
Dr. Rubi Boim

Data Modeling in NoSQL (C*) - 
Advanced
Big Data Systems

Happens to the best
• In 2019 Jennifer Aniston joined Instagram and posted a

single photo

• 1m followers after 5 hour and 16 minutes from registering 
world record

• More than 7m follower (24 hours)

• More than 9m likes for that photo (24 hours)

• Instagram crashed temporarily
2

Previously we learned
• Each query should be satisfied by one partition 

denormalization…

3

videos_by_genre

genre K

release_date 🔻

video_id 🔻

videos_by_id

video_id K

release_date

title

rating

duration

{genres}

Previously we learned
• Each query should be satisfied by one partition 

denormalization…

4

SELECT video_id
FROM videos_by_genre
WHERE genre = “action”

How many queries can this
generate?

videos_by_genre

genre K

release_date 🔻

video_id 🔻

videos_by_id

video_id K

release_date

title

rating

duration

{genres}

for (video : result){
SELECT *
FROM videos_by_id
WHERE video_id = video

}

Previously we learned
• Each query should be satisfied by one partition 

denormalization…

5

videos_by_genre

genre K

release_date 🔻

video_id 🔻

title

rating

duration

videos_by_genre

genre K

release_date 🔻

video_id 🔻

videos_by_id

video_id K

release_date

title

rating

duration

{genres}

Previously we learned
• Each query should be satisfied by one partition 

denormalization…

6

videos_by_genre

genre K

release_date 🔻

video_id 🔻

title

rating

duration

videos_by_genre

genre K

release_date 🔻

video_id 🔻

videos_by_id

video_id K

release_date

title

rating

duration

{genres}

SELECT *
FROM videos_by_genre
WHERE genre = “action”

We add (“duplicate”) all the
attributes we need for the

query

But what happens if the partition is “large”

• There can be more than 10m rows in this partition

7

views_by_video
video_id BIGINT K
view_id TIMEUUID 🔻

device TEXT

user_id BIGINT

1000+
nodes

* images by Wikipedia

But what happens if the partition is “large”

• There can be more than 10m rows in this partition

8

views_by_video
video_id BIGINT K
view_id TIMEUUID 🔻

device TEXT

user_id BIGINT

1000+
nodes

* images by Wikipedia

How many servers will
store the data?

Large partitions
• Cause performance issues: 

 - compactions are slower 
 - queries are slower 
 - repairs can fail 
 - adding more nodes won’t help

• Can cause hotspots 
more on this later

• Data is not distributed evenly throughout the cluster

• We need to model differently to avoid
9

Large partitions in Cassandra
• Rule of thumb: partition size < 100MB size / 100k rows  

You can go higher with newer Cassandra versions 

• You would need to estimate the size in advance 
Unless you learn the hard way you have a problem

10

How to avoid large partitions?
• What do you think?

11

How to avoid large partitions?
• The solution is easy: 

split the data into more partitions 

• When querying, the data is too big anyway for a
single call 
The driver automatically breaks the result into “pages”  
(default = 5000) even for a single partition

12

How to avoid large partitions?
• The solution is easy: 

split the data into more partitions 

• When querying, the data is too big anyway for a
single call 
The driver automatically breaks the result into “pages”  
(default = 5000) even for a single partition

13

How to split is the name of the game

“Choosing how to partition the
data is not trivial,

it is hard.”

14

What is a good split?

15

views_by_user
user_id BIGINT K
view_id TIMEUUID 🔻

device TEXT

video_id BIGINT

views_by_video
video_id BIGINT K
view_id TIMEUUID 🔻

device TEXT

user_id BIGINT

What is a good split?

16

views_by_user
user_id BIGINT K
view_id TIMEUUID 🔻

device TEXT

video_id BIGINT

views_by_video
video_id BIGINT K
view_id TIMEUUID 🔻

device TEXT

user_id BIGINT

This is great as a single user
probably won’t view over 100k

videos

What is a good split?

17

views_by_user
user_id BIGINT K
view_id TIMEUUID 🔻

device TEXT

video_id BIGINT

views_by_video
video_id BIGINT K
view_id TIMEUUID 🔻

device TEXT

user_id BIGINT

This is great as a single user
probably won’t view over 100k

videos

Problematic as some videos
has more than 10m views

What is a good split?

