Data Modeling in NoSQL (C*) -
Intro

Data modeling - the most important
property for big data systems

TLDR (1) quick discussion - what does this means?
(example on next slides)

e Query-driven modeling V

(model for performance - goal: minimize partition reads)

e Sacrifice space for (query) time

e Denormalization - we materialize a JOIN on write vs on read

» “Forget” RDBMS
e No JOINS

* No referential integrity

CREATE TABLE users by id (

user 1id BIGINT,
fname TEXT,
lname TEXT,
country TEXT,
PRIMARY KEY (user 1id)
) — How can we get all the data for all the users in Israel?

CREATE TABLE users by country (
country TEXT,
user 1id BIGINT,
PRIMARY KEY (country, user 1id)

) ;

CREATE TABLE users by id (

user 1id BIGINT,
fname TEXT,
lname TEXT,
country TEXT,

PRIMARY KEY (user id)
) ;

CREATE TABLE users by country (
country TEXT,
user 1id BIGINT,
PRIMARY KEY (country, user 1id)

) ;

SELECT user id for (user:result) {

FROM users by country » SELECT * FROM users by 1id
WHERE country = ‘Israel’ WHERE user 1d = user

CREATE TABLE users by id (

user 1id BIGINT,
fname TEXT,
lname TEXT,
country TEXT,

PRIMARY KEY (user id)
) ;

CREATE TABLE users by country (
country TEXT,
user 1id BIGINT,
PRIMARY KEY (country, user 1id)

) ;

How many queries do we need?

SELECT user id for (user:result) {

FROM users_by country mss SELECT * FROM users_by id
WHERE country = ‘Israel’ WHERE user 1d = user

CREATE TABLE users by id (CREATE TABLE users by id (

user id BIGINT, user id BIGINT,
fname TEXT, fname TEXT,
lname TEXT, lname TEXT,
country TEXT, country TEXT,
PRIMARY KEY (user id) PRIMARY KEY (user id)
) ;) ;
CREATE TABLE users by country (CREATE TABLE users by country (
country TEXT, country TEXT,
user id BIGINT, user id BIGINT,
PRIMARY KEY (country, user id) fname TEXT,

) ; lname TEXT,
= PRIMARY KEY (country, user id)

CREATE TABLE users by id (CREATE TABLE users by id (

user 1id BIGINT, user 1id BIGINT,
fname TEXT, fname TEXT,
lname TEXT, lname TEXT,
country TEXT, country TEXT,
PRIMARY KEY (user 1id) PRIMARY KEY (user 1id)

) ;) ;

CREATE TABLE users by country (CREATE TABLE users by country (
country TEXT, country TEXT,
user 1id BIGINT, user 1id BIGINT,
PRIMARY KEY (country, user 1id) fname TEXT,

) ; lname TEXT,

PRIMARY KEY (country, user id)
) ;

SELECT *
FROM users_by_country

WHERE country = ‘Israel’

TLDR (2)

e Relational
focus on entities

el —> el —> e

e NoSQL

focus on queries

Ml = el —> e

Modeling is a Science

* Jested methodologies

* Reproducible

Modeling is an Art

* Multiple ways to solve design problems

e Uncommon use case —> think out of the box

Data modeling process

* Option A: start creating tables

e run fast and hope for the best

* Option B: follow the modeling process

* |ooks time consuming but in practice is faster

* all team members can help

Data modeling - 10,000 foot view

entities & relations attributes and keys tables / types

DB specific

REMINDER - RELATIONAL DATABASE

Data modeling - 10,000 foot view

entities & relations
- partitions & keys data types

)
 EE—

NoSQL - Wide column

-> ->

Data modeling - 10,000 foot view

entities & relations
- partitions & keys data types

—
 EE—

NoSQL - Wide column

-> ->

Conceptual data modeling

e Abstract view of entities and relations
e ER Model

(entity-relation model)
o« Same (*) as for relational databases

* “Independent” from specific DB

ER Model

e Entities

Zfew values

o Attributes - -

e Relations
between entities

many-many

* There are more types like ISA (is a)

many-one one-one

17

Example use case

* We are building a simple video streaming service

19

Other options?

Other options?

20

Other options?

Create a “country” entity
and one to many relation

e

.k

21

Create a “genre” entity and
many to many relation

Other options?

