
Dr. Rubi Boim

Dynamo
Big Data Systems

A quick reminder / motivation

2

Previously - Going distributed
• Not trivial… :)

• Starting with:

• Data fragmentation

• Data distribution

• Data replication

3

node1 node2 node3

node4 node5 node6

node7 node8 node9

?

Data fragmentation (horizontal)
• Choose an attribute

• Assign a “range” to each “node”

4

user_id fname lname city country account brithdate
101 Rubi Boim Tel Aviv Israel Normal <null>
104 Michael Jordan Chicago USA Normal 17/02/1963

user_id fname lname city country account brithdate
102 Tova Milo Tel Aviv Israel Premium <null>
103 Lebron James Los Angeles USA Premium 30/12/1984

node2

user_id fname lname city country account brithdate
101 Rubi Boim Tel Aviv Israel Normal <null>
102 Tova Milo Tel Aviv Israel Premium <null>
103 Lebron James Los Angeles USA Premium 30/12/1984
104 Michael Jordan Chicago USA Normal 17/02/1963

node1

Data distribution
• How can the DB decide where the data is located?

5

node1 node2 node3 node4 node5

?

add new data /

query existing data

INSERT INTO users VALUES(x,y,z)

6

Data distribution- Range on hashes

0:10

pros / cons?

10:20 20:30 30:40 40:50

node1 node2 node3 node4 node5

hash=8

hash function in the range [0:50]

Data distribution - scaling
• What happens if we want to add a node?

• new data?

• existing data?

7

0:10 10:20 20:30 30:40 40:50

node1 node2 node3 node4 node5 node6

?

Stuff happens
• What happens if a node fails?

• temporal network issue?

• disk crash?

8

0:10 10:20 20:30 30:40 40:50

node1 node2 node3 node4 node5X

DATA is LOSE!

Data replication
• (re)distribute among all nodes

9

0:10 10:20 20:30 30:40 40:50

node1 node2 node3 node4 node5

replication factor = 2

How do we manage all this?
and much more

10

Dynamo
• Create by Amazon in 2007 

paper: Dynamo: Amazon’s Highly Available Key-value Store

• The techniques developed here are used in many
other systems 
not just NoSQL and not just by Amazon

11

Requirement: Key-Value store
• put(key, object)

• get(key)

• Sounds simple.

• How would you implement it? Single server?

12

Dynamo topics for today
• Requirements

• Partition algorithm

• Replication

• Data versioning

• get() and put() execution

• Failures

• Ring membership
13

Requirements (1)
Incremental scalability

• scale out one node at a time

• support thousands of servers, multi data centers

14

Requirements (2)
Highly available

• “always writable” data store

15

node1

node2 node3

node4

a = 20 10

a = 20

10:00: a = 20

10:01: update a = 10

a = 20 10 sync
X

Success even if some
nodes are down

Requirements (3)
Decentralized / Symmetry

• all nodes are equal, no master / SPOF

16

node1 node2 node3 node4 node5

Requirements (4)
Node heterogeneity

• work distribution must be proportional to the
capabilities of each node

17

4 CPUs
8GB Memory
1TB Storage

8 CPUs
16GB Memory
2TB Storage

16 CPUs
32GB Memory
4TB Storage

16 CPUs
32GB Memory
4TB Storage 4 CPUs

8GB Memory
1TB Storage

node3node2node1 node4 node5

Requirements (5)
Performance

• 99.9% with 300 milliseconds response 
—> avoid routing request through multiple nodes as used in P2P DHT
(distributed hash table) such as Chord or Pastry

18

node1 node2 node3 node4 node5

Requirements (all together)
• Incremental scalability 

scale out one node at a time 
support thousands of servers, multi data centers

• Highly available 
“always writable” data store

• Decentralized / Symmetry 
all nodes are equal, no master / SPOF

• Node heterogeneity 
work distribution must be proportional to the capabilities of each node

• Performance 
99.9% with 300 milliseconds response 
—> avoid routing request through multiple nodes as  
 used in P2P DHT (distributed hash table) such as Chord or Pastry

19

Requirements: Interface
• put(key, context, object)

• get(key)
• context = system metadata / versioning (opaque to the user)

• get returns all versions of the associated object 
* we will later see when can we have multi versions

20

Dynamo topics
• Requirements

• Partition algorithm

• Replication

• Data versioning

• get() and put() execution

• Failures

• Ring membership
21

Partitioning algorithm (1)
• Scale incrementally —>  

a mechanism is required to dynamically partition the
data over a set of nodes

• How do we match nodes and keys (hashes)?

22

Partitioning algorithm (1) - side note
Ring —> Xbox360 technical problems

23

In December 2021 Microsoft started to sell “Red Ring of Death” posters…

Partitioning algorithm (2)
Consistent hashing

• Hash function output is treated as a “ring”

• Each node is assigned a random value within the
space (“location on the ring”)

• Assignment to a node is done by taking the hash of the
key and “walking (clockwise) on the ring till a node”

24

Partitioning algorithm (3)
Consistent hashing

25

node
1

node
2

node
3

node
4

v=20

v=230

v=458

v=850

Range is [0:1000] for the example

Each node is responsible to
the range between it and its

predecessor

Partitioning algorithm (3)
Consistent hashing

26

node
1

node
2

node
3

node
4

v=20

v=230

v=458

v=850

hash(key) = 344

Range is [0:1000] for the example

Each node is responsible to
the range between it and its

predecessor

Partitioning algorithm (3)
Consistent hashing

27

node
1

node
2

node
3

node
4

v=20

v=230

v=458

v=850

hash(key) = 344

Range is [0:1000] for the example

Each node is responsible to
the range between it and its

predecessor

Partitioning algorithm (3)
Consistent hashing

28

node
1

node
2

node
3

node
4

v=20

v=230

v=458

v=850

hash(key) = 344

assigned to node3

Range is [0:1000] for the example

Each node is responsible to
the range between it and its

predecessor

Partitioning algorithm (3)
Consistent hashing

29

node
1

node
2

node
3

node
4

v=20

v=230

v=458

v=850

hash(key) = 344

Each node is responsible to
the range between it and its

predecessor

Range is [0:1000] for the example

adding / removing a node
only affect its neighbors

assigned to node3

Partitioning algorithm (3)
Consistent hashing

30

node
1

node
2

node
3

node
4

v=20

v=230

v=458

v=850

hash(key) = 344

Each node is responsible to
the range between it and its

predecessor

Range is [0:1000] for the example

adding / removing a node
only affect its neighbors

assigned to node3
node

5

v=644

Partitioning algorithm (4)
Consistent hashing - challenges

• Random positioning —> non uniform data distribution

• Node heterogeneity is not supported 
node hardware is not considered

31

Partitioning algorithm (5)
Dynamo consistent hashing

• Instead of a single “token” for a node, ,map vnodes 
vnode looks like a “normal” node  
each node manage several vnodes

