
Dr. Rubi Boim

Introduction
Big Data Systems

Agenda for today
• 5 V’s of Big Data

• Cloud computing

• Highly available / highly Scalable

• Managed vs Unmanaged services

2

When data is Big Data?

3

Discussion

4

Data Lake

5 V’s of Big Data
• Volume

• Velocity

• Variety

• Veracity

• Value

5

6

• Data is rapidly increasing 
(due to cloud computing, mobile and more)

Volume

7

• Data is rapidly increasing 
(due to cloud computing, mobile and more)

Volume

As of 2020, WhatsApp users send over 100 billion messages each day

8

The speed at which data is generated

• Frequency of data generation (write) 
everything is measured

• Frequency of data processing (read) 
real time experience

Velocity

9

• Structured data 
info, transactions…

• Semi structured data 
logs, sensor data…

• Unstructured data 
images, video, audio…

Variety

10

The truthfulness or reliability of the data

• data quality of captured data can vary greatly

• bias

• abnormalities

• inconsistencies

• duplication

Veracity

11

The final result.

• which questions were answered

• hidden insights (machine learning)

• collecting data without use is, well, useless

Value

• Volume

• Velocity

• Variety

• Veracity

• Value

12

Cloud computing

13

Cloud computing

14

Not so relevant for the “regular Database course”, but for Big Data it is crucial

Region / AZ / EL
• Region 

Cluster of data centers in a physical location

• Availability Zone 
a discrete data center with redundant power, networking, and connectivity in a Region

• Edge Location 
access to the network with limited services (usually CDN)

• (Names may vary between cloud providers)

15

AWS regions (January 2024)

AWS edge locations (January 2024)

Cloud computing
• SaaS 

software as a service

• PaaS 
platform as a service

• IaaS 
infrastructure as a service

18

Highly Available / Highly Scalable

19

Mike orders a a basketball

Once clicked “order"

• Create order

• Check inventory

• Process payment

• Approve order

• Send to warehouse

• …

20

System error
fire / flood / electricity /

hardware malfunction /

software update…

Availability problem

Possible outcomes
• Service disruption

• Data loss

• Data consistency

• Money lost (direct / reputation)

• A hard problem to solve for Databases 
disaster recovery:  
RTO (Recovery time) / RPO (Recovery point object)

21

Possible outcomes
• Service disruption

• Data loss

• Data consistency

• Money lost (direct / reputation)

• A hard problem to solve for Databases 
disaster recovery:  
RTO (Recovery time) / RPO (Recovery point object)

22

How long would it take the database
server to reset and “recover”?

High availability
• “Nines”

23

Availability Downtime per day Downtime per year

90% 2.40 hours 36.53 days

95% 1.20 hours 18.26 days

99% 14.40 minutes 3.65 days

99.9% 1.44 minutes 8.77 hours

99.99% 8.64 seconds 52.60 minutes

99.999% 864.00 milliseconds 5.26 minutes

99.9999% 86.40 milliseconds 31.56 seconds

Can you think of a faster solution?

24

Can you think of a faster solution?
• Have a backup server on standby

• How long would it take it to resume?

• How to keep the backup server’s data up to date? 
…

• Have two servers operate simultaneously

• How to decide which server accept which request?

• How to sync their data? 
…

25

Mike tweets about a basketball he bought

• Reach millions of users

• Millions of users try to
buy the same basketball
at the same time

26

System error
Too many requests

Scalability problem

How can you support millions of users?

27

How can you support millions of users?
• “Easy” - lets “use” much more servers

• But how would they “work” together?

• Do we need all servers 24h?

28

29

• Scale up vs scale out 
commodity computing

• Microservices

• Stateless 
amazon’s shopping cart is stateless?

• Data Sharding

High scalability - key properties

30

• Commodity hardware

Scale up vs Scale out

31

• Split a big task into loosely coupled services

Microservices

Example

32

Order creation Inventory check Send to warehouseProcess payment Order approve

Clicked order

microservice
highly scalable
highly available

microservice
highly scalable
highly available

microservice
highly scalable
highly available

microservice
highly scalable
highly available

microservice
highly scalable
highly available

Example - inventory check
• Ok so we have a smaller task - how to support

millions of users?

33

Example - inventory check
• Ok so we have a smaller task - how to support

millions of users?

—> Stateless logic + load balancer + auto scaling

34

Statless
• Similar to “Model of computation” course

• Intuition:

• Do not store anything on local disk or memory

• Any server can handle any request

35

Example - inventory check - stateless

private boolean inventoryCheck(String[] itemIDs) {

// checks with the db (different service)

for (String itemID : itemIDs)

if (db.inventoryCheck(itemID) == false)

return false;

return true;

}

36

No use of local disk / memory between requests

Load balancer

37

Load balancer

38

Differents AZs

inventoryCheck()

inventoryCheck()

inventoryCheck()

Auto scaling
• When threshold occurs (hits / traffic / CPU…), create

a new instance with the same logic and add it to the
load balancer

• When threshold drops, remove the instance from the
load balancer and terminate it

• Usually requires stateless logic 
can Cassandra work with auto scale?

39

Auto scaling - compute + storage?
• Some applications use both compute and storage 

(for example the db service in the example)

• Stateless?

• What happens when we scale down?

40

Scaling databases

41

DB

DB

Read
replica

Read
replica

DB
sharding

DB
sharding

DB
sharding

DB
sharding

Scaling databases

42

DB

DB

Read
replica

Read
replica

DB
sharding

DB
sharding

DB
sharding

DB
sharding

Warning - we will talk about this a lot :)

Decoupling + event based services
• autonomous and unaware of each other services

43

Pub sub

44

Managed vs Unmanaged
services

45

Unmanaged service
You are responsible for everything!

• Choosing CPUs, storage, network…

• Installing OS, Java, core software, dependencies…

• Patches, updates

• Security

• Backup

• Monitoring

• Availability
46

Unmanaged service (2)
Requires different skills

• System

• DevOps

• …

47

Managed service
• All the stuff we talked about before are managed for

you out of the box

• Hardware utilization

• Focus on stuff that really matters for you

• Cost?

48

Managed service cons
• Cloud locked in

• Slightly limited functionality

• Works only in the cloud

• Cost? 
(cheaper to go unmanaged on large scale, but a lot of headaches)

49

In practice
• Some will be managed and some not 

VMs 
load balancers 
network stuff 
…

• To go managed or unmanaged with databases is
a good question

50

Managed vs Unmanaged Databases

51

But how managed service work?
• It is just someone else’s software…

• Do we need to understand how it works behind the
scenes?

52

For databases, YES!

53

Big Data databases
• Managed big data databases are built on, well,  

big data databases

• Data modeling is crucial. 
(with bad modeling, nothing will work)

54

To model data correctly,  
we need to understand the technology 

(it is not just reading the API docs)

