* [here can be more than 10m rows In this partition

4)

How many servers will

views_by_video store the data?
video_id BIGINT K
view id TIMEUUID V¥ > g
device TEXT
user_id BIGINT

*images by Wikipedia

Large partitions

» Cause performance iSsues:
- compactions are slower
- queries are slower
- repailrs can falil
- adding more nodes won'’t help

e Can cause hotspots
more on this later

* Data Is not distributed evenly throughout the cluster

* We need to model differently to avoid

9

Large partitions in Cassandra

* Rule of thumb: partition size < 100MB size / 100k rows

You can go higher with newer Cassandra versions

* You would need to estimate the size in advance
Unless you learn the hard way you have a problem

How to avoid large partitions?

 What do you think”

How to avoid large partitions?

* The solution Is easy:
split the data into more partitions

* When querying, the data is too big anyway for a

single call
The driver automatically breaks the result into “pages”
(default = 5000) even for a single partition

How to avoid large partitions?

* The solution Is easy:
split the data into more partitions

* When querying, the data is too big anyway for a

single call
The driver automatically breaks the result into “pages”
(default = 5000) even for a single partition

How to split I1s the name of the game

“Choosing how to partition the
data is not trivial,

It IS hard.”

What is a good split?

user_id BIGINT K
view_id TIMEUUID WV
device TEXT
video |d BIGINT

15

video id BIGINT K
view_id TIMEUUID V
device TEXT
user_id BIGINT

What is a good split?

This Is great as a single user
probably won’t view over 100k

videos
views_by user views_by video
user_id BIGINT K video_id BIGINT K
view id TIMEUUID V view_id TIMEUUID V
device TEXT device TEXT
video_id BIGINT user_id BIGINT

16

What is a good split?

This Is great as a single user

probably won’t view over 100k Problematic as some videos

has more than 10m views

videos
views_by user views_by video
user_id BIGINT K video_id BIGINT K
view id TIMEUUID V view_id TIMEUUID V
device TEXT device TEXT
video_id BIGINT user_id BIGINT

17

What is a good split?

This Is great as a single user

probably won’t view over 100k Problematic as some videos

has more than 10m views

videos
views_by user views_by video
user_id BIGINT K video_id BIGINT K
view id TIMEUUID V view_id TIMEUUID V
device TEXT device TEXT
video_id BIGINT user_id BIGINT

It depends on the query we need to answer
AND the data distribution

18

Points to remember when splitting

e Size limit
large partitions causes performance Issues

* Over shrinking
when guerying, It Is better to contact 1 partition with 10k rows vs 10k partitions

with 1 row

e “Known” partition keys
when querying, the values of the partition keys are needed

* Hot spots

undistributed writes/reads causes performance issues

 JTombstones
too much deletes within a partition causes performance issues

19

Points to remember when splitting

e Size limit
large partitions causes performance ISsues

-~

Points to remember when splitting

e Size limit
large partitions causes performance ISsues

/\
-

views_by video

, _ ~ R
video_id BIGINT K

<< 10m views for a single video

- J

view id TIMEUUID WV

device TEXT

user_id BIGINT

21

Points to remember when splitting

* Over shrinking

when guerying, It Is better to contact 1 partition with 10k rows vs 10k partitions
with 1 row /\

4 N

Points to remember when splitting

* Over shrinking

when guerying, It Is better to contact 1 partition with 10k rows vs 10k partitions

/\

-~

with 1 row
views_by time
year INT K
month INT K
day INT K
hour INT K
minute INT K
view id TIMEUUID WV
video_id BIGINT
device TEXT
user_id BIGINT

A partition for every minute

views_by time

A partition for every day

year INT K
month INT K
day INT K
view id TIMEUUID WV
video_id BIGINT
device TEXT
user_id BIGINT

~

Points to remember when splitting

e Over sk
when que
with 1 ro\

/ views_b

year

month

day

hour

minute

view id TII

-~

video id h\

NOTE

It does not mean you should always partition by day and not by minute.

Sometimes you would need to partition by 12 seconds

remember: AND the data distribution

device

TEXT

\ user id BIGINT

artitions

time

INT

INT

INT

UulD

4d X | X | X

GINT

TEXT

GINT

~

Points to remember when splitting

e “Known” partition keys
when querying, the values of the partition keys are needed

/\
-

Points to remember when splitting

e “Known” partition keys
when querying, the values of the partition keys are needed

/\
-

views_by_ view

_ , 4 A
view id TIMEUUID K

< How can we know the view id values?

