
1

19 May 2005 Advanced Java Programming, Summer 2005 1

Advanced Java Programming

Swing

Eran Werner,
Tel-Aviv University

Summer, 2005

19 May 2005 Advanced Java Programming, Summer 2005 2

Introduction to Swing
The Swing package is part of the
Java Foundation Classes (JFC), a
group of features for GUI design.

Other JFC features are Accessibility
API, Java 2D API, Drag-and-Drop
Support and Internationalization.

19 May 2005 Advanced Java Programming, Summer 2005 3

Swing libraries
All Swing components are under
javax.swing.*

Since Swing uses the AWT event
model, we need to add the following
in order to use events:
• java.awt.*

• Java.awt.event.*

2

19 May 2005 Advanced Java Programming, Summer 2005 4

Swing vs. AWT
Almost every AWT component has a
corresponding Swing component
with a ‘J’ prefix (Button JButton,
Panel JPanel).

19 May 2005 Advanced Java Programming, Summer 2005 5

Swing Vs. AWT
Lightweight components, platform
independent.

19 May 2005 Advanced Java Programming, Summer 2005 6

Swing Vs. AWT
The main difference between AWT
and Swing components is that swing
components are implemented with
absolutely no native code.
Swing components aren’t restricted
to the features presented in every
platform and therefore can have
more functionality.

3

19 May 2005 Advanced Java Programming, Summer 2005 7

Swing Vs. AWT
Swing Buttons and labels can
display images as well as text.
You can add or change the borders
for swing components.
You can easily change the behavior
or a swing component by
subclassing it or invoking its
methods

19 May 2005 Advanced Java Programming, Summer 2005 8

Swing Vs. AWT
Swing components do not have to be
rectangular, since they can be
transparent. Buttons for example can be
round.
The Swing API allows you to specify
which look and feel to use, in contrast to
AWT where the native platform look and
feel is always used.

19 May 2005 Advanced Java Programming, Summer 2005 9

Swing Vs. AWT
Swing components use models to
keep the state. A Jslider uses
BoundedRangeModel. A JTable uses
a TableModel.
Models are set up automatically so
you don’t have to bother them
unless you want to take advantage
of them.

4

19 May 2005 Advanced Java Programming, Summer 2005 10

Top-level container
Every program with a Swing GUI must
have at least one top-level container.
There are three top-level containers:
• JFrame: a main window
• JDialog: a secondary window, dependent

on another window.
• JApplet: An applet display area within a

browser window.

19 May 2005 Advanced Java Programming, Summer 2005 11

JFrame

Setting up a frame:
JFrame frame = new JFrame("HelloWorldSwing");

// ... Add components to the frame

frame.pack();
frame.setVisible(true);

Closing a frame:
frame.setDefaultCloseOperation(JFrame.EXIT_ON_CLOSE);

Adding a component to a frame:
frame.getContentPane().add(label);

19 May 2005 Advanced Java Programming, Summer 2005 12

JLabel

JLabel label = new JLabel("Hello World");
frame.getContentPane().add(label);

• A component that displays text.
• Can also display an image.
• Does not react to input events.
• Cannot get the keyboard focus.

5

19 May 2005 Advanced Java Programming, Summer 2005 13

The JComponent Class
All Swing components whose names
begin with "J" descend from the
JComponent (except JFrame and JDialog
– top level containers) .

For example, JPanel, JScrollPane,
JButton, and JTable.
JComponent extends java.awt.Container

19 May 2005 Advanced Java Programming, Summer 2005 14

The JComponent Class
JComponent Features

• Tool tips
• Painting and borders
• Application-wide pluggable look and feel
• Support for drag and drop
• Double buffering
• Key bindings

19 May 2005 Advanced Java Programming, Summer 2005 15

Look and Feel
Java (cross-platform) look and feel

CDE/Motif look and feel

Windows look and feel

UIManager.setLookAndFeel(
UIManager.getCrossPlatformLookAndFeelClassName());

Specifying look and feel

6

19 May 2005 Advanced Java Programming, Summer 2005 16

Example 1: Swing Application

Topics:

• Dynamic text.
• Borders.

19 May 2005 Advanced Java Programming, Summer 2005 17

Dynamic text

JButton button = new JButton("I'm a Swing button!");
button.setMnemonic('i');
button.addActionListener(new ActionListener() {

public void actionPerformed(ActionEvent e) {
numClicks++;
label.setText(labelPrefix + numClicks);

}
});

Creating a button
• The mnemonic functions as a hot key.

• The event handler updates the label’s text when the button is clicked.

19 May 2005 Advanced Java Programming, Summer 2005 18

Borders
Every JComponent can have one or
more borders.

Borders are incredibly useful
objects that, while not themselves
components, know how to draw the
edges of Swing components.