18

views_by_user
user_id BIGINT K
view_id TIMEUUID 🔻

device TEXT

video_id BIGINT

views_by_video
video_id BIGINT K
view_id TIMEUUID 🔻

device TEXT

user_id BIGINT

This is great as a single user
probably won’t view over 100k

videos

Problematic as some videos
has more than 10m views

Might be
problematic for a

social network
addict: assuming

100 views per
day, we reach
100K after 1k

days

What is a good split?

19

views_by_user
user_id BIGINT K
view_id TIMEUUID 🔻

device TEXT

video_id BIGINT

views_by_video
video_id BIGINT K
view_id TIMEUUID 🔻

device TEXT

user_id BIGINT

This is great as a single user
probably won’t view over 100k

videos

Problematic as some videos
has more than 10m views

It depends on the query we need to answer 
AND the data distribution

Might be
problematic for a

social network
addict: assuming

100 views per
day, we reach
100K after 1k

days

Points to remember when splitting
• Size limit 

large partitions causes performance issues

• Over shrinking 
when querying, it is better to contact 1 partition with 10k rows vs 10k partitions
with 1 row

• “Known” partition keys 
when querying, the values of the partition keys are needed

• Hot spots 
undistributed writes/reads causes performance issues

• Tombstones 
too much deletes within a partition causes performance issues

20

Points to remember when splitting
• Size limit 

large partitions causes performance issues

• Over shrinking 
when querying, it is better to contact 1 partition with 10k rows vs 10k partitions
with 1 row

• “Known” partition keys 
when querying, the values of the partition keys are needed

• Hot spots 
undistributed writes/reads causes performance issues

• Tombstones 
too much deletes within a partition causes performance issues

21

Points to remember when splitting
• Size limit 

large partitions causes performance issues

• Over shrinking 
when querying, it is better to contact 1 partition with 10k rows vs 10k partitions
with 1 row

• “Known” partition keys 
when querying, the values of the partition keys are needed

• Hot spots 
undistributed writes/reads causes performance issues

• Tombstones 
too much deletes within a partition causes performance issues

22

views_by_video

video_id BIGINT K

view_id TIMEUUID 🔻

device TEXT

user_id BIGINT

10m views for a single video

Points to remember when splitting
• Size limit 

large partitions causes performance issues

• Over shrinking 
when querying, it is better to contact 1 partition with 10k rows vs 10k partitions
with 1 row

• “Known” partition keys 
when querying, the values of the partition keys are needed

• Hot spots 
undistributed writes/reads causes performance issues

• Tombstones 
too much deletes within a partition causes performance issues

23

Points to remember when splitting
• Size limit 

large partitions causes performance issues

• Over shrinking 
when querying, it is better to contact 1 partition with 10k rows vs 10k partitions
with 1 row

• “Known” partition keys 
when querying, the values of the partition keys are needed

• Hot spots 
undistributed writes/reads causes performance issues

• Tombstones 
too much deletes within a partition causes performance issues

24

views_by_time

year INT K

month INT K

day INT K

hour INT K

minute INT K

view_id TIMEUUID 🔻

video_id BIGINT

device TEXT

user_id BIGINT

A partition for every minute

views_by_time

year INT K

month INT K

day INT K

view_id TIMEUUID 🔻

video_id BIGINT

device TEXT

user_id BIGINT

A partition for every day

Points to remember when splitting
• Size limit 

large partitions causes performance issues

• Over shrinking 
when querying, it is better to contact 1 partition with 10k rows vs 10k partitions
with 1 row

• “Known” partition keys 
when querying, the values of the partition keys are needed

• Hot spots 
undistributed writes/reads causes performance issues

• Tombstones 
too much deletes within a partition causes performance issues

25

views_by_time

year INT K

month INT K

day INT K

hour INT K

minute INT K

view_id TIMEUUID 🔻

video_id BIGINT

device TEXT

user_id BIGINT

A partition for every minute

views_by_time

year INT K

month INT K

day INT K

view_id TIMEUUID 🔻

video_id BIGINT

device TEXT

user_id BIGINT

A partition for every day

NOTE
 It does not mean you should always partition by day and not by minute.

