
DB Project

Database Systems

Spring 2013

1

Database project – YAGO

2

Yet Another Great Ontology

http://www.freebase.com/view/tv
http://www.freebase.com/view/tv
http://www.freebase.com/view/tv
http://www.freebase.com/view/tv
http://www.freebase.com/view/tv
http://www.freebase.com/view/tv
http://www.freebase.com/view/tv
http://www.freebase.com/view/tv
http://www.freebase.com/view/tv
http://www.freebase.com/view/tv
http://www.freebase.com/view/tv

About YAGO*

 A huge semantic knowledge base

 knowledge base – a special kind of DB for

knowledge management (e.g., facts)

 Semantic – related to the Semantic Web where

presentation is assigned a meaning

http://www.youtube.com/watch?v=TJfrNo3Z-

DU&feature=player_embedded

3
* Fabian M. Suchanek, Gjergji Kasneci and Gerhard Weikum, YAGO - A Core of Semantic Knowledge, WWW ‘07

http://www.youtube.com/watch?v=TJfrNo3Z-DU&feature=player_embedded
http://www.youtube.com/watch?v=TJfrNo3Z-DU&feature=player_embedded
http://www.youtube.com/watch?v=TJfrNo3Z-DU&feature=player_embedded
http://www.youtube.com/watch?v=TJfrNo3Z-DU&feature=player_embedded
http://www.youtube.com/watch?v=TJfrNo3Z-DU&feature=player_embedded

YAGO is an Ontology

 A Taxonomy of concept
classes

 At the bottom – instances,
facts about instances
 This is typically the

interesting part

4

A fact

 A particular relationship that holds between

two instances

 Or, an instance and a literal (string)

5

hasChild

isPreferredMeaningOf
“Martin Sheen”

Graph of facts

6

More about YAGO

 More than 10 million entities

 More than 120 million facts

 High (but not perfect!) accuracy

 Connections with other ontologies (DBPedia, SUMO, Freebase…)

 Over 11 research papers (Max Planck team) with over 1k citations

7

Database Project - Goals

 Project goal: to tackle and resolve real-life DB

related development issues

 Including

DB design

Query writing

DB programming

 Application design

Database Project - Requirements

1. Think of an application

 Useful and creative!

2. Design a DB schema

 According to available data

 And the application usage

 And principles of DB design

3. Load and flatten data from YAGO

4. Update the Database

5. Write an application (with UI)

 Usable and fault tolerant

 Accessing the data via efficient queries/updates

 According to principles of coding

6. Support manual updates and updates from YAGO

9

1. Think of an application

 Could be anything! As far as your imagination

goes

 YOU should want to use it…

 Tip: first inspect the available data

 Tip: must-have and nice-to-have features

 The application can be interesting even if the UI is

simple

10

2. Design a DB Schema

 Tables, indexes, keys and

foreign keys

 Avoid redundant information

 Allow efficient queries

 The script for generating the schema should

be submitted with the project

 More about design in the following lectures

11

2. Creating the SQL Script

 http://dev.mysql.com/doc/workbench/en/wb-manage-server-

export-to-disk.html

12

http://dev.mysql.com/doc/workbench/en/wb-manage-server-export-to-disk.html
http://dev.mysql.com/doc/workbench/en/wb-manage-server-export-to-disk.html
http://dev.mysql.com/doc/workbench/en/wb-manage-server-export-to-disk.html
http://dev.mysql.com/doc/workbench/en/wb-manage-server-export-to-disk.html
http://dev.mysql.com/doc/workbench/en/wb-manage-server-export-to-disk.html
http://dev.mysql.com/doc/workbench/en/wb-manage-server-export-to-disk.html
http://dev.mysql.com/doc/workbench/en/wb-manage-server-export-to-disk.html
http://dev.mysql.com/doc/workbench/en/wb-manage-server-export-to-disk.html
http://dev.mysql.com/doc/workbench/en/wb-manage-server-export-to-disk.html
http://dev.mysql.com/doc/workbench/en/wb-manage-server-export-to-disk.html
http://dev.mysql.com/doc/workbench/en/wb-manage-server-export-to-disk.html

3. Load data from YAGO

 The entire database of YAGO is freely available
online

 Extract relevant parts (entities, facts)

 Insert into flat tables

 A few facts may be used for one record

 E.g., the actor record for Martin Sheen will include
his first and last name, birth date, residence, etc.

 (But not the films he did… why?)

 We discuss this in detail next

13

4. Update the DB

 The data should be written to the DB

 Before submission you will update your schema in

the school MySQL server

 Including relevant IDs

 Actor_id, film_id,… (Must be integers in MySQL!)

 Auto-incremental or based on YAGO ids

14

5. Write an application

 In java, using JDBC

 Desktop application

 SWT for GUI (other open-source packages such as
Swing, Qt Jambi…)

 Any other open-source packages,
except hibernate and similar packages

 According to DB programming principles

 Important: separate the code of the UI, the core
logic and the DB

 15

5. Write an application (cont.)

 Using the DB data

 Efficient queries / updates

 Important for user experience

 Use indexes!

