
DB Programming

Database Systems

Presented by Rubi Boim

1

Agenda

 Basic MySQL Usage

 Little More Complex MySQL stuff..

 JDBC

 Coding Tips

2

MySQL Data Types

There are 3 main groups of types:

 Numeric

 Date

 String

 http://dev.mysql.com/doc/refman/5.0/en/data-types.html

3

http://dev.mysql.com/doc/refman/5.0/en/data-types.html
http://dev.mysql.com/doc/refman/5.0/en/data-types.html
http://dev.mysql.com/doc/refman/5.0/en/data-types.html
http://dev.mysql.com/doc/refman/5.0/en/data-types.html
http://dev.mysql.com/doc/refman/5.0/en/data-types.html
http://dev.mysql.com/doc/refman/5.0/en/data-types.html
http://dev.mysql.com/doc/refman/5.0/en/data-types.html

MySQL Data Types - Numeric

 Integers

 INT(M) – number of digits to display..

(no restrictions… don‟t use it..)
4

Numeric (Floating-Point)

Approximate Value

 Float/Double

 Float(M,D) – M=#digits, D=#digits after “.”

 Float(7,4) will look like -999.9999

Exact-Value

 Decimal (==Numeric)
 Decimal(5,2) range from -999.99 to 999.99

5

Numeric (Bit)

 Bit(M) – number of bits..

 Bit = Bit(1)

6

MySQL Data Types – Date/Time

 Date - range is '1000-01-01' to '9999-12-31'

 DateTime - 'YYYY-MM-DD HH:MM:SS„

 Timestamp - range is '1970-01-01 00:00:01'

to '2038-01-19 03:14:07„

(number of seconds since..)

7

MySQL Data Types – Date/Time

 Zero values

ODBC can‟t handle 0  convert to null

 (Use the table for the types..)

8

MySQL Data Types – Date/Time

 Storage

9

MySQL Data Types – Date/Time

 Important Functions

Date_format, Datediff, Dayname…..

http://dev.mysql.com/doc/refman/5.1/en/date-and-time-functions.html

10

http://dev.mysql.com/doc/refman/5.1/en/date-and-time-functions.html
http://dev.mysql.com/doc/refman/5.1/en/date-and-time-functions.html
http://dev.mysql.com/doc/refman/5.1/en/date-and-time-functions.html
http://dev.mysql.com/doc/refman/5.1/en/date-and-time-functions.html
http://dev.mysql.com/doc/refman/5.1/en/date-and-time-functions.html
http://dev.mysql.com/doc/refman/5.1/en/date-and-time-functions.html
http://dev.mysql.com/doc/refman/5.1/en/date-and-time-functions.html
http://dev.mysql.com/doc/refman/5.1/en/date-and-time-functions.html
http://dev.mysql.com/doc/refman/5.1/en/date-and-time-functions.html
http://dev.mysql.com/doc/refman/5.1/en/date-and-time-functions.html
http://dev.mysql.com/doc/refman/5.1/en/date-and-time-functions.html

MySQL Data Types - String

 Char and Varchar are similar but differ in:

 Storage – Chars are “padded”

 Max length: char(255), varchar(65535)

11

MySQL Data Types - String

 For larger size use Blob and Text

 Blob - binary strings (byte strings). They

have no character set..

 Text - They have a character set, and values

are sorted and compared based on the

character set.

12

MySQL Data Types - String

 Blob - TINYBLOB
BLOB
MEDIUMBLOB
LONGBLOB

 Text - TINYTEXT
TEXT
MEDIUMTEXT
LONGTEXT

13

MySQL Data Types - String

14

Define Foreign keys

 Don‟t forget to define the primary key on the

other table..

What happens when you delete the “key

record” from the “primary table”?

- Restrict

- Cascade

- Set null

15

Define Foreign keys

16

Basic oracle usage - Demo

 Demo..

- create table (data types)

- define primary key

- define foreign keys (insert / delete data)

17

Agenda

 Basic MySQL Usage

 Little More Complex MySQL stuff..

 JDBC

 Coding Tips

18

Index

 Index improves the speed of operations on a
table

 Can be created using one or more fields

 You will later learn more..

 But don‟t forget, its important

19

Index - HowTo

20

Index – Clustered

 Clustered Index

21

“AutoNumber”

 How do you know how to assign an ID??