Sometimes you would need to partition by 12 seconds

remember: AND the data distribution

Points to remember when splitting
• Size limit 

large partitions causes performance issues

• Over shrinking 
when querying, it is better to contact 1 partition with 10k rows vs 10k partitions
with 1 row

• “Known” partition keys 
when querying, the values of the partition keys are needed

• Hot spots 
undistributed writes/reads causes performance issues

• Tombstones 
too much deletes within a partition causes performance issues

26

Points to remember when splitting
• Size limit 

large partitions causes performance issues

• Over shrinking 
when querying, it is better to contact 1 partition with 10k rows vs 10k partitions
with 1 row

• “Known” partition keys 
when querying, the values of the partition keys are needed

• Hot spots 
undistributed writes/reads causes performance issues

• Tombstones 
too much deletes within a partition causes performance issues

27

How can we know the view_id values?

views_by_view

view_id TIMEUUID K

video_id BIGINT

device TEXT

user_id BIGINT

• Size limit 
large partitions causes performance issues

• Over shrinking 
when querying, it is better to contact 1 partition with 10k rows vs 10k partitions
with 1 row

• “Known” partition keys 
when querying, the values of the partition keys are needed

• Hot spots 
undistributed writes/reads causes performance issues

• Tombstones 
too much deletes within a partition causes performance issues

Points to remember when splitting

28

• Size limit 
large partitions causes performance issues

• Over shrinking 
when querying, it is better to contact 1 partition with 10k rows vs 10k partitions
with 1 row

• “Known” partition keys 
when querying, the values of the partition keys are needed

• Hot spots 
undistributed writes/reads causes performance issues

• Tombstones 
too much deletes within a partition causes performance issues

Points to remember when splitting

29

• During each day only 1 node handles all the writes

• Assuming a 10k node cluster, 9999 server are unused (CPU & Storage)

views_by_time

year INT K

month INT K

day INT K

view_id TIMEUUID 🔻

video_id BIGINT

device TEXT

user_id BIGINT

1000+
nodes

• Size limit 
large partitions causes performance issues

• Over shrinking 
when querying, it is better to contact 1 partition with 10k rows vs 10k partitions
with 1 row

• “Known” partition keys 
when querying, the values of the partition keys are needed

• Hot spots 
undistributed writes/reads causes performance issues

• Tombstones 
too much deletes within a partition causes performance issues

Points to remember when splitting

30

• Size limit 
large partitions causes performance issues

• Over shrinking 
when querying, it is better to contact 1 partition with 10k rows vs 10k partitions
with 1 row

• “Known” partition keys 
when querying, the values of the partition keys are needed

• Hot spots 
undistributed writes/reads causes performance issues

• Tombstones 
too much deletes within a partition causes performance issues

Points to remember when splitting

31

A queue for managing tasks (FIFO)
Once a task is done, it is deleted from the queue

Recall - during gc_grace_seconds (10 days):
• Warnings after 1k tombstones
• Partition crash after 100k tombstones

queues

queue_name TEXT K

task_id TIMEUUID 🔺

task_desc TEXT

Again - this is important!
• Size limit 

large partitions causes performance issues

• Over shrinking 
when querying, it is better to contact 1 partition with 10k rows vs 10k partitions
with 1 row

• “Known” partition keys 
when querying, the values of the partition keys are needed

• Hot spots 
undistributed writes/reads causes performance issues

• Tombstones 
too much deletes within a partition causes performance issues

32

Splitting strategies
• You can NOT satisfy all requirements for any strategy

• One is not better or worse than the other  
only more suitable to a specific example and data distribution

• Goal: learn different strategies and match the best
model to each different problem

33

Option 1 - split with existing column

34

views_by_video
video_id BIGINT K
view_id TIMEUUID 🔻

device TEXT

user_id BIGINT

Option 1 - split with existing column

35

views_by_video
video_id BIGINT K
view_id TIMEUUID 🔻

device TEXT

user_id BIGINT

Note - the query
needed is “by video”