Data modeling - 10,000 foot view

entities & relations
- partitions & keys data types

-> ->

Application queries

* Goal: model the application workflow

* Not only client workflow

recommendation engine for example

* Defined by queries

This is given. Usually by both the product and the backend teams

23

Application queries - example

Client workflow

e Q1: Show new videos

* Q2: Show videos by a genre
* Q3: Show video full details

For recommendation engine (online/offline workflow)

* Q4: Show views by user
watch again / continue watching

* Q5: Show views by country and day

regional trending

* QG: Show views by video
people who watch X also watched

24

Application workflow - example

Q2 Q4 Q5 Q6
Q3 Q4

v
<

Data modeling - 10,000 foot view

entities & relations
- partitions & keys data types

-> ->

Logical data model

Mapping conceptual and queries to tables:

1. queries —> tables
use “by” convention (for example users by country)

2. ldentify primary keys

partition key columns and clustering columns

3. Add additional attributes

unlike relational DBs,

entities / relations does not convert to tables automatically

27

28

(™ Fiil

* Image from Wikipedia

-
W)

Chebotko diagrams notation

table_name
column_1 K| < Partition key
column_2 V(| < Clustering key (desc)
column_3 AC| < Clustering key (asc)
column_4 S| Static column
column_5 ++| < Counter
[column_6] D List
{column_7} D Set
<column_8> > Map
*column_9” < UDT * Image from Wikipedia
column_10 > Regular column

Chewbacca != Chebotko

29

30

N\

How to convert this diagram to tables?

~

J

\

31

N\

How to convert this diagram to tables?

~

J

\/

You don’t! We “convert” the queries!

Logical data model - example

Q3

* Q1: Show new videos * Q4: Show views by user
* Q2: Show videos by genre * Q5: Show views by country and day

* Q3: Show video full details * Q6: Show views by video
33

Logical data model - example

Q3

video id K

release date
title
{genres}

* Q1: Show new videos * Q4: Show views by user

* Q2: Show videos by genre * Q5: Show views by country and day

* Q3: Show video full details * Q6: Show views by video
34

Logical data model - example

Q3 Q1

video id K

release date
title
{genres}

* Q1: Show new videos * Q4: Show views by user

* Q2: Show videos by genre * Q5: Show views by country and day

* Q3: Show video full details * Q6: Show views by video
35

Logical data model - example

release
date

Q3 Q1
videos by id videos by releasedate

video |d K release _date K

release_date video_id

title title

{genres}

Application logic - title
Is needed but genres
are not

* Q1: Show new videos * Q4: Show views by user
* Q2: Show videos by genre * Q5: Show views by country and day

* Q3: Show video full details * Q6: Show views by video
36

Logical data model - example

release
date

Q3 Q1
videos by id videos by releasedate

video_id K release_date K

release_date video_id

title title

{genres}

Application logic - title What do you think?
Is needed but genres
are not

* Q1: Show new videos * Q4: Show views by user
* Q2: Show videos by genre * Q5: Show views by country and day

* Q3: Show video full details * Q6: Show views by video
37

Altering the partition key

release
date

Q3 Q1
videos by id videos by releasedate

video_id K release_year K

release_date release_date v

title video_id

{genres} title

Year / month / anything else
depends on the application logic

* Q1: Show new videos * Q4: Show views by user
* Q2: Show videos by genre * Q5: Show views by country and day

* Q3: Show video full details * Q6: Show views by video
38

Altering the partition key

release
date

Q3 Q1
videos by id videos by releasedate Next week we will add to the

video id K release_year K discuss the size of the partition

release_date release_date v

title video_id

{genres} title

Year / month / anything else
depends on the application logic

* Q1: Show new videos * Q4: Show views by user
* Q2: Show videos by genre * Q5: Show views by country and day

* Q3: Show video full details * Q6: Show views by video
39

Altering the partition key

release
date

Q3 Q1
videos by id videos by releasedate
video_id K release_year K
release_date release_date v
title video_id
{genres} title
* Q1: Show new videos * Q4: Show views by user
* Q2: Show videos by genre * Q5: Show views by country and day

* Q3: Show video full details * Q6: Show views by video
40

Altering the clustering columns

release
date

Q3 Q1
videos by id videos by releasedate

video_id K release_year K

release_date release_date v

title video_id v

{genres} title

Adding uniqueness!

