Thread Pooling CHAPTER

IN THIS CHAPTER

e Benefits of Thread Pooling 308

e Considerations and Costs of Thread
Pooling 308

* A Generic Thread Pool: ThreadPool 309

* A Specialized Worker Thread Pool:
HttpServer 319

308

Techniques

PART Il

When design situations arise that could benefit by using many short-lived threads, thread
pooling is a useful technique. Rather than create a brand new thread for each task, you can
have one of the threads from the thread pool pulled out of the pool and assigned to the task.
When the thread is finished with the task, it adds itself back to the pool and waits for another
assignment.

In this chapter, | present two examples that use thread pooling. One creates a pool of threads
that can be generically used to run Runnabl e objects. The other creates a pool of threads for
servicing requests that come into a ssimple Hypertext Transfer Protocol (HTTP) server (aWeb
page server).

Benefits of Thread Pooling

Thread pooling saves the virtual machine the work of creating brand new threads for every
short-lived task. In addition, it minimizes overhead associated with getting a thread started and
cleaning it up after it dies. By creating a pool of threads, a single thread from the pool can be
recycled over and over for different tasks.

With the thread pooling technique, you can reduce response time because a thread is already
constructed and started and is simply waiting for its next task. In the case of an HTTP server,
an available thread in the pool can deliver each new file requested. Without pooling, a brand

new thread would have to be constructed and started before the request could be serviced.

Another characteristic of the thread pools discussed in this chapter is that they are fixed in size
at the time of construction. All the threads are started, and then each goes into a wait state
(which uses very few processor resources) until atask is assigned to it. This fixed size charac-
teristic holds the number of assigned tasks to an upper limit. If all the threads are currently
assigned atask, the pool is empty. New service requests can simply be rejected or can be put
into await state until one of the threads finishes its task and returns itself to the pool. In the
case of an HTTP server, this limit prevents a flood of requests from overwhelming the server to
the point of servicing everyone very slowly or even crashing. You can expand on the designs
presented in this chapter to include a method to support growing the size of the pool at runtime
if you need this kind of dynamic tuning.

Considerations and Costs of Thread Pooling

Thread pooling works only when the tasks are relatively short-lived. An HTTP server fulfilling
arequest for a particular file is a perfect example of atask that is done best in another thread
and does not run for very long. By using another thread to service each request, the server can
simultaneously deliver multiple files. For tasks that run indefinitely, a normal thread is usually
a better choice.

Thread Pooling

CHAPTER 13

A cost of thread pooling is that al the threads in the pool are constructed and started in hopes
that they will be needed. It is possible that the pool will have capacity far greater than neces-
sary. Care should be taken to measure the utilization of the threads in the pool and tune the
capacity to an optimal level.

The thread pool might also be too small. If tasks are rejected when the pool is empty (asisthe
case in the HTTP server example later in this chapter), a high rejection rate might be unaccept-
able. If the tasks are not rejected, but are held in await state, the waiting time could become
too long. When the waiting time is long, response time worsens.

Also, some risk exists that one of the tasks assigned to a thread could cause it to deadlock or
die. If thread pooling is not being used, thisis still a problem. It is an even bigger problem if
threads |eave the pool and never return. Eventually, the pool will become empty and remain
empty. You should code as carefully as possible to avoid this pitfall.

A Generic Thread Pool: ThreadPool

The class Thr eadPool , shown in Listing 13.1, is used to pool a set of threads for generic tasks.
The worker threads are running inside Thr eadPool Wor ker objects, shown in Listing 13.2.
When a Thr eadPool object is constructed, it constructs as many Thr eadPool Wor ker objects as
are specified. To run atask, Thr eadPool is passed a Runnabl e object through its execut e()
method. If a Thr eadPool Wr ker object is available, the execut e() method removes it from the
pool and hands off the Runnabl e to it for execution. If the pool is empty, the execut e()

method blocks until a worker becomes available. When the run() method of the Runnabl e task
passed in returns, the Thr eadPool Wor ker has completed the task and puts itself back into the
pool of available workers. There is no other signal that the task has been completed. If asignal
is necessary, it should be coded in the task’srun() method just before it returns.