• Basically the idea is to split the range into smaller pieces

32

* Images from DataStax website

Partitioning algorithm (6)
Dynamo consistent hashing

33

* Images from DataStax website

Partitioning algorithm (7)
Dynamo consistent hashing -  

node heterogeneity example

34

* Images from DataStax website

Partitioning algorithm (8)
Dynamo consistent hashing

• With vnodes:

—> data is distributed more evenly  
 
—> #vnodes for each node is proportional to its hardware 
 
—> If we add/remove a node, the load is now distributed 	
	 among much mode nodes

35

Partitioning algorithm (9)
Dynamo consistent hashing - final note

• There are several options for assigning the range / node

• Random

• Equal size partitions, random tokens per nodes

• Equal size partitions, equal tokens per nodes 

• Not the focus for this presentation 
see the paper for more info actual load distribution

36

Dynamo topics
• Requirements

• Partition algorithm

• Replication

• Data versioning

• get() and put() execution

• Failures

• Ring membership
37

Replication (1)
• To achieve High availability and Durability, Dynamo

replicates its data on N nodes (configurable)

• A key is assigned to a coordinator 
coordinator = the mapped node from the consistent hashing

• The coordinator stores locally + on the next N-1 nodes 
automatically skips vnodes of “existing” nodes as we want to store the
data on N physically different nodes

38

Replication (2)

39

node
1

node
2

node
3

node
4

v=20

v=230

v=458

v=850

Range is [0:1000] for the example,
N=3

Replication (2)

40

node
1

node
2

node
3

node
4

v=20

v=230

v=458

v=850

Range is [0:1000] for the example,
N=3

hash(key) = 344

(assigned to node3)

Replication (2)

41

node
1

node
2

node
3

node
4

v=20

v=230

v=458

v=850

Range is [0:1000] for the example,
N=3

hash(key) = 344

(assigned to node3)

node3 is the coordinator. It will store the
value locally and on node4 and node1

Replication (2)

42

node
1

node
2

node
3

node
4

v=20

v=230

v=458

v=850

Range is [0:1000] for the example,
N=3

hash(key) = 344

(assigned to node3)

node3 is the coordinator. It will store the
value locally and on node4 and node1

Replication (2)

43

node
1

node
2

node
3

node
4

v=20

v=230

v=458

v=850

Range is [0:1000] for the example,
N=3

hash(key) = 344

(assigned to node3)

node3 is the coordinator. It will store the
value locally and on node4 and node1

NOTE - All values in the range between
[node2:node3] will be stored on node3,

node4 and node1

Replication (2)

44

node
1

node
2

node
3

node
4

v=20

v=230

v=458

v=850

Range is [0:1000] for the example,
N=3

hash(key) = 344

(assigned to node3)

node3 is the coordinator. It will store the
value locally and on node4 and node1

NOTE - All values in the range between
[node2:node3] will be stored on node3,

node4 and node1

As all nodes “know” the “ring”, for each
key any node “knows” on which nodes
that data is stored (“preference list”)

Replication (2)

45

node
1

node
2

node
3

node
4

v=20

v=230

v=458

v=850

Range is [0:1000] for the example,
N=3

hash(key) = 344

(assigned to node3)

node3 is the coordinator. It will store the
value locally and on node4 and node1

NOTE - All values in the range between
[node2:node3] will be stored on node3,

node4 and node1

As all nodes “know” the “ring”, for each
key any node “knows” on which nodes
that data is stored (“preference list”)

A “preference list” can contain more than
N nodes in order to handle “fail nodes”.

For example, if node4 fails, that value will
be stored on node3, node1 and node2

Replication (2)

46

node
1

node
2

node
3

node
4

v=20

v=230

v=458

v=850

Range is [0:1000] for the example,
N=3

hash(key) = 344

(assigned to node3)

node3 is the coordinator. It will store the
value locally and on node4 and node1

NOTE - All values in the range between
[node2:node3] will be stored on node3,

node4 and node1

As all nodes “know” the “ring”, for each
key any node “knows” on which nodes
that data is stored (“preference list”)

A “preference list” can contain more than
N nodes in order to handle “fail nodes”.

For example, if node4 fails, that value will
be stored on node3, node1 and node2

X

Replication (2)

47

node
1

node
2

node
3

node
4

v=20

v=230

v=458

v=850

Range is [0:1000] for the example,
N=3

hash(key) = 344

(assigned to node3)

node3 is the coordinator. It will store the
value locally and on node4 and node1

NOTE - All values in the range between
[node2:node3] will be stored on node3,

node4 and node1

As all nodes “know” the “ring”, for each
key any node “knows” on which nodes
that data is stored (“preference list”)

A “preference list” can contain more than
N nodes in order to handle “fail nodes”.

For example, if node4 fails, that value will
be stored on node3, node1 and node2

X

Dynamo topics
• Requirements

• Partition algorithm

• Replication

• Data versioning

• get() and put() execution

• Failures

• Ring membership
48

Data versioning

49

https://www.youtube.com/watch?v=kn2IoDzI8L0

https://www.youtube.com/watch?v=kn2IoDzI8L0

Reminder: Requirements: Interface
• put(key, context, object)

• get(key)
• context = system metadata / versioning (opaque to the user)

• get returns all versions of the associated object 
* we will later see when can we have multi versions

50

Data versioning (1)
• Dynamo provides “Eventual consistency” 

• A put() may returned before updating all replicas 

• A subsequent get() may return not latest value 

• If no node fails, there is a bound on the propagation time 

• On node failures, it may take a while, and the problems begins

51

Data versioning (2) - motivation
• Apps that can tolerate some “inconsistencies” 

for example, shopping cart

• “Add to cart” should never fails

• If previous value is unavailable, we should still be able  
to add a new item 
and “merge” the “old” cart once available

• Both add/delete from cart are translated to put()
each update is a new immutable version of the data

• On conflicts, the client app “reconcile” by a merge 
this guarantees that an added item is never lost 
but deleted items can resurface 

52

Data versioning (2) - motivation example

53

node1

node2 node3

node4

Shopping cart

10:00: empty cart

Shopping cart

Shopping cart

Data versioning (2) - motivation example

54

node1

node2 node3

node4

Shopping cart
basketball

10:00: empty cart

10:01: added basketball

Shopping cart
basketball

Shopping cart
basketball

Data versioning (2) - motivation example

55

node1

node2 node3

node4

Shopping cart
basketball

10:00: empty cart

10:01: added basketball

Shopping cart
basketball

Shopping cart
basketball

What is the key / value here?