22

ID NAME

1 Rubi

2 Tova

3 Itay

4 Dvir

… …

“AutoNumber” – Algorithm?

Lock table

new_id = 1 + select max id from table

insert into table values(new_id, ”Rubi”);

Unlock table

23

MySQL – Life is easy…

 Just mark a simple flag..

 In Oracle you need to define a “Sequence”

and to use it via a “Trigger”..

24

Triggers

 A database trigger is procedural code that is

automatically executed in response to certain

events on a particular table

 Events:

BEFORE INSERT AFTER INSERT

BEFORE UPDATE AFTER UPDATE

BEFORE DELETE AFTER DELETE

25

Triggers – Row Level

Occurs for each row

CREATE OR REPLACE TRIGGER <trigger_name>

<BEFORE | AFTER> <ACTION> ON <table_name>

FOR EACH ROW

BEGIN

<trigger_code>

END;

26

Triggers – Row Level – Example

 You can not “just use the GUI” - you need to

“code” the trigger”

27

Triggers – Row Level – Example

 Use “NEW” to refer to the row

CREATE TRIGGER count_check

BEFORE INSERT ON student

FOR EACH ROW

BEGIN

IF NEW.count < 0 THEN

SET NEW.count = 0;

ELSEIF NEW.count > 100 THEN

SET NEW.count = 100;

END IF;

END;

28

Limit the Results

What if your query returns 1,000,000 results?

 How to return the TOP n results

 How to return the results from n to m

29

Limit the Results

What if your query returns 1,000,000 results?

 How to return the TOP n results

 How to return the results from n to m

30

MySQL’s Limit

 Very simple… just use the “Limit” keyword

LIMIT [offset,] row_count

 SELECT * FROM `sakila`.`film` limit 10,5

31

Oracle’s Rownum – NOT THAT SIMPLE!

FYI… (We are using MySQL this semester..)

 Its assigned BEFORE sorting or aggregation

 ROWNUM value is incremented only after it
is assigned

 Read the previous two lines 5 more times!

32

Oracle’s Rownum – Example

SELECT *

FROM students

WHERE ROWNUM > 1

What NOT to do… 

33

Oracle’s Rownum – How to Limit..

SELECT * FROM

(SELECT a.*, ROWNUM rnum FROM

(

SELECT *

FROM students

ORDER BY students.name

) a

WHERE ROWNUM < 20

)

WHERE rnum >= 10

 That‟s the way… 
34

Little More Complex MySQL Stuff

 Demo..
- Create index

- Create “Autonumber”:
- Create Sequence
- Create Trigger

- Create Trigger

- Limit the results..

35

Table Engine – InnoDB vs MyISAM

 A schema can contain tables of different

engines

 Depends on the usage..

 IMPORTANT TO UNDERSTAND THE

DIFFERENCES!!!!
 http://dev.mysql.com/tech-resources/articles/storage-engine/part_3.html

http://www.kavoir.com/2009/09/mysql-engines-innodb-vs-myisam-a-comparison-of-pros-

