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Yet Another Great Ontology 
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About YAGO* 

 A huge semantic knowledge base 

 knowledge base – a special kind of DB for 

knowledge management (e.g., facts) 

 Semantic – related to the Semantic Web where 

presentation is assigned a meaning 

http://www.youtube.com/watch?v=TJfrNo3Z-

DU&feature=player_embedded 
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YAGO is an Ontology 

 A Taxonomy of concept 
classes 

 

 

 

 

 

 At the bottom – instances, 
facts about instances 
 This is typically the 

interesting part 
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A fact 

  A particular relationship that holds between 

two instances  

 

 

 

 Or, an instance and a literal (string) 
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hasChild 

isPreferredMeaningOf 
“Martin Sheen” 



Graph of facts 
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More about YAGO 

 More than 10 million entities 

 More than 120 million facts 

 High (but not perfect!) accuracy 

 Connections with other ontologies (DBPedia, SUMO, Freebase…) 

 Over 11 research papers (Max Planck team) with over 1k citations 
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Database Project - Goals 

 Project goal: to tackle and resolve real-life DB 

related development issues 

 

 Including 

DB design 

Query writing 

DB programming 

 Application design 



Database Project - Requirements 

1. Think of an application 

 Useful and creative! 

2. Design a DB schema 

 According to available data 

 And the application usage 

 And principles of DB design 

3. Load and flatten data from YAGO 

4. Update the Database 

5. Write an application (with UI) 

 Usable and fault tolerant 

 Accessing the data via efficient queries/updates 

 According to principles of coding 

6. Support manual updates and updates from YAGO 
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1. Think of an application 

 Could be anything! As far as your imagination 

goes 

 YOU should want to use it… 

 Tip: first inspect the available data 

 Tip: must-have and nice-to-have features 

 The application can be interesting even if the UI is 

simple 
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2. Design a DB Schema 

 Tables, indexes, keys and  

foreign keys 

 Avoid redundant information 

 Allow efficient queries 

 The script for generating the schema should 

be submitted with the project 

 

 More about design in the following lectures 
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2. Creating the SQL Script 

 http://dev.mysql.com/doc/workbench/en/wb-manage-server-

export-to-disk.html 
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3. Load data from YAGO 

 The entire database of YAGO is freely available 
online 

 Extract relevant parts (entities, facts) 

 Insert into flat tables 

 A few facts may be used for one record 

 E.g., the actor record for Martin Sheen will include 
his first and last name, birth date, residence, etc. 

 (But not the films he did… why?) 

 We discuss this in detail next 
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4. Update the DB 

 The data should be written to the DB 

 Before submission you will update your schema in 

the school MySQL server 

 Including relevant IDs 

 Actor_id, film_id,… (Must be integers in MySQL!) 

 Auto-incremental or based on YAGO ids 
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5. Write an application 

 In java, using JDBC 

 Desktop application 

 SWT for GUI (other open-source packages such as 
Swing, Qt Jambi…) 

 Any other open-source packages,  
except hibernate and similar packages 

 According to DB programming principles  

 Important: separate the code of the UI, the core 
logic and the DB 
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5. Write an application (cont.) 

 Using the DB data 

 Efficient queries / updates 

 Important for user experience 

 Use indexes! 

 Interesting queries / updates 

 Search for specific data 

 According to your application 
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5. Write an application (cont.) 

 Should be usable and easy to understand 

 

 Should be fault tolerant 

 Every exception should be caught, and a user-friendly 
message should be displayed 

 

 Test your application  

 Install on different environments 

 Portable: 

 Copy-paste, create DB schema, edit configuration and… play! 
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6. Support updates 

 A must-have feature! 

 “Import” from YAGO 
 Via the UI 

 To support, e.g., a new YAGO version 

 What happens to the “old” data? 

 Administrator privileges? 

 Manual updates 
 Add, edit and delete 

data originally taken 
from YAGO 

 Add, edit and delete  
user-provided data 
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In the course Website 

 Project details 

 Project examination form and grade guide 

http://courses.cs.tau.ac.il/databases/databases

201213b/assignments/ 
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What to focus on 

 Database structure 

 Data – you choose what to take from YAGO 

 Query efficiency 

 Editing capabilities 

 Usability and fault tolerance 
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YAGO data – HowTo 

 YAGO downloads page - http://www.mpi-

inf.mpg.de/yago-naga/yago/downloads.html 
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YAGO data – HowTo (cont.) 

 Data comes in TSV format – text with tab-separated fields (also TTL) 

Format:    yago-id entity relation entity 

 

 

 

 

 

 

 YAGO entities and relations are marked by < > (e.g., <Achilles>) 

 Others are taken from rdf, rdfs, owl, skos… (e.g., rdf:type) 

 Literals are marked by " " 

 Strings with optional locale, e.g., "Big tent"@eng 

 Others with datatype, e.g., "1977-08-16"^^xsd:date, "70"^<m> 

 See also: http://www.mpi-inf.mpg.de/yago-naga/yago/faq.html 
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<id_zik11d_88c_ehg9uq> <A> rdf:type <wikicategory_Vowel_letters> 
<id_zik11d_88c_w3c6wm> <A> rdf:type <wikicategory_ISO_basic_Latin_letters> 
<id_1bsrlah_88c_1s6g79w> <Alabama> rdf:type <wikicategory_States_of_the_United_States> 
<id_3ienox_88c_4retae> <Achilles> rdf:type <wikicategory_People_of_the_Trojan_War> 
<id_3ienox_88c_1rk49a2> <Achilles> rdf:type <wikicategory_Pederastic_heroes_and_deities> 
<id_3ienox_88c_s57m6o> <Achilles> rdf:type <wikicategory_Kings_of_the_Myrmidons> 
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YAGO data – HowTo (cont.) 