 Interesting queries / updates

 Search for specific data

 According to your application

16

5. Write an application (cont.)

 Should be usable and easy to understand

 Should be fault tolerant

 Every exception should be caught, and a user-friendly
message should be displayed

 Test your application

 Install on different environments

 Portable:

 Copy-paste, create DB schema, edit configuration and… play!

17

6. Support updates

 A must-have feature!

 “Import” from YAGO
 Via the UI

 To support, e.g., a new YAGO version

 What happens to the “old” data?

 Administrator privileges?

 Manual updates
 Add, edit and delete

data originally taken
from YAGO

 Add, edit and delete
user-provided data

18

In the course Website

 Project details

 Project examination form and grade guide

http://courses.cs.tau.ac.il/databases/databases

201213b/assignments/

19

http://courses.cs.tau.ac.il/databases/databases201213b/assignments/
http://courses.cs.tau.ac.il/databases/databases201213b/assignments/
http://courses.cs.tau.ac.il/databases/databases201213b/assignments/

What to focus on

 Database structure

 Data – you choose what to take from YAGO

 Query efficiency

 Editing capabilities

 Usability and fault tolerance

20

YAGO data – HowTo

 YAGO downloads page - http://www.mpi-

inf.mpg.de/yago-naga/yago/downloads.html

21

http://www.mpi-inf.mpg.de/yago-naga/yago/downloads.html
http://www.mpi-inf.mpg.de/yago-naga/yago/downloads.html
http://www.mpi-inf.mpg.de/yago-naga/yago/downloads.html
http://www.mpi-inf.mpg.de/yago-naga/yago/downloads.html
http://www.mpi-inf.mpg.de/yago-naga/yago/downloads.html
http://www.mpi-inf.mpg.de/yago-naga/yago/downloads.html

YAGO data – HowTo (cont.)

 Data comes in TSV format – text with tab-separated fields (also TTL)

Format: yago-id entity relation entity

 YAGO entities and relations are marked by < > (e.g., <Achilles>)

 Others are taken from rdf, rdfs, owl, skos… (e.g., rdf:type)

 Literals are marked by " "

 Strings with optional locale, e.g., "Big tent"@eng

 Others with datatype, e.g., "1977-08-16"^^xsd:date, "70"^<m>

 See also: http://www.mpi-inf.mpg.de/yago-naga/yago/faq.html

22

<id_zik11d_88c_ehg9uq> <A> rdf:type <wikicategory_Vowel_letters>
<id_zik11d_88c_w3c6wm> <A> rdf:type <wikicategory_ISO_basic_Latin_letters>
<id_1bsrlah_88c_1s6g79w> <Alabama> rdf:type <wikicategory_States_of_the_United_States>
<id_3ienox_88c_4retae> <Achilles> rdf:type <wikicategory_People_of_the_Trojan_War>
<id_3ienox_88c_1rk49a2> <Achilles> rdf:type <wikicategory_Pederastic_heroes_and_deities>
<id_3ienox_88c_s57m6o> <Achilles> rdf:type <wikicategory_Kings_of_the_Myrmidons>

http://www.mpi-inf.mpg.de/yago-naga/yago/faq.html
http://www.mpi-inf.mpg.de/yago-naga/yago/faq.html
http://www.mpi-inf.mpg.de/yago-naga/yago/faq.html
http://www.mpi-inf.mpg.de/yago-naga/yago/faq.html
http://www.mpi-inf.mpg.de/yago-naga/yago/faq.html
http://www.mpi-inf.mpg.de/yago-naga/yago/faq.html

YAGO data – HowTo (cont.)

 You can also download just the portions of YAGO2s that you need.
Each portion is called a theme. There are 8 groups of themes:

 TAXONOMY: All types of entitites, and the class structure of YAGO2s.
Moreover, it has formal definitions of YAGO relations.

 SIMPLETAX: An alternative, simpler taxonomy of YAGO.

 CORE: Core facts of YAGO2s, such as the facts between entities, the
facts containing literals,i.e., numbers, dates, strings, etc.

 GEONAMES: Geographical entities, classes taken from GeoNames.

 META: Temporally and spatially scoped facts together with statistics and
extraction sources about the facts.

 MULTILINGUAL: The multilingual names for entities.

 LINK: The connection of YAGO2s to Wordnet, DBPedia, etc.

 OTHER: Miscellaneous features of YAGO2s, such as Wikipedia in-
outlinks, GeoNames data etc.