- J

video_id BIGINT

device TEXT

user_id BIGINT

Points to remember when splitting

-~

.

\V4
* Hot spots

undistributed writes/reads causes performance issues

Points to remember when splitting
4 B

views_by_time r ~N
INT K : :
yea! e During each day only 1 node handles all the writes
month INT K
day INT K ® Assuming a 10k node cluster, 9999 server are unused (CPU & Storage)
view id TIMEUUID WV

- J

video _Id BIGINT

device TEXT

user_id BIGINT

_ /
\V4
* Hot spots

undistributed writes/reads causes performance issues

28

Points to remember when splitting

-~

.

\V4
 JTombstones
too much deletes within a partition causes performance issues

Points to remember when splitting

-~

4)
queues —A queue for managing tasks (FIFO)

queue_name TEXT K Once a task is done, it is deleted from the queue
task_id TIMEUUID A
task desc — Recall - during gc grace seconds (10 days):

e Warnings after 1k tombstones

e Partition crash after 100k tombstones

_

-

\V4
 JTombstones
too much deletes within a partition causes performance issues

30

Again - this is important!

e Size limit
large partitions causes performance Issues

* Over shrinking
when guerying, It Is better to contact 1 partition with 10k rows vs 10k partitions

with 1 row

e “Known” partition keys
when querying, the values of the partition keys are needed

* Hot spots

undistributed writes/reads causes performance issues

 JTombstones
too much deletes within a partition causes performance issues

31

Splitting strategies

* You can NOT satisfy all requirements for any strategy

* One is not better or worse than the other
only more suitable to a specific example and data distribution

* Goal: learn different strategies and match the best
model to each different problem

Option 1 - split with existing column

views_by video
video_id BIGINT K
view id TIMEUUID W
device TEXT
user_id BIGINT

4

Option 1 - split with existing column

p views_by video
Note - the query video_id BIGINT K
nheeded is “by video” view id TIMEUUID W

although we add more device TEXT

. partition keys user id BTGINT

4

34

Option 1 - split with existing column

views_by video

video |d BIGINT
user_id BIGINT
view Id TIMEUUILID
device TEXT

VS

views_by video
video_id BIGINT
view_Id TIMEUUID
device TEXT
user_id BIGINT

4

views_by video

video Id BIGINT
view id TIMEUUID
device TEXT
user_id BIGINT

35

VS

views_by video

video _Id BIGINT
device TEXT
view Id TIMEUUILID
user_id BIGINT

Option 1 - split with existing column

views_by video
video_id BIGINT K
view id TIMEUUID WV
device TEXT
user_id BIGINT
views_by video views_by video views_by video
video_id BIGINT K video_id BIGINT K video_id BIGINT
user_id BIGINT K VS view_id TIMEUUID K VS device TEXT
view Id TIMEUUID VWV device TEXT view id TIMEUUID
device TEXT user_id BIGINT user_id BIGINT
- /\ p
size limit

over shrinking
known partitions
hot spots
tombstones

36

Option 1 - split with existing column

views_by video
video_id BIGINT K
view id TIMEUUID WV
device TEXT
user_id BIGINT
views_by video views_by video views_by video
video_id BIGINT K video_id BIGINT K video_id BIGINT
user_id BIGINT K VS view_id TIMEUUID K VS device TEXT
view Id TIMEUUID VWV device TEXT view id TIMEUUID
device TEXT user_id BIGINT user_id BIGINT
— N
size limit