although we add more
partition keys

Option 1 - split with existing column

36

views_by_video
video_id BIGINT K
view_id TIMEUUID 🔻

device TEXT

user_id BIGINT

views_by_video
video_id BIGINT K
user_id BIGINT K
view_id TIMEUUID 🔻

device TEXT

views_by_video
video_id BIGINT K
device TEXT K
view_id TIMEUUID 🔻

user_id BIGINT

vs vs

views_by_video
video_id BIGINT K
view_id TIMEUUID K
device TEXT

user_id BIGINT

Option 1 - split with existing column

37

views_by_video
video_id BIGINT K
view_id TIMEUUID 🔻

device TEXT

user_id BIGINT

views_by_video
video_id BIGINT K
user_id BIGINT K
view_id TIMEUUID 🔻

device TEXT

views_by_video
video_id BIGINT K
device TEXT K
view_id TIMEUUID 🔻

user_id BIGINT

vs vs

views_by_video
video_id BIGINT K
view_id TIMEUUID K
device TEXT

user_id BIGINT

	 size limit
	 over shrinking
	 known partitions
	 hot spots
	 tombstones

Option 1 - split with existing column

38

views_by_video
video_id BIGINT K
view_id TIMEUUID 🔻

device TEXT

user_id BIGINT

views_by_video
video_id BIGINT K
user_id BIGINT K
view_id TIMEUUID 🔻

device TEXT

views_by_video
video_id BIGINT K
device TEXT K
view_id TIMEUUID 🔻

user_id BIGINT

vs vs

views_by_video
video_id BIGINT K
view_id TIMEUUID K
device TEXT

user_id BIGINT

👍	 size limit
❌	 over shrinking
❌	 known partitions
👍	 hot spots
👍	 tombstones

Option 1 - split with existing column

39

views_by_video
video_id BIGINT K
view_id TIMEUUID 🔻

device TEXT

user_id BIGINT

views_by_video
video_id BIGINT K
user_id BIGINT K
view_id TIMEUUID 🔻

device TEXT

views_by_video
video_id BIGINT K
device TEXT K
view_id TIMEUUID 🔻

user_id BIGINT

vs vs

views_by_video
video_id BIGINT K
view_id TIMEUUID K
device TEXT

user_id BIGINT

👍	 size limit
❌	 over shrinking
❌	 known partitions
👍	 hot spots
👍	 tombstones

	 size limit
	 over shrinking
	 known partitions
	 hot spots
	 tombstones

Option 1 - split with existing column

40

views_by_video
video_id BIGINT K
view_id TIMEUUID 🔻

device TEXT

user_id BIGINT

views_by_video
video_id BIGINT K
user_id BIGINT K
view_id TIMEUUID 🔻

device TEXT

views_by_video
video_id BIGINT K
device TEXT K
view_id TIMEUUID 🔻

user_id BIGINT

vs vs

views_by_video
video_id BIGINT K
view_id TIMEUUID K
device TEXT

user_id BIGINT

👍	 size limit
❌	 over shrinking
❌	 known partitions
👍	 hot spots
👍	 tombstones

👍	 size limit
❌	 over shrinking
❌	 known partitions
👍	 hot spots
👍	 tombstones

Option 1 - split with existing column

41

views_by_video
video_id BIGINT K
view_id TIMEUUID 🔻

device TEXT

user_id BIGINT

views_by_video
video_id BIGINT K
user_id BIGINT K
view_id TIMEUUID 🔻

device TEXT

views_by_video
video_id BIGINT K
device TEXT K
view_id TIMEUUID 🔻

user_id BIGINT

vs vs

views_by_video
video_id BIGINT K
view_id TIMEUUID K
device TEXT

user_id BIGINT

👍	 size limit
❌	 over shrinking
❌	 known partitions
👍	 hot spots
👍	 tombstones

👍	 size limit
❌	 over shrinking
❌	 known partitions
👍	 hot spots
👍	 tombstones

	 size limit
	 over shrinking
	 known partitions
	 hot spots
	 tombstones

Option 1 - split with existing column

42

views_by_video
video_id BIGINT K
view_id TIMEUUID 🔻

device TEXT

user_id BIGINT

views_by_video
video_id BIGINT K
user_id BIGINT K
view_id TIMEUUID 🔻

device TEXT

views_by_video
video_id BIGINT K
device TEXT K
view_id TIMEUUID 🔻

user_id BIGINT

vs vs

views_by_video
video_id BIGINT K
view_id TIMEUUID K
device TEXT

user_id BIGINT

👍	 size limit
❌	 over shrinking
❌	 known partitions
👍	 hot spots
👍	 tombstones

👍	 size limit
❌	 over shrinking
❌	 known partitions
👍	 hot spots
👍	 tombstones

❌	 size limit
👍	 over shrinking
👍	 known partitions
❓	 hot spots
❓	 tombstones

Option 2 - split with artificial (time) column

43

views_by_video
video_id BIGINT K
view_id TIMEUUID 🔻

device TEXT

user_id BIGINT

Option 2 - split with artificial (time) column

44

views_by_video
video_id BIGINT K
year INT K
month INT K
view_id TIMEUUID 🔻

device TEXT

user_id BIGINT

views_by_video
video_id BIGINT K
view_id TIMEUUID 🔻

device TEXT

user_id BIGINT

Option 2 - split with artificial (time) column

45

views_by_video
video_id BIGINT K
year INT K
month INT K
view_id TIMEUUID 🔻

device TEXT

user_id BIGINT

views_by_video
video_id BIGINT K
view_id TIMEUUID 🔻

device TEXT

user_id BIGINT

What to do if this
partition is not small

enough?