23

YAGO data – Taxonomy

 yagoTypes – facts with relation

rdf:type - contains the lowest-

level classes for each entity

 yagoTransitiveType – also

contains the higher-level

classes

24

<id_zik11d_88c_ehg9uq> <A> rdf:type <wikicategory_Vowel_letters>
<id_zik11d_88c_w3c6wm> <A> rdf:type <wikicategory_ISO_basic_Latin_letters>
<id_1bsrlah_88c_1s6g79w> <Alabama> rdf:type <wikicategory_States_of_the_United_States>
<id_3ienox_88c_4retae> <Achilles> rdf:type <wikicategory_People_of_the_Trojan_War>
<id_3ienox_88c_1rk49a2> <Achilles> rdf:type <wikicategory_Pederastic_heroes_and_deities>
<id_3ienox_88c_s57m6o> <Achilles> rdf:type <wikicategory_Kings_of_the_Myrmidons>

YAGO data - Core

 yagoFacts – facts between instances
 A complete list of relations – in Taxomony, yagoSchema

<Martin_Sheen> <hasChild> <Charlie_Sheen>

 YagoLabels – names of entities.

 There may be many labels! use skos:prefLabel

<Martin_Sheen> skos:prefLabel "Martin Sheen"@eng

 yagoLiteralFacts –other facts with literals

Often properties of the entity

<Martin_Sheen> <wasBornOnDate> "1940-08-03"^^xsd:date

25

Example

 Assume we work with the sports domain

 Create an online application that contains

details on teams and players

 Users/automatic algorithms will guess game

scores, awards, etc.

26

Example

 Editing capabilities for YAGO data:

add/remove/edit all players, teams, games…

 Data of your own: odds, bets…

 Your tables:

 Players, Teams, Users, Bets

 Linking tables: Player_team, User_bets

27

YAGO data – putting it together

 We want to create records in the table
Player(ID, name, birth date, height)

 First, we look in yagoTransitiveType for entities

that represent players

We find, e.g.,

28

<Lionel_Messi> rdf:type <wordnet_player_110439851>

Fixed

application

parameter

YAGO data – putting it together

 Next, we create the properties

 ID – e.g., automatically generated (must make sure

we do not have Messi in our DB yet!)

Name – from yagoLabels

 Birthdate and height – from yagoLiteralFacts

29

<Lionel_Messi> skos:prefLabel "Lionel Messi"@eng

<Lionel_Messi> <hasHeight> "1.69"^^<m>
<Lionel_Messi> <wasBornOnDate> "1987-06-24"^^xsd:date

YAGO data – Flattening process

1. Read the relevant TSV files

2. Save only the relevant data in memory or in a

temporary table

3. Join together relevant pieces of data

4. Insert into the (final) schema tables

30

YAGO data – challenges

 What do we do when a value is missing?

 What do we do when the data in invalid?

 What do we do when there is more than one

value?

31

<Lionel_Messi> <playsFor> <FC_Barcelona_B>

<Lionel_Messi> <playsFor> <FC_Barcelona_C>

<Lionel_Messi> <playsFor> <Newell's_Old_Boys>

<Lionel_Messi> <playsFor> <Argentina_national_football_team>

<Lionel_Messi> <playsFor> <FC_Barcelona>

Relaxations

 You do not have to fix errors in YAGO’s data (but

you can allow the application users to do so)

 You can choose an arbitrary value if there are

many (where this makes sense! playsFor can be

many-to-one, actedIn cannot)

 You can use an additional data source to

complete missing data (must be freely available)

32

Past years projects

33

Past years projects

34

Past years projects

35

Past years projects

36

Past years projects

37

Tips

 First: - understand the data format.

 - understand what you want to do.

 - find relevant data and relations.

 Be flexible: work with what you have!

 Database key should always be an INTEGER.

 Don’t forget to support manual edit of the data

(add/update/remove) – e.g., artists/categories/values…

 Configuration – for DB connection, OS, etc.

Database Project - Bureaucracy

 Hard work, but a practical experience.

 Work in groups of 4

 Submission database is MySQL in TAU

 Java, SWT (or Swing/AWT)

 Thinking out of the box will be rewarded

Database Project - Requirements

 (at least) 150K records table
 But could be much more!

 Also see the course website for full instructions
http://courses.cs.tau.ac.il/databases/databases201213b
/assignments/

http://courses.cs.tau.ac.il/databases/databases201213b/assignments/
http://courses.cs.tau.ac.il/databases/databases201213b/assignments/
http://courses.cs.tau.ac.il/databases/databases201213b/assignments/
http://courses.cs.tau.ac.il/databases/databases201213b/assignments/
http://courses.cs.tau.ac.il/databases/databases201213b/assignments/

Time schedule

April 9th – Project distribution

April 18th – Last date for submitting the team member
names

May 21st – “Project days”
 I will meet with each group

 You need to prepare: DB design, preferably have data in the
school DB, work plan – what is left to do, who does what and
when, optional – presentation or demonstration

June 18th – Project due!
 Aim to submit a week before, to avoid network crushes,

mysterious illnesses…

41

DB Project

!בהצלחה

42