X over shrinking
X known partitions
hot spots

| tombstones
_ J

37

Option 1 - split with existing column

views_by video

video |d BIGINT

user id BIGINT

view Id TIMEUUILID

device TEXT

/N

P
~ size limit
X over shrinking
X known partitions
hot spots

tombstones

_

VS

views_by video

video_id BIGINT
view_Id TIMEUUID
device TEXT
user_id BIGINT

4

views_by video

video Id BIGINT
view id TIMEUUID
device TEXT
user_id BIGINT

/N

-

size limit

over shrinking
known partitions
hot spots
tombstones

38

VS

views_by video

video _Id BIGINT
device TEXT
view Id TIMEUUILID
user_id BIGINT

Option 1 - split with existing column

views_by video

video |d BIGINT

user id BIGINT

view Id TIMEUUILID

device TEXT

/N

g
size limit

X over shrinking

X known partitions
hot spots

tombstones

_

VS

views_by video
video_id BIGINT
view_Id TIMEUUID
device TEXT
user_id BIGINT

4

views_by video

video Id BIGINT

view id TIMEUUID

device TEXT

user _id BIGINT

/N

g
size limit

X over shrinking

X known partitions
hot spots

tombstones

39

VS

views_by video

video _Id BIGINT
device TEXT
view Id TIMEUUILID
user_id BIGINT

Option 1 - split with existing column

views_by video

video |d BIGINT

user id BIGINT

view Id TIMEUUILID

device TEXT

/N

P
- size limit
X over shrinking
X known partitions
hot spots

tombstones

_

VS

views_by video
video_id BIGINT
view_Id TIMEUUID
device TEXT
user_id BIGINT

4

views_by video

video Id BIGINT

view id TIMEUUID

device TEXT

user _id BIGINT

/N

g
size limit

X over shrinking

X known partitions
hot spots

tombstones

40

VS

views_by video

video _Id BIGINT
device TEXT
view Id TIMEUUILID
user_id BIGINT

/N

-

size limit

over shrinking
known partitions
hot spots
tombstones

Option 1 - split with existing column

views_by video

video |d BIGINT

user id BIGINT

view Id TIMEUUILID

device TEXT

/N

P
- size limit
X over shrinking
X known partitions
hot spots

tombstones

_

VS

views_by video
video_id BIGINT
view_Id TIMEUUID
device TEXT
user_id BIGINT

4

views_by video

video Id BIGINT

view id TIMEUUID

device TEXT

user _id BIGINT

/N

g
- size limit
X over shrinking
X known partitions
hot spots

tombstones

41

VS

views_by video

video _Id BIGINT
device TEXT
view Id TIMEUUILID
user_id BIGINT
/N
-
X size limit

over shrinking
known partitions
hot spots
tombstones

Option 2 - split with artificial (time) column

views_by video

video_id BIGINT K
view id TIMEUUID W
device TEXT
user_id BIGINT

4

Option 2 - split with artificial (time) column

views_by video
video_id BIGINT K
view id TIMEUUID W
device TEXT
user_id BIGINT

4

views_by video
video |d BIGINT K
year INT K
month INT K
view_id TIMEUUID V¥
device TEXT
user_id BIGINT

43

Option 2 - split with artificial (time) column

views_by video
video_id BIGINT K
view id TIMEUUID W
device TEXT
user_id BIGINT

4

views_by video
video_id BIGINT K N
year INT K What to do if this
month INT K partition is not small
view_id TIMEUUID W enough?
device TEXT o
user_id BIGINT

44

Option 2 - split with artificial (time) column

views_by video

views_by video
video_id BIGINT
view id TIMEUUID W
device TEXT
user_id BIGINT

4

views_by video

video |d BIGINT K
year INT K
month INT K
view_id TIMEUUID V¥
device TEXT
user_id BIGINT

video id BIGINT K
year INT K
month INT K
day INT K
view_id TIMEUUID V
device TEXT

user_id BIGINT

45

Option 2 - split with artificial (time) column

views_by video
video_id BIGINT K
view id TIMEUUID W
device TEXT
user_id BIGINT
4
views_by video views_by video
video_id BIGINT K video_id BIGINT K N
year INT K year INT K We can have the same
month INT K month INT K problem. How can we
view id TIMEUUID WV day INT K solve it without the
. . , need to change the
device — View_id PIMEUULD schema each time?
user_id BIGINT device TEXT L ,
user_id BIGINT

46

views_by video

views_by video
video_id BIGINT
view_id TIMEUUID WV
device TEXT
user_id BIGINT

4

-

Assume the time is 2021/12/22 14:54:34:3233

OptiOn 2 - Split With artifi‘ Round the TS before you insert the data

views_by video

video |d BIGINT K
year INT K
month INT K
view_id TIMEUUID V¥
device TEXT
user_id BIGINT

video id BIGINT K
year INT K
month INT K
day INT K
view_id TIMEUUID V
device TEXT

user_id BIGINT

47

J

® By year use 2021/01/01 00:00:00:0000
e By month use 2021/12/01 00:00:00:0000
e By day use 2021/12/22 00:00:00:0000
® By hour use 2021/12/22 14:00:00:0000
® By minute use 2021/12/22 14:54:00:0000
° ...