Data versioning (2) - motivation example

56

node1

node2 node3

node4

Shopping cart
basketball

10:00: empty cart

10:01: added basketball

Shopping cart
basketball

Shopping cart
basketball

What is the key / value here?

The entire shopping cart -
NOT the basketball

Data versioning (2) - motivation example

57

node1

node2 node3

node4

Shopping cart
basketball

10:00: empty cart

10:01: added basketball

10:02: added shoes

Shopping cart
basketball

shoes

Shopping cart
basketball

X

X

Data versioning (2) - motivation example

58

node1

node2 node3

node4

Shopping cart
basketball

10:00: empty cart

10:01: added basketball

10:02: added shoes

10:03: reopen the app

Shopping cart
basketball

shoes

Shopping cart
basketball

Data versioning (2) - motivation example

59

node1

node2 node3

node4

Shopping cart
basketball

ps5
10:00: empty cart

10:01: added basketball

10:02: added shoes

10:03: reopen the app

10:04: added ps5
 Shopping cart

basketball
shoes

Shopping cart
basketball

ps5

X

Data versioning (2) - motivation example

60

node1

node2 node3

node4

Shopping cart
basketball

ps5
10:00: empty cart

10:01: added basketball

10:02: added shoes

10:03: reopen the app

10:04: added ps5
 Shopping cart

basketball
shoes

Shopping cart
basketball

ps5

X

sync

Data versioning (2) - motivation example

61

node1

node2 node3

node4

Shopping cart
basketball

ps5
10:00: empty cart

10:01: added basketball

10:02: added shoes

10:03: reopen the app

10:04: added ps5
 Shopping cart

basketball
shoes

Shopping cart
basketball

ps5

X

sync

Shopping cart
basketball

shoes

We have 2 versions!

Data versioning (2) - motivation example

62

node1

node2 node3

node4

Shopping cart
basketball

ps5
10:00: empty cart

10:01: added basketball

10:02: added shoes

10:03: reopen the app

10:04: added ps5
 Shopping cart

basketball
shoes

Shopping cart
basketball

ps5

X

sync

DISCUSSION
How can Dynamo merge the 2

shopping carts?

Shopping cart
basketball

shoes

We have 2 versions!

Data versioning (2) - motivation example

63

node1

node2 node3

node4

Shopping cart
basketball

ps5
10:00: empty cart

10:01: added basketball

10:02: added shoes

10:03: reopen the app

10:04: added ps5
 Shopping cart

basketball
shoes

Shopping cart
basketball

ps5

X

sync

ERROR - cannot sync versions
For Dynamo - these are 2

different objects (not lists).
Both versions will be stored, and

merge by the client after next
read/write

Shopping cart
basketball

shoes

Data versioning (2) - motivation example

64

node1

node2 node3

node4

Shopping cart
basketball

ps5
10:00: empty cart

10:01: added basketball

10:02: added shoes

10:03: reopen the app

10:04: added ps5
 Shopping cart

basketball
shoes

Shopping cart
basketball

ps5

Shopping cart
basketball

shoes

Data versioning (2) - motivation example

65

node1

node2 node3

node4

Shopping cart
basketball

ps5
10:00: empty cart

10:01: added basketball

10:02: added shoes

10:03: reopen the app

10:04: added ps5

10:06: reopen the app

Shopping cart
basketball

shoes

Shopping cart
basketball

ps5

Shopping cart
basketball

shoes

Data versioning (2) - motivation example

66

node1

node2 node3

node4Shopping cart
basketball

ps5

10:00: empty cart

10:01: added basketball

10:02: added shoes

10:03: reopen the app

10:04: added ps5

10:06: reopen the app

Shopping cart
basketball

shoes

Shopping cart
basketball

ps5Shopping cart
basketball

shoes

Shopping cart
basketball

shoes
ps5

Shopping cart
basketball

ps5

Shopping cart
basketball

shoes

Merge by the client

Data versioning (2) - motivation example

67

node1

node2 node3

node4Shopping cart
basketball

ps5

10:00: empty cart

10:01: added basketball

10:02: added shoes

10:03: reopen the app

10:04: added ps5

10:06: reopen the app

10:07: delete basketball

Shopping cart
basketball

shoes

Shopping cart
basketball

ps5Shopping cart
basketball

shoes

Shopping cart
basketball

shoes
ps5

Shopping cart
basketball

ps5

Shopping cart
basketball

shoes

Data versioning (2) - motivation example

68

node1

node2 node3

node4Shopping cart
basketball

ps5

10:00: empty cart

10:01: added basketball

10:02: added shoes

10:03: reopen the app

10:04: added ps5

10:06: reopen the app

10:07: delete basketball

Shopping cart
basketball

shoes

Shopping cart
basketball

ps5Shopping cart
basketball

shoes

Shopping cart
shoes
ps5

Shopping cart
basketball

ps5

Shopping cart
basketball

shoes

Data versioning (2) - motivation example

69

node1

node2 node3

node4

10:00: empty cart

10:01: added basketball

10:02: added shoes

10:03: reopen the app

10:04: added ps5

10:06: reopen the app

10:07: delete basketball

Shopping cart
basketball

shoes

Shopping cart
basketball

ps5

Shopping cart
shoes
ps5

Data versioning (2) - motivation example

70

node1

node2 node3

node4

10:00: empty cart

10:01: added basketball

10:02: added shoes

10:03: reopen the app

10:04: added ps5

10:06: reopen the app

10:07: delete basketball

Shopping cart
basketball

shoes

Shopping cart
basketball

ps5

Shopping cart
shoes
ps5

sync

sync

Data versioning (2) - motivation example

71

node1

node2 node3

node4

10:00: empty cart

10:01: added basketball

10:02: added shoes

10:03: reopen the app

10:04: added ps5

10:06: reopen the app

10:07: delete basketball

Shopping cart
basketball

shoes

Shopping cart
basketball

ps5

Shopping cart
shoes
ps5

sync

sync

DISCUSSION
Do we have conflicts?

Data versioning (2) - motivation example

72

node1

node2 node3

node4

10:00: empty cart

10:01: added basketball

10:02: added shoes

10:03: reopen the app

10:04: added ps5

10:06: reopen the app

10:07: delete basketball

Shopping cart
shoes
ps5

Shopping cart
shoes
ps5

Shopping cart
shoes
ps5

sync

sync

Why there are no
conflicts?