* Q1: Show new videos * Q4: Show views by user
* Q2: Show videos by genre * Q5: Show views by country and day

* Q3: Show video full details * Q6: Show views by video
41

More denormalization

release
date

Q3 Q1 Q2
videos_by id videos_by releasedate
video_id K release_year K
release_date release_date v
title video_id v
{genres} title
* Q1: Show new videos * Q4: Show views by user
* Q2: Show videos by genre * Q5: Show views by country and day

* Q3: Show video full details * Q6: Show views by video
42

Q3

More denormalization

videos_by id

video id

re

ease date

tit

e

{genres}

Q1
videos by releasedate
release_year K
release_date v
video_id v

title

e Q1: Show new videos

* Q2: Show videos by genre
* Q3: Show video full details

* Q4: Show views by user
* Q5: Show views by country and day

* Q6: Show views by video
43

Q2
videos_by genre
genre K
release_date v
video_id v
title

More denormalization

This stage Is different from “relational modeling” where we had a deterministic algorithm.

This is why we learned the internals of the system.

Next week we will have more “requirements” to consider (partition size, hot spots...)

* Q1: Show new videos * Q4: Show views by use
* Q2: Show videos by genre * Q5: Show views by country and day

* Q3: Show video full details * Q6: Show views by video
44

Other queries

Q4

* Q1: Show new videos * Q4: Show views by user
* Q2: Show videos by genre * Q5: Show views by country and day

* Q3: Show video full details * Q6: Show views by video
45

Other queries

Q4
_ views by user
user_id K
view_id v
device
video_id
title A

We need also the title,

not just the video_id
(denormalization)

e Q1: Show new videos
* Q2: Show videos by genre
 Q3: Show video full details

* Q4: Show views by user
* Q5: Show views by country and day

* Q6: Show views by video
46

Other queries

Q4
views_by user
user_id
view_id
device
video_id
title A

We need also the title,

not just the video_id
(denormalization)

* Q1: Show new videos
* Q2: Show videos by genre
 Q3: Show video full details

Side note

In real life - do we store the title?

* Q4: Show views by user
* Q5: Show views by country and day

* Q6: Show views by video
47

release date

video id

Other queries

release_date

Q4
views_by_user Side note
user_id K In real life - do we store the title?
view_id v
device
video_id
title | Probably not.
(We would not be able to “change” millions of rows of the title changes)

We need also the title,

So how would we display the title (or image / description) for a user to view

not just the video_id _
her history?

(denormalization)

* Q1: Show new videos * Q4: Show views by user
* Q2: Show videos by genre * Q5: Show views by country and day

* Q3: Show video full details * Q6: Show views by video
48

Other queries

release_date

Q4
views_by_user Side note
user_id K In real life - do we store the title?
view_id v
device
video_id
title | Probably not.
(We would not be able to “change” millions of rows of the title changes)

We need also the title, _ _ _ o _
So how would we display the title (or image / description) for a user to view

her history?

not just the video_id
(denormalization)

e Q1: Show new videos

> Sh . | We would need a caching layer with all the video details
(2: Show videos by genre ' (This is basically a really fast join)

 Q3: Show video full details

Other queries

Q4 Q6
user_id K
view_id v
device
video_id
title
* Q1: Show new videos * Q4: Show views by user
* Q2: Show videos by genre * Q5: Show views by country and day

* Q3: Show video full details * Q6: Show views by video
50

Other queries

Q4 Q6

user_id K video_id K
view_id v view_id \4
device device
video_id user_id
title

* Q1: Show new videos * Q4: Show views by user

* Q2: Show videos by genre * Q5: Show views by country and day

* Q3: Show video full details * Q6: Show views by video
o1

Other queries

Q4 Q6 Q5

user_id K video_id K
view_id v view_id \4
device device
video_id user_id
title

* Q1: Show new videos * Q4: Show views by user

* Q2: Show videos by genre * Q5: Show views by country and day

* Q3: Show video full details * Q6: Show views by video
92

Other queries

Q4

user_id K
view_id v
device

video_id

title

e Q1: Show new videos
* Q2: Show videos by genre
 Q3: Show video full details

Q6

video_id K
view_id v
device
user_id

* Q4: Show views by user
* Q5: Show views by country and day

* Q6: Show views by video
23

Q5
_views_by_country_day
country K
day K
view_id v
device
video_id
user_id

What is the difference

between K and V¥V for “day”

All together

Q2 Q4 Q5 Q6
Q3 Q4

v
<

All together

Q5

\4

Q6

\4

views_by country day

views_by video

video id

view_id

device

user_id

Q1 Q2 Q4
v \ v
videos_ by releasedate videos_by _genre views_by_ user
release_year K genre user_id K
release_date V| | |release_date view_id v
video_id v video_id device
title title video_id
title
Q3 A
Q4
v
videos by id
video_id K
release_date < Q3

country K
day K
view_id v
device

video_id

user_id

title

{genres}

55

Note about “ghost” entities

* We did not create any

table for “actors”
why??