Option 2 - split with artificial (time) column

46

views_by_video
video_id BIGINT K
year INT K
month INT K
view_id TIMEUUID 🔻

device TEXT

user_id BIGINT

views_by_video
video_id BIGINT K
view_id TIMEUUID 🔻

device TEXT

user_id BIGINT

views_by_video
video_id BIGINT K
year INT K
month INT K
day INT K
view_id TIMEUUID 🔻

device TEXT

user_id BIGINT

Option 2 - split with artificial (time) column

47

views_by_video
video_id BIGINT K
year INT K
month INT K
view_id TIMEUUID 🔻

device TEXT

user_id BIGINT

views_by_video
video_id BIGINT K
view_id TIMEUUID 🔻

device TEXT

user_id BIGINT

views_by_video
video_id BIGINT K
year INT K
month INT K
day INT K
view_id TIMEUUID 🔻

device TEXT

user_id BIGINT

We can have the same
problem. How can we

solve it without the
need to change the
schema each time?

Option 2 - split with artificial (time) column

48

views_by_video
video_id BIGINT K
year INT K
month INT K
view_id TIMEUUID 🔻

device TEXT

user_id BIGINT

views_by_video
video_id BIGINT K
view_id TIMEUUID 🔻

device TEXT

user_id BIGINT

views_by_video
video_id BIGINT K
year INT K
month INT K
day INT K
view_id TIMEUUID 🔻

device TEXT

user_id BIGINT

views_by_video
video_id BIGINT K
ts_partition TIMESTAMP K
view_id TIMEUUID 🔻

device TEXT

user_id BIGINT

Assume the time is 2021/12/22 14:54:34:3233

Round the TS before you insert the data
• By year use 	 2021/01/01 00:00:00:0000
• By month use 	 2021/12/01 00:00:00:0000
• By day use 		 2021/12/22 00:00:00:0000
• By hour use 	 2021/12/22 14:00:00:0000
• By minute use 	 2021/12/22 14:54:00:0000
• …
• * use GMT=0 to avoid timezones / daylight

Option 2 - split with artificial (time) column

49

views_by_video
video_id BIGINT K
year INT K
month INT K
view_id TIMEUUID 🔻

device TEXT

user_id BIGINT

views_by_video
video_id BIGINT K
view_id TIMEUUID 🔻

device TEXT

user_id BIGINT

views_by_video
video_id BIGINT K
year INT K
month INT K
day INT K
view_id TIMEUUID 🔻

device TEXT

user_id BIGINT

views_by_video
video_id BIGINT K
ts_partition TIMESTAMP K
view_id TIMEUUID 🔻

device TEXT

user_id BIGINT

	 size limit
	 over shrinking
	 known partitions
	 hot spots
	 tombstones

Option 2 - split with artificial (time) column

50

views_by_video
video_id BIGINT K
year INT K
month INT K
view_id TIMEUUID 🔻

device TEXT

user_id BIGINT

views_by_video
video_id BIGINT K
view_id TIMEUUID 🔻

device TEXT

user_id BIGINT

views_by_video
video_id BIGINT K
year INT K
month INT K
day INT K
view_id TIMEUUID 🔻

device TEXT

user_id BIGINT

views_by_video
video_id BIGINT K
ts_partition TIMESTAMP K
view_id TIMEUUID 🔻

device TEXT

user_id BIGINT

For most days ok,
except aired date of

new episodes

❓	 size limit
❓	 over shrinking
👍	 known partitions
❓	 hot spots
❓	 tombstones

Option 2 - split with artificial (time) column

51

views_by_video
video_id BIGINT K
year INT K
month INT K
view_id TIMEUUID 🔻

device TEXT

user_id BIGINT

views_by_video
video_id BIGINT K
view_id TIMEUUID 🔻

device TEXT

user_id BIGINT

views_by_video
video_id BIGINT K
year INT K
month INT K
day INT K
view_id TIMEUUID 🔻

device TEXT

user_id BIGINT

views_by_video
video_id BIGINT K
ts_partition TIMESTAMP K
view_id TIMEUUID 🔻

device TEXT

user_id BIGINT

For most days ok,
except aired date of

new episodes

❓	 size limit
❓	 over shrinking
👍	 known partitions
❓	 hot spots
❓	 tombstones

Note - “by minute” might be
needed for “Game of Thrones”
but not for all other 5000 shows

Option 3 - split with bucket column

52

views_by_video
video_id BIGINT K
view_id TIMEUUID 🔻

device TEXT

user_id BIGINT

Option 3 - split with bucket column

53

views_by_video
video_id BIGINT K
view_id TIMEUUID 🔻

device TEXT

user_id BIGINT

• Start with bucket 0. 