7

19 May 2005 Advanced Java Programming, Summer 2005 19

Borders
To put a border around a
JComponent, you use its setBorder
method. You can use the
BorderFactory class to create most of
the borders that Swing provides.
panel.setBorder

(BorderFactory.createEmptyBorder(30, //top
30, //left
10, //bottom
30)); //right

19 May 2005 Advanced Java Programming, Summer 2005 20

Example 2: Celsius Converter

Topics:

•The JTextField component.
•The default button.
•Adding HTML.
•Icons.

19 May 2005 Advanced Java Programming, Summer 2005 21

JTextField
Allows the editing of a single line of text.

Fires TextEvents when changed (notifies a TextListener).
JTextField temprature = new JTextField(5);

Event handler for the “convert” button:
public void actionPerformed(ActionEvent event) {

int newTemp =
(int)((Double.parseDouble(temprature.getText()))

* 1.8 + 32);
fahrenheitLabel.setText(newTemp + " Fahrenheit");

}

The argument 5 together with the current font determines the
preferred size of the text field. This argument has no effect on
the amount of characters that can be typed.

8

19 May 2005 Advanced Java Programming, Summer 2005 22

The default button
At most one button in a top-level container can
be the default button.

The default button is highlighted and acts
clicked when the user presses enter.

Useful in Dialog windows.

The default button is set in the following way
(assuming we are in the constructor of a top-
level container):

getRootPane().setDefaultButton(setButton);

19 May 2005 Advanced Java Programming, Summer 2005 23

Adding HTML
To add HTML to a component, use the
<html>…</html> tag. HTML is useful
for controlling fonts, colors, line
breaks, etc.

if (tempFahr <= 32) {
fahrenheitLabel.setText("<html>" + tempFahr

+ "° Fahrenheit </html>");
} else {
fahrenheitLabel.setText("<html>" + tempFahr

+ "° Fahrenheit </html>");
}

19 May 2005 Advanced Java Programming, Summer 2005 24

Icons
An icon usually refers to a
descriptive fixed-size image.
Some components can be decorated
with an icon.
Swing provides an interface called
Icon.
It also provides a useful
implementation of this interface:
ImageIcon.

9

19 May 2005 Advanced Java Programming, Summer 2005 25

Icons
ImageIcon constructs an icon from
a GIF or JPEG image.

The following code adds the arrow
icon to the “convert” button:

ImageIcon icon = new ImageIcon("images/convert.gif",
"Convert temperature");

JButton convertButton = new JButton(icon);

19 May 2005 Advanced Java Programming, Summer 2005 26

Example 3: Lunar Phases

•The JPanel component.
•Compound borders.
•The JComboBox component.
•Using multiple images.

19 May 2005 Advanced Java Programming, Summer 2005 27

JPanel

selectPanel = new JPanel();
displayPanel = new JPanel();
mainPanel = new JPanel();
mainPanel.setLayout(new GridLayout(2,1,5,5));
mainPanel.setBorder(BorderFactory.createEmptyBorder(5,5,5,5));
mainPanel.add(selectPanel); // using the default FlowLayout
mainPanel.add(displayPanel);

A general-purpose container (without a window).
A panel is opaque by default.
To make it transparent, use setOpaque(false).
A transparent panel has no background (components under it
show through).
The Lunar Phase example uses several panels:

10

19 May 2005 Advanced Java Programming, Summer 2005 28

Compound borders
It is possible to set more than one border to a
component. we can specify an outer and inner borders
by BorderFactory.createCompoundBorder

selectPanel.setBorder(BorderFactory.createCompoundBorder(
BorderFactory.createTitledBorder("Select Phase"),
BorderFactory.createEmptyBorder(5,5,5,5)));

The titled border adds a title and a border line
to the component.

The empty border in this case adds a space
between the titled border and the inner
components.

19 May 2005 Advanced Java Programming, Summer 2005 29

JComboBox
A component that enables user choice.
Can be editable allowing to dynamically
add choices.
Constructed with an array of Strings. Icons
can also be added.
An initial item can be selected using the
setSelectedIndex method.
The selection is done by the item index.
When the user starts writing an item the
selection changes accordingly.

19 May 2005 Advanced Java Programming, Summer 2005 30

JComboBox

public void actionPerformed(ActionEvent event) {
if ("comboBoxChanged".

equals(event.getActionCommand()))
phaseIconLabel.setIcon(

images[phaseChoices.getSelectedIndex()]);
}

}

An event handler for ActionEvents fired from a combo
box.

String[] phases = { "New", "Waxing Crescent“,
"First Quarter", "Waxing Gibbous",
"Full", "Waning Gibbous",
"Third Quarter", "Waning Crescent“

};
JComboBox phaseChoices = new JComboBox(phases);
phaseChoices.setSelectedIndex(START_INDEX);

11

19 May 2005 Advanced Java Programming, Summer 2005 31

Using multiple images

In the Lunar Phase example, we have
a “bank” of 8 images, but display
only one at a time.
We can choose whether to load all
images in advance, or to load a single
image when it is required (“lazy
image loading”).