e *use GMT=0 to avoid timezones / daylight

\/
views_by video
video_id BIGINT K

ts_partition TIMESTAMP K

view_id TIMEUUID WV
device TEXT
user id BIGINT

Option 2 - split with artificial (time) column

views_by video

views_by video
video_id BIGINT
view id TIMEUUID W
device TEXT
user_id BIGINT

4

views_by video

views_by video

video id

BIGINT

ts_partition TIMESTAMP

video |d BIGINT K
year INT K
month INT K
view_id TIMEUUID V¥
device TEXT
user_id BIGINT

video id BIGINT K
year INT K
month INT K
day INT K
view_id TIMEUUID V
device TEXT

user_id BIGINT

48

view_id TIMEUUID
device TEXT
user id BIGINT
/\
-
size limit

over shrinking
known partitions
hot spots
tombstones

Option 2 - split with artificial (time) column

views_by video
video_id BIGINT K
view id TIMEUUID WV
device TEXT
user_id BIGINT
4
views_by video views_by video views_by video
video_id BIGINT K video_id BIGINT K video_id BIGINT K
year INT K year INT K ts_partition TIMESTAMP K
month INT K month INT K view_Id TIMEUUID WV
view_id TIMEUUID V¥ day INT K device TEXT
device TEXT view id TIMEUUID V¥ user id BIGINT
user_id BIGINT device TEXT . RN .
user id BICGINT ? size limit
p ? over shrinking
For most days ok, - known partitions
except aired date of ? hot spots
new episodes ? tombstones
% - Y

Option 2 - split with artificial (time) column

views_by video
video_id BIGINT K
view id TIMEUUID W
device TEXT
user_id BIGINT
4
views_by video views_by video views_by video
video_id BIGINT K video_id BIGINT K video_id BIGINT K
year INT K year INT K ts_partition TIMESTAMP K
month INT K month INT K view_id TIMEUUID V¥
view_id TIMEUUID V¥ day INT K device TEXT
device TEXT view id TIMEUUID V user id BIGINT
user_id BIGINT device TEXT . RN .
user id BIGINT ? size limit
- p ? over shrinking
Note - “by minute” might be For most days ok, - known partitions
needed for “Game of Thrones” except aired date of ? hot spots
lout not for all other 5000 shows | new episodes \? tombstones)

Option 3 - split with bucket column

views_by video
video_id BIGINT K
view id TIMEUUID W
device TEXT
user_id BIGINT

4

Option 3 - split with bucket column

views_by video
video_id BIGINT K
view id TIMEUUID W
device TEXT
user_id BIGINT

4

o Start with bucket 0.
e |f more than X (50k?)

views, advance to
bucket 1

52

Option 3 - split with bucket column

views_by video
video id BIGINT K
view id TIMEUUID W
device TEXT
user _id BIGINT
. 2
e Start with bucket O. views_by_video
video id BIGINT K
bucket INT K
?
. If more than X (50k?) vew id oo v
views, advance to device B
bucket 1 user _id BIGINT

views_by video_ buckets
(o _ video id BIGINT K
This table will help us buckets INT W

“count” the number of .
view per bucket VIEWS COUNTER ++

_

53

Option 3 - split with bucket column

e Start

* |f more than X (50k?)

VIiews

with bucket O.

. advance to

bucket 1

views_by video
video_id BIGINT K
view_id TIMEUUID W
device TEXT
user_id BIGINT

4

views_by video
video id BIGINT K
bucket INT K
view_id TIMEUUID V
device TEXT
user_id BIGINT

size limit

over shrinking
known partitions
hot spots
tombstones

views_by video_ buckets

-

This table will help us
“count” the number of
view per bucket

video Id BIGINT K
buckets INT V
VIEWS COUNTER ++

54

Option 3 - split with bucket column

e Start with bucket 0.