• If more than X (50k?)
views, advance to
bucket 1 

• …

Option 3 - split with bucket column

54

views_by_video
video_id BIGINT K
view_id TIMEUUID 🔻

device TEXT

user_id BIGINT

• Start with bucket 0. 

• If more than X (50k?)
views, advance to
bucket 1 

• …

views_by_video
video_id BIGINT K
bucket INT K
view_id TIMEUUID 🔻

device TEXT

user_id BIGINT

views_by_video_buckets
video_id BIGINT K
buckets INT 🔻

views COUNTER ++

This table will help us
“count” the number of

view per bucket

Option 3 - split with bucket column

55

views_by_video
video_id BIGINT K
view_id TIMEUUID 🔻

device TEXT

user_id BIGINT

	 size limit
	 over shrinking
	 known partitions
	 hot spots
	 tombstones

• Start with bucket 0. 

• If more than X (50k?)
views, advance to
bucket 1 

• …

views_by_video
video_id BIGINT K
bucket INT K
view_id TIMEUUID 🔻

device TEXT

user_id BIGINT

views_by_video_buckets
video_id BIGINT K
buckets INT 🔻

views COUNTER ++

This table will help us
“count” the number of

view per bucket

Option 3 - split with bucket column

56

Great option,
but not trivial to maintain the

logic on the backend

views_by_video
video_id BIGINT K
view_id TIMEUUID 🔻

device TEXT

user_id BIGINT

👍	 size limit
👍	 over shrinking
👍	 known partitions
❓	 hot spots
👍	 tombstones

• Start with bucket 0. 

• If more than X (50k?)
views, advance to
bucket 1 

• …

views_by_video
video_id BIGINT K
bucket INT K
view_id TIMEUUID 🔻

device TEXT

user_id BIGINT

views_by_video_buckets
video_id BIGINT K
buckets INT 🔻

views COUNTER ++

This table will help us
“count” the number of

view per bucket

Option 3 - split with bucket column

57

Great option,
but not trivial to maintain the

logic on the backend

views_by_video
video_id BIGINT K
view_id TIMEUUID 🔻

device TEXT

user_id BIGINT

👍	 size limit
👍	 over shrinking
👍	 known partitions
❓	 hot spots
👍	 tombstones

• Start with bucket 0. 

• If more than X (50k?)
views, advance to
bucket 1 

• …

views_by_video
video_id BIGINT K
bucket INT K
view_id TIMEUUID 🔻

device TEXT

user_id BIGINT

views_by_video_buckets
video_id BIGINT K
buckets INT 🔻

views COUNTER ++

Pros
• Guaranteed max size

• Can grow without a limit

• When queuing - optimized for the number of calls
• we do not have “small” partitions

• Ordered by TS across all partitions
(only if we always add “new” data)

Cons
• If we add “old” data, the TS is NOT ordered across

all partitions

• We can NOT “find” a specific event as we do not
know on which partition the data is saved
in the example - we can NOT know if a specific
view_id exists without reading all partitions

Option 4 - split with partition column

58

views_by_video
video_id BIGINT K
view_id TIMEUUID 🔻

device TEXT

user_id BIGINT

Option 4 - split with partition column

59

views_by_video
video_id BIGINT K
view_id TIMEUUID 🔻

device TEXT

user_id BIGINT

•Decide on max partition
size (1000?)

•Use a “hash function” to
distribute the data evenly
across the partition 

Option 4 - split with partition column

60

views_by_video
video_id BIGINT K
view_id TIMEUUID 🔻

device TEXT

user_id BIGINT

•Decide on max partition
size (1000?)

•Use a “hash function” to
distribute the data evenly
across the partition 

views_by_video
video_id BIGINT K
partition INT K
view_id TIMEUUID 🔻

device TEXT

user_id BIGINT

Option 4 - split with partition column

61

views_by_video
video_id BIGINT K
view_id TIMEUUID 🔻

device TEXT

user_id BIGINT

•Decide on max partition
size (1000?)

•Use a “hash function” to
distribute the data evenly
across the partition 

•For example modulo: 
partition =
user_id % 1000

views_by_video
video_id BIGINT K
partition INT K
view_id TIMEUUID 🔻

device TEXT

user_id BIGINT

Option 4 - split with partition column

62

views_by_video
video_id BIGINT K
view_id TIMEUUID 🔻

device TEXT

user_id BIGINT

•Decide on max partition
size (1000?)