and-cons.html

36

http://dev.mysql.com/tech-resources/articles/storage-engine/part_3.html
http://dev.mysql.com/tech-resources/articles/storage-engine/part_3.html
http://dev.mysql.com/tech-resources/articles/storage-engine/part_3.html
http://dev.mysql.com/tech-resources/articles/storage-engine/part_3.html
http://dev.mysql.com/tech-resources/articles/storage-engine/part_3.html
http://dev.mysql.com/tech-resources/articles/storage-engine/part_3.html
http://dev.mysql.com/tech-resources/articles/storage-engine/part_3.html
http://dev.mysql.com/tech-resources/articles/storage-engine/part_3.html
http://dev.mysql.com/tech-resources/articles/storage-engine/part_3.html
http://www.kavoir.com/2009/09/mysql-engines-innodb-vs-myisam-a-comparison-of-pros-and-cons.html
http://www.kavoir.com/2009/09/mysql-engines-innodb-vs-myisam-a-comparison-of-pros-and-cons.html
http://www.kavoir.com/2009/09/mysql-engines-innodb-vs-myisam-a-comparison-of-pros-and-cons.html
http://www.kavoir.com/2009/09/mysql-engines-innodb-vs-myisam-a-comparison-of-pros-and-cons.html
http://www.kavoir.com/2009/09/mysql-engines-innodb-vs-myisam-a-comparison-of-pros-and-cons.html
http://www.kavoir.com/2009/09/mysql-engines-innodb-vs-myisam-a-comparison-of-pros-and-cons.html
http://www.kavoir.com/2009/09/mysql-engines-innodb-vs-myisam-a-comparison-of-pros-and-cons.html
http://www.kavoir.com/2009/09/mysql-engines-innodb-vs-myisam-a-comparison-of-pros-and-cons.html
http://www.kavoir.com/2009/09/mysql-engines-innodb-vs-myisam-a-comparison-of-pros-and-cons.html
http://www.kavoir.com/2009/09/mysql-engines-innodb-vs-myisam-a-comparison-of-pros-and-cons.html
http://www.kavoir.com/2009/09/mysql-engines-innodb-vs-myisam-a-comparison-of-pros-and-cons.html
http://www.kavoir.com/2009/09/mysql-engines-innodb-vs-myisam-a-comparison-of-pros-and-cons.html
http://www.kavoir.com/2009/09/mysql-engines-innodb-vs-myisam-a-comparison-of-pros-and-cons.html
http://www.kavoir.com/2009/09/mysql-engines-innodb-vs-myisam-a-comparison-of-pros-and-cons.html
http://www.kavoir.com/2009/09/mysql-engines-innodb-vs-myisam-a-comparison-of-pros-and-cons.html
http://www.kavoir.com/2009/09/mysql-engines-innodb-vs-myisam-a-comparison-of-pros-and-cons.html
http://www.kavoir.com/2009/09/mysql-engines-innodb-vs-myisam-a-comparison-of-pros-and-cons.html
http://www.kavoir.com/2009/09/mysql-engines-innodb-vs-myisam-a-comparison-of-pros-and-cons.html
http://www.kavoir.com/2009/09/mysql-engines-innodb-vs-myisam-a-comparison-of-pros-and-cons.html
http://www.kavoir.com/2009/09/mysql-engines-innodb-vs-myisam-a-comparison-of-pros-and-cons.html
http://www.kavoir.com/2009/09/mysql-engines-innodb-vs-myisam-a-comparison-of-pros-and-cons.html
http://www.kavoir.com/2009/09/mysql-engines-innodb-vs-myisam-a-comparison-of-pros-and-cons.html
http://www.kavoir.com/2009/09/mysql-engines-innodb-vs-myisam-a-comparison-of-pros-and-cons.html
http://www.kavoir.com/2009/09/mysql-engines-innodb-vs-myisam-a-comparison-of-pros-and-cons.html
http://www.kavoir.com/2009/09/mysql-engines-innodb-vs-myisam-a-comparison-of-pros-and-cons.html
http://www.kavoir.com/2009/09/mysql-engines-innodb-vs-myisam-a-comparison-of-pros-and-cons.html

InnoDB Advantages

 strict in data integrity
 supports foreign keys
 supports transactions

(MyISAM does not..)

 Row-level lock for insert and update
(MyISAM is Table-level)

 Better crash recovery

37

MyISAM Advantages

 Full-text Indexing!

(InnoDB does not..)

 Faster…

 Reads are more efficient

When a single user use the system (y?),

batch inserts are MUCH MUCH faster

38

How to choose?

Not so simple… but here are a few rules:

 If you need foreign keys  InnoDB

 If you need transactions  InnoDB

 If you need Fulltext Index  MyISAM

More speed  MyISAM
BUT only if not used by users simultaneously

39

Important Tip

 If you are not using both type in the project
 you are doing something wrong………

40

Agenda

 Basic MySQL Usage

 Little More Complex MySQL stuff..