* |f more than X (50k?)

views, advance to
bucket 1

views_by video
video_id BIGINT K
view id TIMEUUID W
device TEXT
user_id BIGINT

4

views_by video
video id BIGINT K
bucket INT K
view_id TIMEUUID V
device TEXT
user_id BIGINT

n n n \
- size limit
- over shrinking

views_by video_ buckets

-

This table will help us
“count” the number of
view per bucket

known partitions
? hot spots
tombstones

N
e N

Great option,
but not trivial to maintain the

logic on the backend

video Id BIGINT K
buckets INT V
VIEWS COUNTER ++

55

- J

-

Pros
® Guaranteed max size

e Can grow without a limit

® \When queuing - optimized for the number of calls
e we do not have “small” partitions

® Ordered by TS across all partitions
(only if we always add “new” data)

Cons

e |f we add “old” data, the TS is NOT ordered across
all partitions

® We can NOT “find” a specific event as we do not
know on which partition the data is saved
in the example - we can NOT know if a specific
view_id exists without reading all partitions

.

~

deo
CINT K

JULD V
B XT
s INT

ideo
[GINT K
INT K
"UUID WV
TEXT
[GINT

buckets

BTIGINT K

/ INT V

| WAW LW A\ U2 IS

VIEWS

COUNTER 4+

56

oucket column

g

size limit

over shrinking
known partitions
hot spots
tombstones

N

-

_

but not trivial to maintain the

N
Great option,

logic on the backend

J

Option 4 - split with partition column

views_by video
video_id BIGINT K
view id TIMEUUID W
device TEXT
user_id BIGINT

4

Option 4 - split with partition column

views_by video
video_id BIGINT K
view id TIMEUUID W
device TEXT
user_id BIGINT

4

*Decide on max partition
size (10007?)

*Use a “hash function” to
distribute the data evenly
across the partition

58

Option 4 - split with partition column

views_by video
video_id BIGINT K
view id TIMEUUID WV

device TEXT
user_id BIGINT

4

*Decide on max partition . .
_ views_by video
size (10007?) video_id BIGINT K
partition INT K
e Use a “hash function” to view_id ~ TIMEUUID V¥
distribute the data evenly |@¢vc® e
- user _id BIGINT
across the partition

59

Option 4 - split with partition column

*Decide on max partition
size (10007?)

*Use a “hash function” to
distribute the data evenly
across the partition

*For example modulo:
partition =
user id % 1000

views_by video
video_id BIGINT
view id TIMEUUID W
device TEXT
user_id BIGINT
4
views_by video
video Id BIGINT
partition INT
view_id TIMEUUID
device TEXT
user_id BIGINT

60

Option 4 - split with partition column

views_by video
video Id BIGINT K
view id TIMEUUID WV

device TEXT
user_id BIGINT

4

*Decide on max partition . .
_ views_by video
size (10007?) video_id BIGINT K
partition INT K
e Use a “hash function” to view_id ~ TIMEUUID V¥
distribute the data evenly |@¢vc® e
- user _id BIGINT
across the partition

*For example modulo:

| |)
partition = < Data is distributed evenly
user id % 1000 g

O

61

Option 4 - split with partition column

views_by video
video_id BIGINT K
view_id TIMEUUID WV
device TEXT
user_id BIGINT

4

*Decide on max partition

: views_ by video
SlZE (1 OOO?) video id BIGINT K ___ N
partition INT K < size Ilml’F |
_ — over shrinking
eUse a “hash function” to view_id TIMEUUID V known partitions
distribute the data evenl device rET hot spots
y user id BTCINT . tombstones)

across the partition

*For example modulo:
partition =
user id % 1000

62

Option 4 - split with partition column

*Decide on max partition
size (10007?)

*Use a “hash function” to
distribute the data evenly
across the partition

*For example modulo:
partition =
user id % 1000

views_by video

video Id BIGINT

view id TIMEUUID WV

device TEXT
user_id BIGINT
¢
views_by video

video Id BIGINT
partition INT
view Id TIMEUUID
device TEXT
user id RIGINT

63

- size limit
? over shrinking

known partitions
hot spots
tombstones

/\

-

~N

Not all videos need the
same partition size

Option 4 - split with partition column

*Decide on max partition
size (10007?)

*Use a “hash function” to
distribute the data evenly
across the partition

*For example modulo:
partition =
user id % 1000

views_by video

video Id BIGINT

view id TIMEUUID WV

device TEXT
user_id BIGINT
¢
views_by video

video Id BIGINT
partition INT
view_id TIMEUUID
device TEXT
user id RIGINT

64

What about the order of the data?