19 May 2005 Advanced Java Programming, Summer 2005 32

Loading Images
The following code loads the images in advance:

ClassLoader.getSystemResource(imageName)
searches for the image file in the classpath.
A URL object with the file’s location is returned.
This way, we don’t have to specify the full path of the
images.

ImageIcon[] images = new ImageIcon[NUM_IMAGES];

for (int i = 0; i < NUM_IMAGES; i++) {
String imageName = "images/image" + i + ".jpg";
URL iconURL = ClassLoader.getSystemResource(imageName);
images[i] = new ImageIcon(iconURL);

}

19 May 2005 Advanced Java Programming, Summer 2005 33

Example 4: Vote Dialog
Topics:

• The JRadioButton
component.

• Dialogs.
– Displaying and

customizing dialogs.
– Receiving user input

from a dialog.

12

19 May 2005 Advanced Java Programming, Summer 2005 34

JRadioButton
An item that can be selected or
deselected.
For each group of radio buttons, you
need to create a ButtonGroup
instance and add each radio button to
it.
ButtonGroup takes care of
unselecting the previously selected
button when the user selects another
one in the group.

19 May 2005 Advanced Java Programming, Summer 2005 35

JRadioButton
JRadioButton[] radioButtons = new JRadioButton[numButtons];
ButtonGroup group = new ButtonGroup();

radioButtons[0] = new JRadioButton("<html>Candidate 1:
Sparky the Dog</html>");

radioButtons[0].setActionCommand(CANDIDATE1_STRING);

radioButtons[1] = new JRadioButton("<html>Candidate 2:
Shady Sadie</html>");

radioButtons[1].setActionCommand(CANDIDATE2_STRING);
...
for (int i = 0; i < numButtons; i++)

group.add(radioButtons[i]);

radioButtons[0].setSelected(true);

19 May 2005 Advanced Java Programming, Summer 2005 36

Dialogs
A top-level window with a title and a border.
used to get some input from the user.
Must have a frame or another dialog as its
“owner”.
• When the owner is destroyed, so is the dialog.
• When the owner is minimized, so is the dialog.

Can be modal (disables all input to other top-
level windows).
Can be used to create a custom dialog (many
ready made dialogs are available in
JOptionPane).

13

19 May 2005 Advanced Java Programming, Summer 2005 37

JOptionPane
Enables creation and customization of
several kinds of modal dialogs.
Dialogs are created by invoking one of
the static creation methods in
JOptionPane
Customization options:
• Choosing an icon.
• Setting the title and text.
• Setting the button text.

19 May 2005 Advanced Java Programming, Summer 2005 38

showMessageDialog
Displays a modal dialog with one button
labeled “ok”.

The title, text and icon are customizable.

JOptionPane.showMessageDialog
(frame,"This candidate is a dog. " + "Invalid vote.");

19 May 2005 Advanced Java Programming, Summer 2005 39

showOptionDialog
Displays a modal dialog with specified buttons,
title, text and icon.

Object[] options = {"Yes!", "No, I'll pass", "Well, if I must"};
int n = JOptionPane.showOptionDialog(

frame, // the owner frame
"Duke is a cartoon mascot... \n“, // message text
"A Follow-up Question", // title
JOptionPane.YES_NO_CANCEL_OPTION, // button format
JOptionPane.QUESTION_MESSAGE, // message type
null, // custom icon
options, // button names
options[2]); // default selection

14

19 May 2005 Advanced Java Programming, Summer 2005 40

User input from a dialog
The showMessageDialog and showOptionDialog methods
both return an integer indicating the user’s choice.

The possible returned values are:
• YES_OPTION

• NO_OPTION

• CANCEL_OPTION

• OK_OPTION

• CLOSED_OPTION (dialog closed without clicking a button)

The value is returned according to the clicked button and the
button format of the dialog (DEFAULT, YES_NO,
YES_NO_CANCEL, OK).

The buttons’ text doesn’t affect the returned value.

19 May 2005 Advanced Java Programming, Summer 2005 41

Swing components
The rest of this presentation
contains a short description of most
Swing components:
• General-purpose containers.
• Special-purpose containers.
• Basic controls.
• Uneditable information displays.
• Editable displays of formatted information.

19 May 2005 Advanced Java Programming, Summer 2005 42

General-purpose containers

Panel

Split pane

Scroll pane

Tabbed pane Tool bar

15

19 May 2005 Advanced Java Programming, Summer 2005 43

Special-purpose containers

Internal frame Layered pane

19 May 2005 Advanced Java Programming, Summer 2005 44

The Root pane
Root pane:
• Created automatically by every top-level (and internal) container.
• Contains a Layered pane.