 JDBC

 Coding Tips

41

During the last episode…

Application

DB infrastructure

DB driver

transport

DB engine

Storage

Concepts vs APIs

Concepts APIs/Language

Connection

Connection pooling

Error Handling

Fetching results

Rowset

Prepared statements

Batch processing

ODBC

JDBC

OCI/OCCI

ADO.NET

X

ODBC – Open Database Connectivity API

 Pros:

Cross platform and cross databases

Easy to use

 Cons:

 Too low level

We wont use it.. But its very very common

JDBC

 JDBC is a standard interface for connecting

to relational databases from Java

45

How to execute SQL using JDBC

46

Preparing the Environment 1

 Download MySQL‟s JDBC driver:
http://www.mysql.com/downloads/connector/j/

 Can also be found at the course page

 Setup Eclipse:

- add “mysql-connector-java-5.1.15-bin.jar”

to the project

47

http://www.mysql.com/downloads/connector/j/
http://www.mysql.com/downloads/connector/j/

Preparing the Environment 2

48

If you copy the jar file

to the project

directory, press “add

JAR”. Otherwise,

“Add external JAR”

Preparing the Environment 3

 import java.sql.* (JDBC API)

 Register the driver in the code:

Class.forName("com.mysql.jdbc.Driver");

49

Opening a Connection

 Connection class - java.sql.Connection

 use the DriverManager with JDBC URL

conn = DriverManager.getConnection(

"jdbc:mysql://host_addr:port/schema_name"

“username",

“password");

50

Opening a Connection

 Demo..

51

Creating a Statement

 Created from the connection object

Statement stmt = conn.createStatement();

52

Using a Statement

Three different methods:

 executeQuery(String) for SELECT statements
returns ResultSet

 executeUpdate(String) for DML/DDL
returns int

 execute(String) for any SQL statement
returns boolean

53

executeQuery & ResultSet

ResultSet:

Maintain a curser to its current row

 Provides methods for retrieving values:

getInt(), getDate(), getString()..

 Fields can be identify by name or order:

getXXX(“Name”)

getXXX(2)

54

executeQuery & ResultSet

 Initially the cursor is positioned before the first
row

stmt = conn.createStatement();

rs = stmt.executeQuery(

"SELECT * FROM employees");

while (rs.next() == true)

System.out.println(rs.getString(“field”));

 Demo..

55

executeUpdate

 Again, via the statement

 Execute DDL or DML

 Returns Int for DML, 0 for DDL

56

executeUpdate

stmt=conn.createStatement();

result=stmt.executeUpdate(

"DELETE FROM demo");

 Demo..

57

execute

 Executes any command for the DB

 Returns boolean (success/failure)

 Not sure you‟ll need it..

58

Closing Connections

 Important! So don‟t forget..

 ResultSet.close()

 Statement.close()

 Connection.close()

59

Transactions

 By default, connection are autocommit

 Can be disabled by:

conn.setAutoCommit(false)

 Commit a transaction: conn.commit()

 Rollback a transaction: conn.rollback()

60

Transactions – When to use?

 In general, in any logic operation that

involves more than one call:

insert/update/remove into several tables

 Inconsistent data is unacceptable!

 Don‟t forget to use!

61

PreparedStatement

 Prevents reparsing of SQL statements

 Used for statements executed more than
once

 Saves time

 Nicer code

62

PreparedStatement - how

 Specify a variable by “?”
PreparedStatement pstmt = conn.prepareStatement(

"INSERT INTO demo(fname, lname) VALUES(?, ?)");

 Supply values for the variables:
pstmt.setXXX(index, value)

 Execute the statement
pstmt.executeUpdate();

63

PreparedStatement - example

PreparedStatement pstmt = conn.prepareStatement(

"INSERT INTO demo(fname, lname) VALUES(?, ?)");

pstmt.setString(1, "Rubi");

pstmt.setString(2, "Boim”);

pstmt.executeUpdate();

pstmt.setString(1, “Tova");

pstmt.setString(2, “Milo”);

pstmt.executeUpdate();

 Demo..

64

Batch PreparedStatement

 PreparedStatement can be slow for long calls

 Batch together all the calls!

 I.E. instead of 50,000 calls, do one call with

50,000 parameters

 Improves performance dramatically!

65

Warning for MySQL..

 Don‟t forget the difference between the table

engine…

InnoDB vs. MyISAM

(InnoDB = Foreign keys…
MyISAM = Super speed (for single user..))

66

Batch PreparedStatement - how

 Instead of pstmt.executeUpdate()
do pstmt.addBatch()

 After all statement are added to the batch:
int[] = pstmt.executeBatch()

 TIP: don‟t batch too much together

 Demo..