NoOTE

The Runnabl e interface is being used here in a slightly different manner than you’ve
seen before. Earlier in the book, it was required that a Runnabl e object reference be
passed to the constructor of Thr ead, and the run() method was the entry point for
the new thread. The run() method was never called directly.

Here, instead of creating a new interface for thread pooling, the use of the existing
Runnabl e interface is being expanded a little. Now, one of the worker threads will
invoke the run() method directly (see line 72 of Thr eadPool Wr ker in Listing 13.2)
when it is assigned to execute the Runnabl e task. | chose to use Runnabl e in this
design so that passing a task to execut e() would cause the run() method to be
called by another thread in much the same way as Thread’ s start () method causes
a new thread to invoke run().

309

13

ONITOOd AVv3dH |

310 Techniques

PART Il

LisTING 13.1 ThreadPool.java—A Thread Pool Used to Run Generic Tasks

1: // uses ObjectFlIFO fromchapter 18
2
3: public class ThreadPool extends hject {
4 private ObjectFl FO idl eWrkers;
5: private ThreadPool Worker[] workerList;
6:
7 publ i ¢ ThreadPool (i nt nunber O Thr eads) {
8 /1 make sure that it’s at |east one
9: nunber O Threads = Mat h. max(1, nunmber O Threads);
10:
11: i dl eWbrkers = new bj ect FI FQ(nunber O Thr eads) ;
12: wor ker Li st = new Thr eadPool Wor ker [nunber O Thr eads]
13:
14: for (int i =0; i < workerList.length; i++) {
15: workerList[i] = new ThreadPool Wor ker (i dl eWor kers)
16: }
17: }
18:
19: public void execute(Runnabl e target)
Othrows | nterruptedException {
20: /1 block (forever) until a worker is available
21: Thr eadPool Wr ker wor ker =
O(ThreadPool Wor ker) idl ewrkers. renmove()
22: wor ker . process(target);
23: }
24:
25: public void stopRequest!dl eWorkers() {
26: try {
27: oject[] idle = idl ewrkers.renmoveAll ()
28: for (int i =0; i <idle.length; i++) {
29: ((ThreadPool Worker) idle[i]).stopRequest()
30: }
31: } catch (InterruptedException x) {
32: Thread. current Thread().interrupt(); // re-assert
33: }
34: }
35:
36: public void stopRequest Al l Workers() {
37: /1 Stop the idle one's first
38: /1 productive
39: st opRequest | dl eWbrkers();
40:
41: /Il give the idle workers a quick chance to die

42: try { Thread. sl eep(250); }

Thread Pooling

CHAPTER 13

Ocatch (InterruptedException x) { }
43:
44 /1 Step through the list of ALL workers.
45: for (int i =0; i < workerList.length; i++) {
46: if (workerList[i].isAlive()) {
47: wor kerLi st[i].stopRequest();
48: }
49: }
50: }
51: }

ThreadPool serves as the central point of control for managing the worker threads. It
holds alist of all the workers created in wor ker Li st (line 5). The current pool of idle
Thr eadPool Wr ker objectsis kept in aFIFO queue, i dl evor ker s (line 4).

NoOTE

First-In-First-Out (FIFO) queues allow items to be added to one end of the queue and
removed from the other end. Items are removed in the exact same order as they
were added (the first item in is the first item out). A FIFO queue has a fixed capacity.
If a thread invokes the add() method when the FIFO is full, it blocks waiting until
another thread removes an item. If a thread invokes the r enove() method when the
FIFO is empty, it blocks waiting until another thread adds an item.

FIFO queues are explained and demonstrated in Chapter 18, “First-In-First-Out (FIFO)
Queue.” You can skip ahead to look at that technique at this time if you want to
know more.

The constructor (lines 7-17) takes asits only parameter ani nt specifying the number of
worker threads that should be created for this pool (line 7). The number of threads is silently
forced to be at least 1 (line 9). A new bj ect FI FOis created with a capacity large enough to
hold the entire pool of worker threads (line 11). This queue holds all the workers currently
available for assignment to new tasks. A Thr eadPool Wr ker [] is created to keep a handle on all
the workers—regardless of whether they are currently idle (line 12). Thef or loop (lines
14-16) is used to construct each of the Thr eadPool Wr ker objects. Each has a reference to the
pool of available workers passed to its constructor (line 15). Each one will use this reference to
add itself back to the pool when it is ready to service a new task.