 You can also download just the portions of YAGO2s that you need. 
Each portion is called a theme. There are 8 groups of themes: 

 TAXONOMY: All types of entitites, and the class structure of YAGO2s. 
Moreover, it has formal definitions of YAGO relations.  

 SIMPLETAX: An alternative, simpler taxonomy of YAGO. 

 CORE: Core facts of YAGO2s, such as the facts between entities, the 
facts containing literals,i.e., numbers, dates, strings, etc. 

 GEONAMES: Geographical entities, classes taken from GeoNames. 

 META: Temporally and spatially scoped facts together with statistics and 
extraction sources about the facts.  

 MULTILINGUAL: The multilingual names for entities. 

 LINK: The connection of YAGO2s to Wordnet, DBPedia, etc. 

 OTHER: Miscellaneous features of YAGO2s, such as Wikipedia in-
outlinks, GeoNames data etc.  
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YAGO data – Taxonomy 

  yagoTypes – facts with relation 

rdf:type - contains the lowest-

level classes for each entity 

 yagoTransitiveType – also 

contains the higher-level 

classes 
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YAGO data - Core 

 yagoFacts – facts between instances 
 A complete list of relations – in Taxomony, yagoSchema 

<Martin_Sheen> <hasChild> <Charlie_Sheen> 

 YagoLabels – names of entities. 

 There may be many labels! use skos:prefLabel 

<Martin_Sheen>  skos:prefLabel  "Martin Sheen"@eng 

 yagoLiteralFacts –other facts with literals  

Often properties of the entity 

<Martin_Sheen>  <wasBornOnDate> "1940-08-03"^^xsd:date 
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Example 

 Assume we work with the sports domain 

 Create an online application that contains 

details on teams and players 

 Users/automatic algorithms will guess game 

scores, awards, etc. 
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Example 

 

 

 Editing capabilities for YAGO data: 

add/remove/edit all players, teams, games… 

 Data of your own: odds, bets… 

 Your tables: 

 Players, Teams, Users, Bets 

 Linking tables: Player_team, User_bets 
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YAGO data – putting it together 

 We want to create records in the table 
Player(ID, name, birth date, height) 

 First, we look in yagoTransitiveType for entities 

that represent players 

We find, e.g., 
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<Lionel_Messi> rdf:type <wordnet_player_110439851> 

Fixed 

application 

parameter 



YAGO data – putting it together 

 Next, we create the properties 

 ID – e.g., automatically generated (must make sure 

we do not have Messi in our DB yet!) 

Name – from yagoLabels 

 

 Birthdate and height – from yagoLiteralFacts 
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<Lionel_Messi> skos:prefLabel "Lionel Messi"@eng 

<Lionel_Messi> <hasHeight> "1.69"^^<m> 
<Lionel_Messi> <wasBornOnDate> "1987-06-24"^^xsd:date 



YAGO data – Flattening process 

1. Read the relevant TSV files 

2. Save only the relevant data in memory or in a 

temporary table 

3. Join together relevant pieces of data 

4. Insert into the (final) schema tables 
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YAGO data – challenges 

 What do we do when a value is missing? 

 What do we do when the data in invalid? 

 What do we do when there is more than one 

value? 
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<Lionel_Messi> <playsFor> <FC_Barcelona_B> 

<Lionel_Messi> <playsFor> <FC_Barcelona_C> 

<Lionel_Messi> <playsFor> <Newell's_Old_Boys> 

<Lionel_Messi> <playsFor> <Argentina_national_football_team> 

<Lionel_Messi> <playsFor> <FC_Barcelona> 



Relaxations 

 You do not have to fix errors in YAGO’s data (but 

you can allow the application users to do so) 

 You can choose an arbitrary value if there are 

many (where this makes sense! playsFor can be 

many-to-one, actedIn cannot) 

 You can use an additional data source to 

complete missing data (must be freely available)  
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Past years projects 
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Past years projects 
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Past years projects 

35 



Past years projects 
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Past years projects 
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Tips 

 First: - understand the data format. 

  - understand what you want to do. 

  - find relevant data and relations. 

 Be flexible: work with what you have! 

 Database key should always be an INTEGER. 

 Don’t forget to support manual edit of the data 

(add/update/remove) – e.g., artists/categories/values… 

 Configuration – for DB connection, OS, etc. 



Database Project - Bureaucracy 

 Hard work, but a practical experience. 

 

 Work in groups of 4 

 

 Submission database is MySQL in TAU 

 

 Java, SWT (or Swing/AWT) 

 

 Thinking out of the box will be rewarded 

 



Database Project - Requirements 

 (at least) 150K records table 
 But could be much more! 

 

 Also see the course website for full instructions 
http://courses.cs.tau.ac.il/databases/databases201213b
/assignments/ 
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Time schedule 

April 9th – Project distribution 

 

April 18th – Last date for submitting the team member 
names 

 

May 21st – “Project days” 
 I will meet with each group 

 You need to prepare: DB design, preferably have data in the 
school DB, work plan – what is left to do, who does what and 
when, optional – presentation or demonstration 

June 18th – Project due! 
 Aim to submit a week before, to avoid network crushes, 

mysterious illnesses… 
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DB Project 

!בהצלחה  
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