Data versioning (3) - Vector clocks
• Used to capture causality between versions  

(of the same object)

• Vector clock = a list of [node, counter] pairs 
one list is a attached to every version of every object

73

IF 	 all the counters on the first object’s clocks <=  
	 all the counters on the second object 
THEN  
	 first is ancestor of the second and can be forgotten 
ELSE  
	 there is a conflict, the client should reconcile

Data versioning (4) - Interface
• put(key, context, object)

• get(key)
• get returns all versions of the associated object AND a context

• context = system metadata / versioning (opaque to the user) 
holds the vector clocks

• If the response of a get() contained multiple
versions, the next update (with the retrieved
context) will reconcile the versions

74

Data versioning (5) - motivation example

75

node1

node2 node3

node4

10:00: empty cart

Data versioning (5) - motivation example

76

node1

node2 node3

node4

Shopping cart
basketball

10:00: empty cart

10:01: added basketball

D1 ([node1,1])

Data versioning (5) - motivation example

77

node1

node2 node3

node4

Shopping cart
basketball

10:00: empty cart

10:01: added basketball

Shopping cart
basketball

Shopping cart
basketball

D1 ([node1,1])

D1 ([node1,1])

D1 ([node1,1])

Data versioning (5) - motivation example

78

node1

node2 node3

node4

Shopping cart
basketball

10:00: empty cart

10:01: added basketball

10:02: added shoes

Shopping cart
basketball

Shopping cart
basketball

D1 ([node1,1])

D1 ([node1,1])

D1 ([node1,1])

Shopping cart
basketball

shoes

D2 ([node1,1],[node2,1])

Data versioning (5) - motivation example

79

node1

node2 node3

node4

Shopping cart
basketball

10:00: empty cart

10:01: added basketball

10:02: added shoes

Shopping cart
basketball

Shopping cart
basketball

D1 ([node1,1])

D1 ([node1,1])

D1 ([node1,1])

Shopping cart
basketball

shoes

D2 ([node1,1],[node2,1])

Can node2 save only D2?

Data versioning (5) - motivation example

80

node1

node2 node3

node4

Shopping cart
basketball

10:00: empty cart

10:01: added basketball

10:02: added shoes

Shopping cart
basketball

Shopping cart
basketball

D1 ([node1,1])

D1 ([node1,1])

D1 ([node1,1])

Shopping cart
basketball

shoes

D2 ([node1,1],[node2,1])

Can node2 save only D2?

IF 	 all the counters on the first object’s clocks <=  
	 all the counters on the second object 
THEN  
	 first is ancestor of the second and can be forgotten 
ELSE  
	 there is a conflict, the client should reconcile

Data versioning (5) - motivation example

81

node1

node2 node3

node4

Shopping cart
basketball

10:00: empty cart

10:01: added basketball

10:02: added shoes

Shopping cart
basketball

Shopping cart
basketball

D1 ([node1,1])

D1 ([node1,1])

D1 ([node1,1])

Shopping cart
basketball

shoes

D2 ([node1,1],[node2,1])

Can node2 save only D2?
YES!

Data versioning (5) - motivation example

82

node1

node2 node3

node4

Shopping cart
basketball

10:00: empty cart

10:01: added basketball

10:02: added shoes

Shopping cart
basketball

shoes

Shopping cart
basketball

D1 ([node1,1])

D2 ([node1,1],[node2,1])

D1 ([node1,1])

Data versioning (5) - motivation example

83

node1

node2 node3

node4

Shopping cart
basketball

10:00: empty cart

10:01: added basketball

10:02: added shoes

Shopping cart
basketball

shoes

Shopping cart
basketball

D1 ([node1,1])

D2 ([node1,1],[node2,1])

D1 ([node1,1])

X

X

Data versioning (5) - motivation example

84

node1

node2 node3

node4

Shopping cart
basketball

10:00: empty cart

10:01: added basketball

10:02: added shoes

10:03: reopen the app

Shopping cart
basketball

shoes

Shopping cart
basketball

D1 ([node1,1])

D2 ([node1,1],[node2,1])

D1 ([node1,1])

The client reads the
shopping card from node4

Data versioning (5) - motivation example

85

node1

node2 node3

node4

Shopping cart
basketball

10:00: empty cart

10:01: added basketball

10:02: added shoes

10:03: reopen the app

10:04: added ps5
 Shopping cart

basketball
shoes

Shopping cart
basketball

D1 ([node1,1])

D2 ([node1,1],[node2,1])

D1 ([node1,1])

Shopping cart
basketball

ps5

D3 ([node1,1],node4,1])

Data versioning (5) - motivation example

86

node1

node2 node3

node4

Shopping cart
basketball

10:00: empty cart

10:01: added basketball

10:02: added shoes

10:03: reopen the app

10:04: added ps5
 Shopping cart

basketball
shoes

Shopping cart
basketball

D1 ([node1,1])

D2 ([node1,1],[node2,1])

D1 ([node1,1])

Shopping cart
basketball

ps5

D3 ([node1,1],node4,1])

Can node4 save only D3?

Data versioning (5) - motivation example

87

node1

node2 node3

node4

Shopping cart
basketball

10:00: empty cart

10:01: added basketball

10:02: added shoes

10:03: reopen the app

10:04: added ps5
 Shopping cart

basketball
shoes

Shopping cart
basketball

D1 ([node1,1])

D2 ([node1,1],[node2,1])

D1 ([node1,1])

Shopping cart
basketball

ps5

D3 ([node1,1],node4,1])

Can node4 save only D3?
YES!

Data versioning (5) - motivation example

88

node1

node2 node3

node4

Shopping cart
basketball

10:00: empty cart

10:01: added basketball

10:02: added shoes

10:03: reopen the app

10:04: added ps5
 Shopping cart

basketball
shoes

Shopping cart
basketball

ps5

D1 ([node1,1])

D2 ([node1,1],[node2,1])

D3 ([node1,1],[node4,1])

Data versioning (5) - motivation example

89

node1

node2 node3

node4

Shopping cart
basketball

10:00: empty cart

10:01: added basketball

10:02: added shoes

10:03: reopen the app

10:04: added ps5
 Shopping cart

basketball
shoes

Shopping cart
basketball

ps5

D1 ([node1,1])

D2 ([node1,1],[node2,1])

D3 ([node1,1],[node4,1])

X

Data versioning (5) - motivation example

90

node1

node2 node3

node4

Shopping cart
basketball

10:00: empty cart

10:01: added basketball

10:02: added shoes

10:03: reopen the app

10:04: added ps5
 Shopping cart

basketball
shoes

Shopping cart
basketball

ps5

D1 ([node1,1])

D2 ([node1,1],[node2,1])

D3 ([node1,1],[node4,1])

X

Shopping cart
basketball

ps5

D3 ([node1,1],[node4,1])

Data versioning (5) - motivation example

91

node1

node2 node3

node4

Shopping cart
basketball

10:00: empty cart

10:01: added basketball

10:02: added shoes

10:03: reopen the app

10:04: added ps5
 Shopping cart

basketball
shoes

Shopping cart
basketball

ps5

D1 ([node1,1])

D2 ([node1,1],[node2,1])

D3 ([node1,1],[node4,1])

X

Shopping cart
basketball

ps5

D3 ([node1,1],[node4,1])

Can node1 save only D3?