* Homework: add missing
elements so we would create
some actor table

Data modeling - 10,000 foot view

entities & relations
- partitions & keys data types

-> ->

Physical data model

All we have to do:
* Add CQL data types

e Add create table statement

Physical data model - example

videos_ by releasedate videos_ by releasedate
release_year K release_year INT K
release_date \4 » release date @ TIMESTAMP V¥
video_id v video_id BIGINT WV
title title TEXT

4

CREATE TABLE videos by releasedate (
release year INT,
release date TIMESTAMP,
video 1id BIGINT,

title TEXT,
PRIMARY KEY ((release year), release date, video id)
) WITH CLUSTERING ORDER BY (release date DESC, wvideo id DESC);

59

All together

Q5

\4

Q6

\4

views_by country day

views_by video

video id

view_id

device

user_id

Q1 Q2 Q4
v \ v
videos_ by releasedate videos_by _genre views_by_ user
release_year K genre user_id K
release_date V| | |release_date view_id v
video_id v video_id device
title title video_id
title
Q3 A
Q4
v
videos by id
video_id K
release_date < Q3

country K
day K
view_id v
device

video_id

user_id

title

{genres}

60

A" together Note: TIMEUUID & Set<TEXT>

Q1 Q2 Q4 Q5 Q6
v v v v v
videos_by releasedate videos_by genre views_by user views_by country_day views_by video
release_year INT K] |genre T'exXT K| |user_id BIGINT K country TEXT K] |video_id BIGINT K
release date TIMESTAMP V |release date TIMESTAMP V| |view id TIMEUUID ¥ day TIMESTAMP K| |view id TIMEUUID ¥V
video_id BIGINT W || |video_id BIGINT ¥ | |device TEXT view_id TIMEUUID ¥ | |device TEXT
title TEXT title TEXT video_id BIGINT device TEXT user_id BIGINT
title TEXT video_id BIGINT
‘04 user_id BIGINT
Q3
\ 4
videos_by id
video_id BIGINT K
release_date TIMESTAMP 403
title - Homework: add matching
tgenres) SR CREATE statements

61

Data modeling - 10,000 foot view

entities & relations
- partitions & keys data types

-> ->

Evaluating and optimizing

An ongoing process

Usually as you scale
* there are new product requirements

e you find new problems

Evaluating and optimizing - example (1)

* The streaming service Is a big hit
* More users

* More usage

The product team requires to add the view count next to each video

64

Q1

\4

videos_by releasedate

Refining

Q2

\4

videos_by genre

Q4

\4

views_by user

Q5

v

views_by country_day

Q6

v

views_by video

video _id BIGINT K

view id TIMEUUID V¥

device TEXT

user id BIGINT

user_id BIGINT K
view id TIMEUUID V¥
device TEXT
video id BIGINT
title TEXT

A

Q4

country TEXT K
day TIMESTAMP K
view id TIMEUUID V
device TEXT
video_id BIGINT
user_id BIGINT

release_year INT K| |genre TEXT
release_date TIMESTAMP V¥V —rrelease_date TIMESTAMP
video_id BIGINT W || |video_id BIGINT
title TEXT title TEXT
Q3
\ 4
videos_by id
video_id BIGINT K
release date TIMESTAMP <Q3
title TEXT
{genres} SET<TEXT>

Where will we add the view count?

65

Q1

\4

Refining

Q2

\4

videos_by releasedate

videos_by genre

Q4
\ 4
views_by user
user_id BIGINT K
view id TIMEUUID V¥
device TEXT
video id BIGINT
title TEXT

release_year INT K] |genre TEXT K
release_date TIMESTAMP V¥V —release_date TIMESTAMP WV
video id BIGINT V|| |video id BIGINT WV
title TEXT title TEXT
Q3
\ 4
videos_by id
video_id BIGINT K
release_date TIMESTAMP <Q3
title TEXT
Q7
{genres} SET<TEXT>

la4

Q5

v

views_by country_day

country TEXT K
day TIMESTAMP K
view id TIMEUUID V
device TEXT
video_id BIGINT
user_id BIGINT