\V4

- size limit
? over shrinking

known partitions
hot spots
tombstones

/\

-

~N

Not all videos need the
same partition size

Option 4 - split with partition column

views_by video 4)
video_id BIGINT K
view id TIMEUUID WV When we read the data, it is NOT ordered by the
] evi;e —— “global” view_id, but per partition.
user_Id ‘BIGINT Can (maybe) cause logic problems for the client
. : - L)
Demde on max partition views by video \/
size (10007?) video_id BIGINT K . A
— size limit
partition INT K < ? over shrinking
e Use a “hash function” to view id ~ TIMEUUID ¥ known partitions
distribute the data evenly @&V e not spots
'y user _id BIGINT A tombstones)
across the partition —
4)
® FOr example mOdulO: Not all videos need the

£ same partition size
Partlitlon =

user id % 1000) ’

65

Option 5 - combo (variable partition size)

views_by video

video_id BIGINT K
view id TIMEUUID W
device TEXT
user_id BIGINT

4

Option 5 - combo (variable partition size)

views_by video
video_id BIGINT K
view id TIMEUUID W
device TEXT
user_id BIGINT

4

*\/ariable max partition
size per video

*Use a “hash function” to
distribute the data evenly
across the partition
(with special logic)

67

Option 5 - combo (variable partition size)

*\/ariable max partition
size per video

*Use a “hash function” to
distribute the data evenly
across the partition
(with special logic)

views_by video

video_id BIGINT
view id TIMEUUID W
device TEXT
user_id BIGINT

4

views_by video

video Id BIGINT
partition INT
view_id TIMEUUID
device TEXT
user_id BIGINT

views_by video_paritions

video Id

BIGINT K

partitions_total

INT

68

-
“Normal” videos:

“Popular” videos:

partition total

partition total

-1

user id % 1000

J

~

Option 5 - combo (variable partition size)

*\/ariable max partition
size per video

*Use a “hash function” to
distribute the data evenly
across the partition
(with special logic)

views_by video

video_id BIGINT
view id TIMEUUID W
device TEXT
user_id BIGINT

4

views_by video

video Id BIGINT
partition INT
view_id TIMEUUID
device TEXT
user_id BIGINT

views_by video_paritions

video Id

BIGINT K

partitions_total

INT

69

N
size limit
over shrinking
known partitions
hot spots
tombstones
N y
-
“Normal” videos:
partition total = -1

“Popular” videos:

partition total

user id % 1000

J

~

Option 5 - combo (variable partition size)

*\/ariable max partition
size per video

*Use a “hash function” to
distribute the data evenly
across the partition
(with special logic)

views_by video

video_id BIGINT K
view id TIMEUUID W
device TEXT
user_id BIGINT

4

views_by video

video Id BIGINT
partition INT
view_id TIMEUUID
device TEXT
user_id BIGINT

views_by video_paritions

video Id

BIGINT K

partitions_total INT

70

-

N
A logic is required to

set the right
partitions_total for

each video
_ J
N
= = u \
- size limit
over shrinking
known partitions
hot spots
tombstones
N Y,
(=
“Normal” videos:
partition total = -1
“Popular” videos:
partition total = user i1d % 1000

~

Option 5 - combo (variable par:tition size)

*\/ariable max partition
size per video

*Use a “hash function” to
distribute the data evenly
across the partition
(with special logic)

4

views_by video
video Id BIGINT K
partition INT K
view_id TIMEUUID V
device TEXT
user_id BIGINT

views_by video_paritions

video Id BIGINT K

partitions_total INT

/1

each video
__

partitions_total for

NS

size limit
over shrinking

known partitions

= = =] = \
views_by_video Discussion - why did we chose “-1”
video_id BIGINT K for “normal” users and not “0”
view id TIMEUUID W . \ - _
device TEXT A logic is required to
user_id BIGINT set the right

hot spots
tombstones
N Y,
(=
“Normal” videos:
partition total = -1
“Popular” videos:
partition total = user i1d % 1000

~

-

.) jriable partition size)
We want to support the option to “transition” state -

N
from “normal” to “poplar” Discussion - why did we chose “-1”
. for “normal” users and not “0” -