When an external thread wants to run atask using one of the threads in the pool, it invokes the
execut e() method (lines 19-23). The execut e() method takes a Runnabl e object as a parame-
ter. This object will have itsrun() method invoked by the next available worker thread. The

311

13

ONITOOd AVv3dH |

312

Techniques

PART Il

external thread blocks waiting until an idle Thr eadPool Wor ker becomes available (line 21).
When one is ready, the external thread passes the Runnabl e to the worker’s pr ocess() method
(line 22), which returns right away. The external thread returns from execut e() and isfreeto
continue with whatever else it has to do while the worker thread runsthet ar get .

The st opRequest | dl eWor ker s() method (lines 25-34) is used to request that the internal
threads of the idle workers stop as soon as possible. First, all the currently idle workers are
removed from the queue (line 27). Each worker then has its st opRequest () method invoked
(line 29). You should keep in mind that as other tasks finish, more idle workers could be added
to the pool and will not be stopped until another st opRequest | dl eWor ker s() invocation
occurs.

The st opRequest Al | Wor ker s() method (lines 36-50) is used to request that all the workers
stop as soon as possible, regardless of whether they are currently idle. First, acall to

st opRequest | dl eWor kers() IS done because they can be stopped right away with negligible
impact (line 39). A quarter-second break is taken to give the idle workers a chance to shut
down. Next, the list of al the workers is stepped through using af or loop (lines 45-49). Each
worker that is gtill dive (line 46) hasits st opRequest () method invoked (line 47). It's possible
that one or more of the idle threads will not have a chance to die before thei sAl i ve() check.
In this case, the st opRequest () method will be called twice, which should be harmless.

The Thr eadPool Wr ker class, shown in Listing 13.2, isin charge of providing the thread to run
the specified task. In areal-world setting, this class should probably not be publ i ¢, but should
have package scope or be an inner class to Thr eadPool . It is never accessed directly because
Thr eadPool acts as the sole interface to external code.

LisTING 13.2 ThreadPoolWorker.java—The Internal Assistant to ThreadPool Used to Run
a Task

1: // uses class ObjectFl FO fromchapter 18
2:
3: public class ThreadPool Wr ker extends hject {
4: private static int nextWrkerlD = O;
5:
6: private ObjectFl FO idl eWrkers;
7 private int workerlD;
8 private ObjectFl FO handof f Box;
9:
10: private Thread internal Thread;
11: private volatile bool ean noSt opRequest ed;
12:
13: publ i ¢ Thr eadPool Wor ker (Obj ect FI FO i dl eWsrkers) {

14: this.idl ewrkers = idl eworkers;

Thread Pooling

15:
16:
17:
18:
19:
20:
21:
22:
23:
24:
25:
26:
27:
28:
29:
30:
31:
32:
33:
34:
35:
36:
37:
38:
39:
40:
41:
42:
43:
44

45:
46:
47:
48:
49:
50:
51:
52:
53:
54:
55:
56:
57:

publ

}

publ

}

wor ker I D = get Next Wor ker | D() ;
handof f Box = new Object FIFQ(1); // only one sl ot

/1 just before returning, the thread shoul d be created.
noSt opRequest ed = true;

Runnabl e r = new Runnabl e() {
public void run() {
try {
runWor k() ;
} catch (Exception x) {
/1 in case ANY exception slips through
X. printStackTrace();

b

nternal Thread = new Thread(r);
internal Thread. start();

ic static synchronized int getNextWrkerlD() {

/1 notice: sync’d at the class level to ensure uni queness
int id = nextWrkerlD;

next Wor ker | D++;

return id;

ic void process(Runnabl e target)
Othrows InterruptedException {
handof f Box. add(t ar get) ;

private void runWork() {

whil e (noStopRequested) {
try {
System out. println(“workerl D=" + workerlID +
“, ready for work”);
Il Worker is ready work. This will never block
/1 because the idl ewrker FlIFO queue has
/'l enough capacity for all the workers.
i dl eWorkers. add(this);