Data versioning (5) - motivation example

92

node1

node2 node3

node4

Shopping cart
basketball

10:00: empty cart

10:01: added basketball

10:02: added shoes

10:03: reopen the app

10:04: added ps5
 Shopping cart

basketball
shoes

Shopping cart
basketball

ps5

D1 ([node1,1])

D2 ([node1,1],[node2,1])

D3 ([node1,1],[node4,1])

X

Shopping cart
basketball

ps5

D3 ([node1,1],[node4,1])

Can node1 save only D3?
YES!

Data versioning (5) - motivation example

93

node1

node2 node3

node4

Shopping cart
basketball

ps5
10:00: empty cart

10:01: added basketball

10:02: added shoes

10:03: reopen the app

10:04: added ps5
 Shopping cart

basketball
shoes

Shopping cart
basketball

ps5

D3 ([node1,1],[node4,1])

D2 ([node1,1],[node2,1])

D3 ([node1,1],[node4,1])

Data versioning (5) - motivation example

94

node1

node2 node3

node4

Shopping cart
basketball

ps5
10:00: empty cart

10:01: added basketball

10:02: added shoes

10:03: reopen the app

10:04: added ps5
 Shopping cart

basketball
shoes

Shopping cart
basketball

ps5

D3 ([node1,1],[node4,1])

D2 ([node1,1],[node2,1])

D3 ([node1,1],[node4,1])

sync

Data versioning (5) - motivation example

95

node1

node2 node3

node4

Shopping cart
basketball

ps5
10:00: empty cart

10:01: added basketball

10:02: added shoes

10:03: reopen the app

10:04: added ps5
 Shopping cart

basketball
shoes

Shopping cart
basketball

ps5

sync

Shopping cart
basketball

shoes

D3 ([node1,1],[node4,1])

D2 ([node1,1],[node2,1])

D3 ([node1,1],[node4,1])

D2 ([node1,1],[node2,1])

Data versioning (5) - motivation example

96

node1

node2 node3

node4

Shopping cart
basketball

ps5
10:00: empty cart

10:01: added basketball

10:02: added shoes

10:03: reopen the app

10:04: added ps5
 Shopping cart

basketball
shoes

Shopping cart
basketball

ps5

sync

Shopping cart
basketball

shoes

D3 ([node1,1],[node4,1])

D2 ([node1,1],[node2,1])

D3 ([node1,1],[node4,1])

D2 ([node1,1],[node2,1])

Can node1 save only D3 or
only D2?

Data versioning (5) - motivation example

97

node1

node2 node3

node4

Shopping cart
basketball

ps5
10:00: empty cart

10:01: added basketball

10:02: added shoes

10:03: reopen the app

10:04: added ps5
 Shopping cart

basketball
shoes

Shopping cart
basketball

ps5

sync

Shopping cart
basketball

shoes

D3 ([node1,1],[node4,1])

D2 ([node1,1],[node2,1])

D3 ([node1,1],[node4,1])

D2 ([node1,1],[node2,1])

Can node1 save only D3 or
only D2? NO!

Data versioning (5) - motivation example

98

node1

node2 node3

node4

Shopping cart
basketball

ps5
10:00: empty cart

10:01: added basketball

10:02: added shoes

10:03: reopen the app

10:04: added ps5
 Shopping cart

basketball
shoes

Shopping cart
basketball

ps5

Shopping cart
basketball

shoes

D3 ([node1,1],[node4,1])

D2 ([node1,1],[node2,1])

D3 ([node1,1],[node4,1])

D2 ([node1,1],[node2,1])

Data versioning (5) - motivation example

99

node1

node2 node3

node4

Shopping cart
basketball

ps5
10:00: empty cart

10:01: added basketball

10:02: added shoes

10:03: reopen the app

10:04: added ps5

10:06: reopen the app

Shopping cart
basketball

shoes

Shopping cart
basketball

ps5

Shopping cart
basketball

shoes

D3 ([node1,1],[node4,1])

D2 ([node1,1],[node2,1])

D3 ([node1,1],[node4,1])

D2 ([node1,1],[node2,1])

The client reads the
shopping card from node1.

2 versions are returned.
A merge will be done AFTER

the next write

D3 ([node1,1],[node4,1])

D2 ([node1,1],[node2,1])

D3 ([node1,1],[node4,1])

D2 ([node1,1],[node2,1])

Data versioning (5) - motivation example

100

node1

node2 node3

node4

10:00: empty cart

10:01: added basketball

10:02: added shoes

10:03: reopen the app

10:04: added ps5

10:06: reopen the app

Shopping cart
basketball

shoes

Shopping cart
basketball

ps5

Shopping cart
basketball

ps5

Shopping cart
basketball

shoes

Shopping cart
basketball

ps5

Shopping cart
basketball

shoes

D3 ([node1,1],[node4,1])

D2 ([node1,1],[node2,1])

D3 ([node1,1],[node4,1])

D2 ([node1,1],[node2,1])

Data versioning (5) - motivation example

101

node1

node2 node3

node4

10:00: empty cart

10:01: added basketball

10:02: added shoes

10:03: reopen the app

10:04: added ps5

10:06: reopen the app

Shopping cart
basketball

shoes

Shopping cart
basketball

ps5

Shopping cart
basketball

ps5

Shopping cart
basketball

shoes

Shopping cart
basketball

ps5

Shopping cart
basketball

shoes

Shopping cart
basketball

shoes
ps5

Merge by the client

D3 ([node1,1],[node4,1])

D2 ([node1,1],[node2,1])

D3 ([node1,1],[node4,1])

D2 ([node1,1],[node2,1])

Data versioning (5) - motivation example

102

node1

node2 node3

node4

10:00: empty cart

10:01: added basketball

10:02: added shoes

10:03: reopen the app

10:04: added ps5

10:06: reopen the app

Shopping cart
basketball

shoes

Shopping cart
basketball

ps5

Shopping cart
basketball

ps5

Shopping cart
basketball

shoes

Shopping cart
basketball

ps5

Shopping cart
basketball

shoes

Shopping cart
basketball

shoes
ps5

Merge by the client

NOTE - the merge is still on
the client.