Q6

v

views_by video

video _id BIGINT K

view id TIMEUUID V¥

device TEXT

user id BIGINT

support count by hour/day/month...

videos view count

video id

BIGINT K

ts

TIMESTAMP V¥

66

> .
view_count

COUNTER ++

Refining

Q1 Q2

v v

videos_by releasedate videos_by genre

Q4 Q5 Q6

v A4 \4

views_by video

o id BIGINT

K

Reminder: counter type can not be used with other

types in the same table

id TIMEUUID V¥

(except for the primary key) ce TEXT

id BIGINT
title TEXT video id BIGINT | |
TQ4 user_id BIGINT ‘

support count by hour/day/month...

videos view count

release_year INT K| |genre TEXT
release_date TIMESTAMP ¥V —rrelease_date TIMESTAMP
video_id BIGINT W || |video_id BIGINT
title TEXT title TEXT
Q3
\ 4
videos_by id
video_id BIGINT K
release_date TIMESTAMP <Q3
title TEXT
Q7
{genres} SET<TEXT>

video id BIGINT K

s TIMESTAMP V¥

> .
view_count COUNTER ++

67

Evaluating and optimizing - example (2)

* The streaming service Is a big hit
* More users

* More usage

Suddenly
* Queries are getting slower

e Large partitions warnings on the logs

 Adding more Cassandra servers does not help

68

Q1

\4

Q2

\4

videos_by releasedate

videos_by_genre

Do you see a problem?

release_year INT K] |genre TEXT K
release_date TIMESTAMP V¥V —release_date TIMESTAMP WV
video id BIGINT V|| |video id BIGINT WV
title TEXT title TEXT
Q3
\ 4
videos_by id
video_id BIGINT K
release_date TIMESTAMP 403
title TEXT
Q7
{genres} SET<TEXT>

Q4 Q5 Q6
v v v
views_by user views_by country_day views_by video
user_id BIGINT K country TEXT K] |video_id BIGINT K
view id TIMEUUID ¥ day TIMESTAMP K| |view id TIMEUUID V¥
device TEXT view_id TIMEUUID V| |device TEXT
video_id BIGINT device TEXT user_id BIGINT
title TEXT video_id BIGINT
TQ‘I user id BIGINT
videos_view_count
video_id BIGINT K
ts TIMESTAMP WV
>view_count COUNTER ++

69

Do you see a problem?

Q6

v

views_by video

video _id BIGINT K

view id TIMEUUID V¥

Popular videos creates

" device TEXT
large partitions

user id BIGINT

How can we solve this?

70

Do you see a problem?

Q6

v

views_by video

video_Id BIGINT K

view id TIMEUUID V¥

Popular videos creates

" device TEXT
large partitions

user id BIGINT

How can we solve this?

See you next week :)

/1

Altering the schema

* We need to partition the data differently

views_by video

video_id BIGINT K

view id TIMEUUID WV

device TEXT

user_id BIGINT

views_by video

* video_id BIGINT
ts_partition TIMESTAMP

view_id TIMEUUID

device TEXT

user_id BIGINT

The ts_partition can be per day/week/month

or any other time frame
(Configurable by the backend logic)

(2

Altering the schema

* We need to partition the data differently

views_by_video views_by_video
video_id BIGINT K ' video_id BIGINT K
view id TIMEUUID WV ts_partition TIMESTAMP K
device TEXT view_id TIMEUUID V¥V
user_id BIGINT device TEXT
user_id BIGINT

* We will need to issue more than 1 query to retrieve the data
how much??

* Not an issue as this query is done during a model build of the
recommendation engine and not in real time

/3

Note - this might not be the optimal solution.

We will talk about more ways to partition the data soon

video_id BIGINT K ' video_id BIGINT K
view id TIMEUUID V¥ ts_partition TIMESTAMP K
device TEXT view_id TIMEUUID V
user_id BIGINT device TEXT
user_id BIGINT

* We will need to issue more than 1 query to retrieve the data
how much?

* Not an issue as this query is done during a model build of the
recommendation engine and not in real time

74

Fixing the tracks of a moving train

e The table cannot be altered - a new one Is needed
* YOu service works 24x7, you cannot stop It

* An “online merge” Is required

* Not a trivial update
Happens all the time for growing products

More “popular problems”

e L arge partitions

* Application logic changes
new entities, new queries

e Imbalanced data

* Unforeseen hotspots