•Use a “hash function” to
distribute the data evenly
across the partition 

•For example modulo: 
partition =
user_id % 1000

views_by_video
video_id BIGINT K
partition INT K
view_id TIMEUUID 🔻

device TEXT

user_id BIGINT

Data is distributed evenly

Option 4 - split with partition column

63

views_by_video
video_id BIGINT K
view_id TIMEUUID 🔻

device TEXT

user_id BIGINT

	 size limit
	 over shrinking
	 known partitions
	 hot spots
	 tombstones

views_by_video
video_id BIGINT K
partition INT K
view_id TIMEUUID 🔻

device TEXT

user_id BIGINT

•Decide on max partition
size (1000?)

•Use a “hash function” to
distribute the data evenly
across the partition 

•For example modulo: 
partition =
user_id % 1000

Option 4 - split with partition column

64

Not all videos need the
same partition size

views_by_video
video_id BIGINT K
view_id TIMEUUID 🔻

device TEXT

user_id BIGINT

👍	 size limit
❓	 over shrinking
👍	 known partitions
👍	 hot spots
👍	 tombstones

views_by_video
video_id BIGINT K
partition INT K
view_id TIMEUUID 🔻

device TEXT

user_id BIGINT

•Decide on max partition
size (1000?)

•Use a “hash function” to
distribute the data evenly
across the partition 

•For example modulo: 
partition =
user_id % 1000

Option 4 - split with partition column

65

Not all videos need the
same partition size

views_by_video
video_id BIGINT K
view_id TIMEUUID 🔻

device TEXT

user_id BIGINT

👍	 size limit
❓	 over shrinking
👍	 known partitions
👍	 hot spots
👍	 tombstones

views_by_video
video_id BIGINT K
partition INT K
view_id TIMEUUID 🔻

device TEXT

user_id BIGINT

•Decide on max partition
size (1000?)

•Use a “hash function” to
distribute the data evenly
across the partition 

•For example modulo: 
partition =
user_id % 1000

What about the order of the data?

Option 4 - split with partition column

66

Not all videos need the
same partition size

views_by_video
video_id BIGINT K
view_id TIMEUUID 🔻

device TEXT

user_id BIGINT

👍	 size limit
❓	 over shrinking
👍	 known partitions
👍	 hot spots
👍	 tombstones

views_by_video
video_id BIGINT K
partition INT K
view_id TIMEUUID 🔻

device TEXT

user_id BIGINT

•Decide on max partition
size (1000?)

•Use a “hash function” to
distribute the data evenly
across the partition 

•For example modulo: 
partition =
user_id % 1000

When we read the data, it is NOT ordered by the
“global” view_id, but per partition.

Can (maybe) cause logic problems for the client

Option 5 - combo (variable partition size)

67

views_by_video
video_id BIGINT K
view_id TIMEUUID 🔻

device TEXT

user_id BIGINT

Option 5 - combo (variable partition size)

68

views_by_video
video_id BIGINT K
view_id TIMEUUID 🔻

device TEXT

user_id BIGINT

•Variable max partition
size per video

•Use a “hash function” to
distribute the data evenly
across the partition  
(with special logic) 

Option 5 - combo (variable partition size)

69

views_by_video
video_id BIGINT K
view_id TIMEUUID 🔻

device TEXT

user_id BIGINT

views_by_video
video_id BIGINT K
partition INT K
view_id TIMEUUID 🔻

device TEXT

user_id BIGINT

•Variable max partition
size per video

•Use a “hash function” to
distribute the data evenly
across the partition  
(with special logic) 

views_by_video_paritions
video_id BIGINT K
partitions_total INT

“Normal” videos:	
	 partition = -1
“Popular” videos:		
	 partition = user_id % 1000

Option 5 - combo (variable partition size)

70

views_by_video
video_id BIGINT K
view_id TIMEUUID 🔻

device TEXT

user_id BIGINT

views_by_video
video_id BIGINT K
partition INT K
view_id TIMEUUID 🔻

device TEXT

user_id BIGINT

•Variable max partition
size per video

•Use a “hash function” to
distribute the data evenly
across the partition  
(with special logic) 

views_by_video_paritions
video_id BIGINT K
partitions_total INT

	 size limit
	 over shrinking
	 known partitions
	 hot spots
	 tombstones

“Normal” videos:	
	 partition = -1
“Popular” videos:		
	 partition = user_id % 1000