Dynamo has no idea yet -
only after the next write

D3 ([node1,1],[node4,1])

D2 ([node1,1],[node2,1])

D3 ([node1,1],[node4,1])

D2 ([node1,1],[node2,1])

Data versioning (5) - motivation example

103

node1

node2 node3

node4Shopping cart
basketball

ps5

10:00: empty cart

10:01: added basketball

10:02: added shoes

10:03: reopen the app

10:04: added ps5

10:06: reopen the app

10:07: delete basketball

Shopping cart
basketball

shoes

Shopping cart
basketball

ps5Shopping cart
basketball

shoes

Shopping cart
basketball

shoes
ps5

Shopping cart
basketball

ps5

Shopping cart
basketball

shoes

D3 ([node1,1],[node4,1])

D2 ([node1,1],[node2,1])

D3 ([node1,1],[node4,1])

D2 ([node1,1],[node2,1])

Data versioning (5) - motivation example

104

node1

node2 node3

node4Shopping cart
basketball

ps5

10:00: empty cart

10:01: added basketball

10:02: added shoes

10:03: reopen the app

10:04: added ps5

10:06: reopen the app

10:07: delete basketball

Shopping cart
basketball

shoes

Shopping cart
basketball

ps5Shopping cart
basketball

shoes

Shopping cart
basketball

ps5

Shopping cart
basketball

shoes

Shopping cart
shoes
ps5

D3 ([node1,1],[node4,1])

D2 ([node1,1],[node2,1])

D3 ([node1,1],[node4,1])

D2 ([node1,1],[node2,1])

Data versioning (5) - motivation example

105

node1

node2 node3

node4Shopping cart
basketball

ps5

10:00: empty cart

10:01: added basketball

10:02: added shoes

10:03: reopen the app

10:04: added ps5

10:06: reopen the app

10:07: delete basketball

Shopping cart
basketball

shoes

Shopping cart
basketball

ps5Shopping cart
basketball

shoes

Shopping cart
basketball

ps5

Shopping cart
basketball

shoes

Shopping cart
shoes
ps5

D3 ([node1,1],[node4,1])

D2 ([node1,1],[node2,1])

D3 ([node1,1],[node4,1])

D2 ([node1,1],[node2,1])

Data versioning (5) - motivation example

106

node1

node2 node3

node4

10:00: empty cart

10:01: added basketball

10:02: added shoes

10:03: reopen the app

10:04: added ps5

10:06: reopen the app

10:07: delete basketball

Shopping cart
basketball

shoes

Shopping cart
basketball

ps5

Shopping cart
basketball

ps5

Shopping cart
basketball

shoes

Shopping cart
shoes
ps5

D4 ([node1,2],[node2,1],[node4,1])

D3 ([node1,1],[node4,1])

D2 ([node1,1],[node2,1])

D3 ([node1,1],[node4,1])

D2 ([node1,1],[node2,1])

Data versioning (5) - motivation example

107

node1

node2 node3

node4

10:00: empty cart

10:01: added basketball

10:02: added shoes

10:03: reopen the app

10:04: added ps5

10:06: reopen the app

10:07: delete basketball

Shopping cart
basketball

shoes

Shopping cart
basketball

ps5

Shopping cart
basketball

ps5

Shopping cart
basketball

shoes

Shopping cart
shoes
ps5

D4 ([node1,2],[node2,1],[node4,1])

Can node1 save only D4?

D3 ([node1,1],[node4,1])

D2 ([node1,1],[node2,1])

D3 ([node1,1],[node4,1])

D2 ([node1,1],[node2,1])

Data versioning (5) - motivation example

108

node1

node2 node3

node4

10:00: empty cart

10:01: added basketball

10:02: added shoes

10:03: reopen the app

10:04: added ps5

10:06: reopen the app

10:07: delete basketball

Shopping cart
basketball

shoes

Shopping cart
basketball

ps5

Shopping cart
basketball

ps5

Shopping cart
basketball

shoes

Shopping cart
shoes
ps5

D4 ([node1,2],[node2,1],[node4,1])

Can node1 save only D4?

IF 	 all the counters on the first object’s clocks <=  
	 all the counters on the second object 
THEN  
	 first is ancestor of the second and can be forgotten 
ELSE  
	 there is a conflict, the client should reconcile

D3 ([node1,1],[node4,1])

D2 ([node1,1],[node2,1])

D3 ([node1,1],[node4,1])

D2 ([node1,1],[node2,1])

Data versioning (5) - motivation example

109

node1

node2 node3

node4

10:00: empty cart

10:01: added basketball

10:02: added shoes

10:03: reopen the app

10:04: added ps5

10:06: reopen the app

10:07: delete basketball

Shopping cart
basketball

shoes

Shopping cart
basketball

ps5

Shopping cart
basketball

ps5

Shopping cart
basketball

shoes

Shopping cart
shoes
ps5

D4 ([node1,2],[node2,1],[node4,1])

Can node1 save only D4?
YES!

D4 ([node1,2],[node2,1],[node4,1])

D2 ([node1,1],[node2,1])

D3 ([node1,1],[node4,1])

Data versioning (5) - motivation example

110

node1

node2 node3

node4

10:00: empty cart

10:01: added basketball

10:02: added shoes

10:03: reopen the app

10:04: added ps5

10:06: reopen the app

10:07: delete basketball

Shopping cart
basketball

shoes

Shopping cart
basketball

ps5

Shopping cart
shoes
ps5

D4 ([node1,2],[node2,1],[node4,1])

D2 ([node1,1],[node2,1])

D3 ([node1,1],[node4,1])

Data versioning (5) - motivation example

111

node1

node2 node3

node4

10:00: empty cart

10:01: added basketball

10:02: added shoes

10:03: reopen the app

10:04: added ps5

10:06: reopen the app

10:07: delete basketball

Shopping cart
basketball

shoes

Shopping cart
basketball

ps5

Shopping cart
shoes
ps5

sync

D4 ([node1,2],[node2,1],[node4,1])

D2 ([node1,1],[node2,1])

D3 ([node1,1],[node4,1])