Layered pane:
• Holds components in a specified depth order.
• Initially contains the Content pane and the optional Menu bar.

Content pane:
• Contains all the Root pane’s visible components (excluding the Menu

bar).
Glass pane:
• A hidden panel that intercepts input events for the Root pane.
• Can be made visible and drawn on by implementing its paint()

method.

19 May 2005 Advanced Java Programming, Summer 2005 45

Basic controls
Buttons Combo box List

Menu Slider Text fields

16

19 May 2005 Advanced Java Programming, Summer 2005 46

Buttons
The following list contains all button types (all
are subclasses of AbstractButton):
• JButton: a common button.

• JCheckBox: a check box button.

• JRadioButton: one of a group of radio buttons.

• JMenuItem: an item in a menu.

• JCheckBoxMenuItem: a menu item that has a check box.

• JRadioButtonMenuItem: a menu item that has a radio
button.

• JToggleButton: a two-state button.

19 May 2005 Advanced Java Programming, Summer 2005 47

Menus

19 May 2005 Advanced Java Programming, Summer 2005 48

Text components

17

19 May 2005 Advanced Java Programming, Summer 2005 49

Documents
All Swing components separate their data (or
model) from the view of the data.
Text components use a Document as their
model:

• Contains the text itself
(including style info).

• Provides support for editing
the text.

• Notifies document listeners
on changes to the text.

19 May 2005 Advanced Java Programming, Summer 2005 50

Editor kits
Each text component holds an editor kit:

• Manages editing actions (cut, paste, etc) for the text
component.

• Reads and writes documents of a particular format.
DefaultEditorKit:

• Reads and writes plain text.
• Provides a basic set of editing commands.
• The super class of all other editor kits.
StyledEditorKit:

• Reads and writes styled text.
• Provides editing commands for styled text.
HTMLEditorKit:

• Reads, writes and edits HTML.
• Subclass of StyledEditorKit.

19 May 2005 Advanced Java Programming, Summer 2005 51

Uneditable information
displays

Label Progress bar Tool tip

18

19 May 2005 Advanced Java Programming, Summer 2005 52

Editable displays of formatted
information

Color chooser File chooser

Table Tree

19 May 2005 Advanced Java Programming, Summer 2005 53

GUI events

ListSelectionListener•Table or list selection changes

FocusListener•Component gets the keyboard focus

ComponentListener•Component becomes visible

MouseMotionListener•Moving the mouse over a component

MouseListener•Clicking a mouse button while the cursor
is over a component

WindowListener•Closing a frame (main window)

ActionListener
•Clicking a button
•Pressing enter while typing in a text field
•Choosing a menu item

Listener TypeAction that Results in the Event

Examples of Events and Their Associated Event Listeners

19 May 2005 Advanced Java Programming, Summer 2005 54

Converting AWT to Swing
•java.awt.* javax.swing.*
•in applets, change java.applet.Applet JApplet.
•Replace components (e.g. Button JButton).
•frame.add(…) frame.getContentPane().add(…).
•The same for setLayout(…).
•Put custom painting code in paintComponent(…) instead
of paint() and update().
•Custom painting in a top-level container is not visible in
Swing (the painting is hidden by the content pane).
Transfer the painting to another component.
•Thread safety issues: AWT is thread safety, while Swing
is not.

19

19 May 2005 Advanced Java Programming, Summer 2005 55

Converting AWT to Swing
The containment hierarchy for any
window or applet containing swing
components must have a swing top
level container at the root of the
hierarchy. For example the main
window should be a JFrame rather
than a Frame.

19 May 2005 Advanced Java Programming, Summer 2005 56

Thread safety: the problems
Swing GUI components are updated
in an event dispatching mechanism

In Swing, once a component is
created, it can be updated only
through the event dispatching
mechanism.

Problem 1: What happens if we want to
update the GUI from another thread?

19 May 2005 Advanced Java Programming, Summer 2005 57

Thread safety: the problems
Problem2: when a button is clicked, the
following actions occur one after the other:
• The button’s GUI is drawn as ‘pressed’
• The button’s listeners are notified on the press.
• The button’s GUI is drawn as ‘released’

Suppose that one of the listeners changes
the appearance of the button.

When all listeners finished, the button is
redrawn (as ‘released’) and the appearance
changes may be erased.

20

19 May 2005 Advanced Java Programming, Summer 2005 58

Thread safety: the solution
The SwingUtilities class provides two
methods that solve the problems:
• invokeLater: this method adds some

code to the event dispatching queue. This
code will be executed in its turn. The code
is defined in a Runnable object.

• invokeAndWait: like invokeLater, but
this method waits for the code to be
executed, and only then it returns.