Option 5 - combo (variable partition size)

71

views_by_video
video_id BIGINT K
view_id TIMEUUID 🔻

device TEXT

user_id BIGINT

views_by_video
video_id BIGINT K
partition INT K
view_id TIMEUUID 🔻

device TEXT

user_id BIGINT

•Variable max partition
size per video

•Use a “hash function” to
distribute the data evenly
across the partition  
(with special logic) 

views_by_video_paritions
video_id BIGINT K
partitions_total INT

A logic is required to
set the right

partitions_total for
each video

👍	 size limit
👍	 over shrinking
👍	 known partitions
👍	 hot spots
👍	 tombstones

“Normal” videos:	
	 partition = -1
“Popular” videos:		
	 partition = user_id % 1000

Option 5 - combo (variable partition size)

72

views_by_video
video_id BIGINT K
view_id TIMEUUID 🔻

device TEXT

user_id BIGINT

views_by_video
video_id BIGINT K
partition INT K
view_id TIMEUUID 🔻

device TEXT

user_id BIGINT

•Variable max partition
size per video

•Use a “hash function” to
distribute the data evenly
across the partition  
(with special logic) 

views_by_video_paritions
video_id BIGINT K
partitions_total INT

A logic is required to
set the right

partitions_total for
each video

👍	 size limit
👍	 over shrinking
👍	 known partitions
👍	 hot spots
👍	 tombstones

Discussion - why did we chose “-1”
for “normal” users and not “0”

“Normal” videos:	
	 partition = -1
“Popular” videos:		
	 partition = user_id % 1000

Option 5 - combo (variable partition size)

73

views_by_video
video_id BIGINT K
view_id TIMEUUID 🔻

device TEXT

user_id BIGINT

views_by_video
video_id BIGINT K
partition INT K
view_id TIMEUUID 🔻

device TEXT

user_id BIGINT

•Variable max partition
size per video

•Use a “hash function” to
distribute the data evenly
across the partition  
(with special logic) 

views_by_video_paritions
video_id BIGINT K
partitions_total INT

A logic is required to
set the right

partitions_total for
each video

👍	 size limit
👍	 over shrinking
👍	 known partitions
👍	 hot spots
👍	 tombstones

Discussion - why did we chose “-1”
for “normal” users and not “0”

We want to support the option to “transition” state
from “normal” to “popular”

—> we need to use “different” partitions for each state
in order to “reinsert” the data on “transition”

“Normal” videos:	
	 partition = -1
“Popular” videos:		
	 partition = user_id % 1000
“Super popular” videos:	 	
	 partition = 10000 + (user_id % 10000)

“Normal” videos:	
	 partition = -1
“Popular” videos:		
	 partition = user_id % 1000

Option 5 - combo (variable partition size)

74

views_by_video
video_id BIGINT K
view_id TIMEUUID 🔻

device TEXT

user_id BIGINT

views_by_video
video_id BIGINT K
partition INT K
view_id TIMEUUID 🔻

device TEXT

user_id BIGINT

•Variable max partition
size per video

•Use a “hash function” to
distribute the data evenly
across the partition  
(with special logic) 

views_by_video_paritions
video_id BIGINT K
partitions_total INT

A logic is required to
set the right

partitions_total for
each video

👍	 size limit
👍	 over shrinking
👍	 known partitions
👍	 hot spots
👍	 tombstones

Discussion - why did we chose “-1”
for “normal” users and not “0”

We want to support the option to “transition” state
from “normal” to “popular”

—> we need to use “different” partitions for each state
in order to “reinsert” the data on “transition”

“Normal” videos:	
	 partition = -1
“Popular” videos:		
	 partition = user_id % 1000
“Super popular” videos:	 	
	 partition = 10000 + (user_id % 10000)

“Normal” videos:	
	 partition = -1
“Popular” videos:		
	 partition = user_id % 1000

Why did Instagram crushed?
• Instagram has different write paths for “top users” 

that is, different data models and different app logic

• There is an application logic that transition a  
user from a “regular” user to a “top user” 

• The (regular) data model used did not scaled

*1 - speculation

*2 - more info on “data modeling examples”

75

Splitting strategies - reminder
• One is not better or worse than the other  

only more suitable to a specific example and data distribution

76

When sharding is not enough…

77

https://www.youtube.com/watch?v=Sr0sX-TId-g

Only if you are a
“data nerd”..

https://www.youtube.com/watch?v=Sr0sX-TId-g