Data versioning (5) - motivation example

112

node1

node2 node3

node4

10:00: empty cart

10:01: added basketball

10:02: added shoes

10:03: reopen the app

10:04: added ps5

10:06: reopen the app

10:07: delete basketball

Shopping cart
basketball

shoes

Shopping cart
basketball

ps5

Shopping cart
shoes
ps5

sync

Shopping cart
shoes
ps5

D4 ([node1,2],[node2,1],[node4,1])

D4 ([node1,2],[node2,1],[node4,1])

D2 ([node1,1],[node2,1])

D3 ([node1,1],[node4,1])

Data versioning (5) - motivation example

113

node1

node2 node3

node4

10:00: empty cart

10:01: added basketball

10:02: added shoes

10:03: reopen the app

10:04: added ps5

10:06: reopen the app

10:07: delete basketball

Shopping cart
basketball

shoes

Shopping cart
basketball

ps5

Shopping cart
shoes
ps5

sync

Shopping cart
shoes
ps5

D4 ([node1,2],[node2,1],[node4,1])

Can node2 save only D4?

D4 ([node1,2],[node2,1],[node4,1])

D2 ([node1,1],[node2,1])

D3 ([node1,1],[node4,1])

Data versioning (5) - motivation example

114

node1

node2 node3

node4

10:00: empty cart

10:01: added basketball

10:02: added shoes

10:03: reopen the app

10:04: added ps5

10:06: reopen the app

10:07: delete basketball

Shopping cart
basketball

shoes

Shopping cart
basketball

ps5

Shopping cart
shoes
ps5

sync

Shopping cart
shoes
ps5

D4 ([node1,2],[node2,1],[node4,1])

Can node2 save only D4?
YES!

D4 ([node1,2],[node2,1],[node4,1])

D4 ([node1,2],[node2,1],[node4,1])

D3 ([node1,1],[node4,1])

Data versioning (5) - motivation example

115

node1

node2 node3

node4

10:00: empty cart

10:01: added basketball

10:02: added shoes

10:03: reopen the app

10:04: added ps5

10:06: reopen the app

10:07: delete basketball

Shopping cart
shoes
ps5

Shopping cart
basketball

ps5

Shopping cart
shoes
ps5

D4 ([node1,2],[node2,1],[node4,1])

D4 ([node1,2],[node2,1],[node4,1])

D3 ([node1,1],[node4,1])

Data versioning (5) - motivation example

116

node1

node2 node3

node4

10:00: empty cart

10:01: added basketball

10:02: added shoes

10:03: reopen the app

10:04: added ps5

10:06: reopen the app

10:07: delete basketball

Shopping cart
shoes
ps5

Shopping cart
basketball

ps5

Shopping cart
shoes
ps5

sync

D4 ([node1,2],[node2,1],[node4,1])

D4 ([node1,2],[node2,1],[node4,1])

D3 ([node1,1],[node4,1])

Data versioning (5) - motivation example

117

node1

node2 node3

node4

10:00: empty cart

10:01: added basketball

10:02: added shoes

10:03: reopen the app

10:04: added ps5

10:06: reopen the app

10:07: delete basketball

Shopping cart
shoes
ps5

Shopping cart
basketball

ps5

Shopping cart
shoes
ps5

sync

Shopping cart
shoes
ps5

D4 ([node1,2],[node2,1],[node4,1])

D4 ([node1,2],[node2,1],[node4,1])

D4 ([node1,2],[node2,1],[node4,1])

D3 ([node1,1],[node4,1])

Data versioning (5) - motivation example

118

node1

node2 node3

node4

10:00: empty cart

10:01: added basketball

10:02: added shoes

10:03: reopen the app

10:04: added ps5

10:06: reopen the app

10:07: delete basketball

Shopping cart
shoes
ps5

Shopping cart
basketball

ps5

Shopping cart
shoes
ps5

sync

Shopping cart
shoes
ps5

D4 ([node1,2],[node2,1],[node4,1])

Can node4 save only D4?

D4 ([node1,2],[node2,1],[node4,1])

D4 ([node1,2],[node2,1],[node4,1])

D3 ([node1,1],[node4,1])

Data versioning (5) - motivation example

119

node1

node2 node3

node4

10:00: empty cart

10:01: added basketball

10:02: added shoes

10:03: reopen the app

10:04: added ps5

10:06: reopen the app

10:07: delete basketball

Shopping cart
shoes
ps5

Shopping cart
basketball

ps5

Shopping cart
shoes
ps5

sync

Shopping cart
shoes
ps5

D4 ([node1,2],[node2,1],[node4,1])

Can node4 save only D4?
YES!

D4 ([node1,2],[node2,1],[node4,1])

D4 ([node1,2],[node2,1],[node4,1])

D4 ([node1,2],[node2,1],[node4,1])

Data versioning (5) - motivation example

120

node1

node2 node3

node4

10:00: empty cart

10:01: added basketball

10:02: added shoes

10:03: reopen the app

10:04: added ps5

10:06: reopen the app

10:07: delete basketball

Shopping cart
shoes
ps5

Shopping cart
shoes
ps5

Shopping cart
shoes
ps5

D4 ([node1,2],[node2,1],[node4,1])

D4 ([node1,2],[node2,1],[node4,1])

D4 ([node1,2],[node2,1],[node4,1])

Data versioning (5) - motivation example

121

node1

node2 node3

node4

10:00: empty cart

10:01: added basketball

10:02: added shoes

10:03: reopen the app

10:04: added ps5

10:06: reopen the app

10:07: delete basketball

Shopping cart
shoes
ps5

Shopping cart
shoes
ps5

Shopping cart
shoes
ps5

מה כבר נגמר?!

https://www.youtube.com/watch?v=9jI-IFmLi_E

https://www.youtube.com/watch?v=9jI-IFmLi_E

Data versioning (5) - example (paper)
• If you want another example, check the extra slides

122

Data versioning (5) - Vector clocks size
• In theory, the size of the vector clocks can grow if many servers

coordinate the write 
“preference list”

• In practice, it is always handled by one of the top N

• Amazon added a threshold (10) that above that,  
the oldest pair gets removed

• can lead for reconciliation problems

• this problem has not surfaced in production (according to Amazon)

123

Data versioning (6) - Nerd note
• You can NOT currently understand this slide yet 

but try to remember it for the future 

• Cassandra does NOT use vector clocks

• It use a "simple” timestamp mechanism - “last write wins”

• Clocks are naturally not 100% sync between different nodes 
but Cassandra has a mechanism to try and sync them all the time 

• Works in practice because the “key-value” will be brake into smaller parts 
For example - each item of the shopping cart will have a different “key-value”