67

How to insert with AutoNumber

 Assuming you created a trigger similar to the
one showed before..

(MySQL == Built-in..)

 Specify the exact fields in the “Insert”

INSERT INTO test(name) VALUES(„Rubi‟);

68

ID NAME

1 Yonni

2 Tova

3 Dvir

Retrieving the AutoNumber Generated

 When calling “executeUpdate”, you can specify which
fields you can “get back”

 After executing, use getGeneratedKeys() to retrieve a
resultset with the returned fields

stmt.executeUpdate("INSERT INTO demo(fname, lname)

VALUES('Rubi','Boim')",

new String[]{"ID"});

rs=stmt.getGeneratedKeys();

rs.next();

id=rs.getInt(1);

69

Retrieving the AutoNumber Generated

 Demo.. (I.E. there is an example code )

70

Agenda

 Basic MySQL Usage

 Little More Complex MySQL stuff..

 JDBC

 Coding Tips

71

Layering

 Separate the GUI!

 Separate the DB!

 Use classes to describe entities

 Use interfaces!

Layering

DB Logic GUI

In
te

rfa
c
e

In
te

rfa
c
e

Data

Class

Data

Class

Reuse & Encapsulation

 Identify main processes

 Abstract implementation

 Reuse..

 NO COPY PASTE CODE

Don’t create too many functions

 Search for movies:
searchMovieByName()
searchMovieByDate()
..

 It‟s the same query! just different “where” 
manipulate the “where” in the function:
SearchMovie(searchOptions?)

 Not so easy on some parameters..
searchMovieByActors()
searchMovieByActorsAndDate()

75

Configuration

 Your program will have several (many)

variables:

- server address

- textfile location

- number of connections/threads

- ….

 Do not “hard code” them

 *.ini file, easy GUI, ….

Schema

Well, you should be expert by now.. 

 Primary Key - ALWAYS integer!

 Use indexes to speed up (but not on every

field)

Testing

 Obvious not?

 Try installing / running your program on different
computers

 Connection drops

 Validate user input (date, number, special chars..)

 Your program should never fall!!

Good questions…

Managing Database Connections

Managing Security

Managing Threads

 Error handling

How to insert Strings

 In an SQL Query, strings are surrounded by „

 But what if we want to insert the char „?

INSERT INTO test VALUES(„It‟s a test‟);

 Simply add another „

INSERT INTO test VALUES(„It‟‟s a test‟);

80

Important Tip for Manipulating Data

 Maybe you prog uses DD/MM/YYYY.. You need to flip it…

 What if tomorrow your switch to MyOracle??

 Create your own functions for adjusting types (not just dates)

String fixDate(String old_date) {

return yourFlipDateFormatFunc(old_date); //mysql

//return “to_date(„” + old_date + ”', 'dd/mm/yyyy')” // oracle

}

stmt.executeUpdate(

"INSERT INTO demo(fname, lname, mydate) VALUES('Rubi', 'Boim',” +
fixDate('13/12/2008„) + ”)”);

81

Connection Pooling

 Opening a connection is “expensive”

 Multi tasks requires multi connections

 You should open a connection only when you need it
(I.E. when a task asks for connection and there is no
one available)

 When the task is done, do not close the connection
but returns it to the “manager” for future use

82

Connection Pooling – example

 Example of what might it look..

MyConn conn = cManager.poolConn();

conn.getJDBCConn.executeQuery(..);

conn.returnConnection(); OR

cManager.returnConn(conn)

 Implement it your own way, but be sure to use
“synchronized”

83

Thread Pooling

 If you build your application correctly, the GUI

should be separate from the “program”

 Same concept as the Connection Pooling

More about it when we talk about the GUI

84

Coding tips

 The following next slides are EXAMPLES for

what NOT-TO-DO in the project. Basically

they are based on last years submissions,

which were altered to express important

points.

Database Design

 Don‟t forget to normalize the DB

 Use the right types

86

ID Number

CD_NAME NVARCHAR(50)

ARTIST_NAME NVARCHAR(50)

GENRE NVARCHAR(50)

YEAR DATE

Usability

 “non-refreshed” windows

 “Hangs” windows

 “Please wait…Your query may take a couple

of minutes…”

Usability II

Thank you