—> we need to use “different” partitions for each state m s — _ N
in order to “reinsert” the data on “transition” o A logic is required to
[NT set the right
partitions_total for
. each video
“Normal” videos: " N Y
i partition total = -1 €0 hvd
“Popular” videos: S size limit)
partition total = user 1d % 1000 INT K over shrinking
“Super popular” videos: JUID V known partitions
partition total = 10000 + (user 1d % 10000)
o — - TEXT hot spots
GINT tombstones
UTSUTOUTE e Udta EVEITy ~ g
u n (
across the partition views_by video paritions | | “Normal” videos:
- - - video id BIGINT K partition total = -1
(with special logic) o " lepopular videos:
partitions_total partition total = user id % 1000

= /

(2

-

.) jriable partition size)
We want to support the option to “transition” state -

N
from “normal” to “poplar” Discussion - why did we chose “-1”
. for “normal” users and not “0” -

—> we need to use “different” partitions for each state v e ~

in order to “reinsert” the data on “transition” Pt A logic is required to
| ‘ [NT set the right

partitions_total for
_ each video
“Normal” videos: 4 N J
i partition total = -1 €o A
y T . BCINT K .. A
Popular” videos: - size limit

partition total user 1d % 1000 INT K

_ over shrinking
“Super popular” videos: JUID WV

known partitions

partition total = 10000 + (user 1d % 10000) P

o — - TEXT hot spots
GINT tombstones
UTSUTOUTE e Udta EVEITy ~ g
u n (
across the partition views_by video paritions | | “Normal” videos:
(with special logic) o " lepopular videos:
partitions_total partition total = user id % 1000

= /

/3

Why did Instagram crushed?

* Instagram has different write paths for “top users”
that is, different data models and different app logic

* [here Is an application logic that transition a
user from a “regular” user to a “top user”

* The (regular) data model used did not scaled y

*1 - speculation

*2 - more Info on “data modeling examples”

74

Splitting strategies - reminder

* One is not better or worse than the other
only more suitable to a specific example and data distribution

When sharing Is not enough...

3 YouTube

2019 DataStax Accelerate — Full Session Recordings

Search

Sharding the Shards:
Managing Datastore Locality at Scale with Akkio

Paper #371

Abstract

AkKio is 2 locality nmusagenment service layered between
client applscations and distnbuted datastore systems. It
detormines how and when 10 migraie data 10 reduce re-
spomse times and resource wsape. Akkio primarily tar-
pets muln-datacenter geo-distribused dataviore systems
Its design was motivated by the observation that many of
Facebook's froquently accessed datrsets have low RAW
ratos and mot well served by distributed caches o full
replication. Akkio's unit of migration is called a p-shard
Each pshard is designed to contain related data with
some degree of access locality. Al Facebook, pshands
have become a frst-class ahstracticn,

AkKio went into production at Facchook in 2014,
and it currently musages ~ 1008 of daa Measure-
ments from Facebook'™s prodisction covironment show
that Akkio redoces read and write latencies by ep 10 S0%,
crons-datacenter traffic by up w0 SO% and sorage foot-
print by upto 40% in several scemanion. AkKio bs scal-
able: many 10°s of millions of data access roquests per
second can be peocessed. AkKio is portable: it carrently

) 23:22/23:48 - Results >

im this paper. This is because cross-datacenter communi-
cation lmencics are an ceder of magnitude higher than
istra-dataceater communication laencics; ¢g. 100ms
vi. Ims. Moccover, the amount of communication band-
width available betwoen datscenters ks ofien limiied,
which can kead 1o communication bostlenecks if band-
width Is st used jodsciously. Locality managoment can
also play an impoctant role in reducing cross-datacenser
bandwidth and stoeage infrastrocture nocds

In this paper, we preseat Akkio, 3 locality manape-
mend service for distributed datastoce systems whose sim
IS 10 impwove data a00ess response times and 10 redoce
resource requirements. Akkio decides where 1o place
and how and when to migrate duta within operating envi-
roanments imolving peographically distribuied datacen-
ters.' It migrases data at relatively fime granularity (in
units sized between 100 bytes 10 2 fow megabytes), and
it can operate at scale. Akkio has been in peoduction
use a1 Facehook since 2014, where it currently manages
~ 1008 of data and provesses many tens of millices of
data accesses per second.

Some distinguishing features of AKKiO are as follows.

Cassandra solves Optimal Data Placement for Instagram’s Global Scale | DataStax Accelerate 2019

[

/

~N

Only if you are a
“data nerd”..

https.//www.youtube.com/watch?v=SrOsX-TId-g

/6

https://www.youtube.com/watch?v=Sr0sX-TId-g