124

Bonus clip

125

https://www.youtube.com/watch?v=cMalJkGJzYU

https://www.youtube.com/watch?v=cMalJkGJzYU

Dynamo topics
• Requirements

• Partition algorithm

• Replication

• Data versioning

• get() and put() execution

• Failures

• Ring membership
126

get() and put() execution (1)

• (1) via a load balancer 
+ 	 the client is unaware of any dynamo logic 
-	 more latency as another forwarding step may be required 
	 (if the reached node is NOT part of the top N nodes in the preference list)

• (2) via a partition aware client driver  
+ 	 lower latency 
-	 client need to maintain the logic / sync with the ring nodes 

127

1

2

3

4

The client can initiate an HTTP call by

get() and put() execution (2)
Consistency

• Dynamo uses a quorum protocol 
just like the one we saw in the CAP theorem

128

• N 	 #nodes that store replicas of the data

• W 	 #replicas that need to acknowledge the receipt of the update

• R	 #replicas that are contacted for a read

W + R > N 
(2,2,3 is a common setting)

get() and put() execution (3)
For put() the coordinator

• Writes the data + the new vector clock locally

• Send it to N-1 nodes from the preference list

• Waits for W-1 to return success

For get() the coordinator

• Request all versions from the N-1 nodes in the preference list

• Wait for R response to return success 
if more than 1 version returned, return all versions for the client to reconcile

129

In a failure free
environment

Dynamo topics
• Requirements

• Partition algorithm

• Replication

• Data versioning

• get() and put() execution

• Failures

• Ring membership
130

Failures
• Temporary (from milliseconds to 3 hours)

• Permanet

131

Failures - Temporary (1)
• In a cloud environment there are (possibly) frequent

temporal errors 
network partitions, vm fails, power…

• Temporal = from seconds to minutes (3 hours max)

• Can easily cause an availability issue (“strict quorum”) 
can you think of an example?

132

Strict = the nodes which are ״mapped״ to store the data

Failures - Temporary (1)

133

node
2

node
3node

4

node
5

1000+
nodes

X X

If node4 and node5 are down, we can NOT
complete the write.

Can we use the other nodes?
Strict quorum “problem”

Failures - Temporary (2)
Hinted handoff

• Sloppy quorum - all reads/writes are performed on the first N
healthy nodes from the preference list 
may not be the first N nodes if some fail

• On nodes failures, we use the next nodes (on the ring) as
replicas and store an additional “hint” on the metadata 
suggesting which node was originally intended to be written

• These hinted handoffs will be stored on a separate local list, and
will be used to update the failed nodes once are back online 

134

Failures - Temporary (3) - example

135

node
1

node
2

node
3

node
4

v=20

v=230

v=458

v=850

hash(key) = 344

(assigned to node3)

node3 is the coordinator. It will store the
value locally and on node4 and node1

Range is [0:1000] for the example,
N=3

Failures - Temporary (3) - example

136

node
1

node
2

node
3

node
4

v=20

v=230

v=458

v=850

hash(key) = 344

(assigned to node3)

node3 is the coordinator. It will store the
value locally and on node4 and node1

Range is [0:1000] for the example,
N=3

X

Failures - Temporary (3) - example

137

node
1

node
2

node
3

node
4

v=20

v=230

v=458

v=850

hash(key) = 344

(assigned to node3)

node3 is the coordinator. It will store the
value locally and on node4 and node1

Range is [0:1000] for the example,
N=3

Assume node4 fails. To maintain
durability (N=3), we write on node2

X

Failures - Temporary (3) - example

138

node
1

node
2

node
3

node
4

v=20

v=230

v=458

v=850

Once node4 resumes, node2 will
update node4 and delete the data

Range is [0:1000] for the example,
N=3

Assume node4 fails. To maintain
durability (N=3), we write on node2

Failures - Temporary (4)
• It is crucial for an highly available system to be able of

handing the failure of an entire data center 
power outages, cooling/network failures, natural disasters…

139

node
1

node
2

node
3

node
4

Europe

Asia

North America

Dynamo can be configured
such that the preference

list is spread among
different data centers

Failures - Permanent (1)
Hinted handoff works best when

• Node failures are transient

• System membership churn is low

What to do when

• The node with the hinted replicas fails

• Other durability threats
140

Failures - Permanent (2)
Anti entropy (replica synchronization)

• A protocol to keep replicas synchronized

To detect inconsistencies between replicas and to
minimize the amount of transferred data, Dynamo uses
Merkle trees:

141

A Merkle tree is a hash tree where leaves are hashes of
the values of individual keys. Parent nodes higher in the

tree are hashes of their respective children

Failures - Permanent (3)
Merkel tree examle 
binary version

142

Failures - Permanent (4)
Dynamo uses Merkel tree as follows

• Each node maintain a separate Merkel tree for each
key range 
the set of keys covered by a virtual node

• Nodes can compare each matching range by
exchanging the matching tree roots

• On “out of sync” - nodes can exchange only the
subset of their children to avoid transmitting all data

143

Dynamo topics
• Requirements

• Partition algorithm

• Replication

• Data versioning

• get() and put() execution

• Failures

• Ring membership
144

Ring membership
Assumption

• Node outages are often transient

• Permanent departures are rare

• —> do not automatically rebalanced the ring when 	
	 (temporal) error occurs 

• To add / remove nodes (which rebalance the ring) use
an explicit mechanism (via API)

145

Ring membership - Gossip protocol
• Recall we do not have a master node (fully distributed)

• When a node is added/removed (and thus the ring
changes), a gossip based protocol is used to update
the ring status 
—> eventually consistent view of the ring

• Gossip protocol: every second each node contact a
random different node and the two nodes “reconcile”
their ring membership view 
also used for other Dynamo needs

146

Ring membership - Failure detection (1)
• Used to avoid communicating with unreachable nodes  

during get() and put()

Local notion of failure (decentralized)

• Node A may consider node B failed 
if B does not response to A’s message

• But node C can consider node B alive 
if B is responsive to C’s message

147

Ring membership - Failure detection (2)
• Under normal operation, Node A can quickly discover

that node B is unresponsive when B fails to respond
to a message 
derived from put() / get() calls

• A periodically retires to B are made to check for B’s
recovery

• If 2 nodes are not “near” in the ring, neither needs to
know whether the other is reachable and responsive

148

Dynamo topics
• Requirements

• Partition algorithm

• Replication

• Data versioning

• get() and put() execution

• Failures

• Ring membership
149

That's all Folks!

https://looneytunes.fandom.com/wiki/That%27s_all_Folks!