CHAPTER 13

continues

313

13

ONITOOd AVv3dH |

314 Techniques

PART Il

LisTING 13.2 Continued

58: /1 wait here until the server adds a request
59: Runnabl e r = (Runnabl e) handof f Box. renmove();
60:
61: System out. println(“workerl D=" + workerlD +
62: “, starting execution of new Runnable: “ + r);
63: runlt(r); // catches all exceptions
64: } catch (InterruptedException x) {
65: Thread. current Thread().interrupt(); // re-assert
66: }
67: }
68: }
69:
70: private void runlt(Runnable r) {
71: try {
72: r.run();
73: } catch (Exception runex) {
74: /1 catch any and all exceptions
75: Systemerr. println(
0" Uncaught exception fell through fromrun()”);
76: runex. print StackTrace();
77: } finally {
78: /1l Clear the interrupted flag (in case it comes back
79: /1 set) so that if the |oop goes again, the
80: /1 handof f Box. renove() does not m stakenly
81: /1 throw an InterruptedException.
82: Thread. i nterrupted();
83: }
84: }
85:
86: public void stopRequest() {
87: System out. println(“workerl D=" + workerlD +
88: “, stopRequest() received.”);
89: noSt opRequest ed = fal se;
90: internal Thread.interrupt();
91: }
92:
93: public boolean isAlive() {
94: return internal Thread.isAlive();
95: }
96: }

Thr eadPool Wor ker uses the active object technique discussed in Chapter 11, “ Self-Running
Objects” Each worker constructed is assigned a unique wor ker I D (line 7) to help clarify the
output messages. In areal-world setting, individual identity tracking is not always necessary.

Thread Pooling

CHAPTER 13

At the class level, the next worker ID isheld in ast ati ¢ member variable, next Wor ker | D (line
4). Thisvariable is retrieved and incremented inside the get Next Wor ker 1 D() method (lines
37-42). ltisstatic and synchroni zed S0 that the class-level lock is acquired before changes
are made (line 37). This ensures that no two instances of Thr eadPool Wr ker are accidentally
assigned the same wor ker | D value.

A reference to the list of currently unused workersis held ini di ever kers (line 6). Thisisa
reference to an bj ect FI FO queue, and the worker adds itself back to i dl ewor kers when it is
available for assignment. The handof f Box FIFO queue (line 8) is used to pass Runnabl e
objects to the worker in a thread-safe manner.

In the constructor (lines 13-35), the passed reference to the pool of available workersis
assigned to a member variable for later access (line 14). The get Next Wor ker | D() method is
used to obtain auniquei nt to storein wor ker 1 D (line 16). An Obj ect FI FOwith a capacity of
only 1 is created to be used for handing off the next Runnabl e task to the internal thread. The
rest of the code in the constructor uses the standard pattern for an active object (see Chapter 11).

The process() method (lines 44—46) is invoked by code inside the execut e() method of

Thr eadPool . It is used to pass the Runnabl e task in to the worker for processing. It is put into
the handoff box to be noticed and picked up by the internal thread (line 45). Although add()
declares that it will throw an | nt er r upt edExcept i on if it isinterrupted while waiting for
space, this should never happen in this scenario. The handof f Box FIFO queue should be empty
when the worker is available and waiting for another assignment. | chose to use an j ect FI FO
here to encapsulate the wai t - not i f y mechanism that is necessary to signal the internal thread
that a new task has arrived. It's a simpler approach and uses well-tested code.

Therunverk() method (lines 48-68) follows the active object pattern of looping using the
internal thread as long as no stop has been requested (line 49). Each time through the loop, the
interna thread adds itself to the pool of available workers (line 56). It then waits indefinitely
for an external thread to invoke the process() method and put a Runnabl e into the handoff
box. When assigned a request, the internal thread removes it from handof f Box and casts it
down from obj ect to Runnabl e (line 59). The internal thread then passes the task to the
runl t () method.

Theprivate method runi t () (lines 70-84) takes the Runnabl e passed (line 70) and invokes
itsrun() method (line 72). If any exceptions slip through—especially Runti neExcept i onS
such as Nul | Poi nt er Except i on that can occur unexpectedly just about anywhere—they are
caught to protect the worker thread (line 73). Instances of Error (and its subclasses, such as
Qut Of Merror yEr r or) will break the worker, but all instances of Excepti on (and its subclasses)
will be safely caught. If one is caught, a message and a stack trace are printed to the console
(lines 75-76). Regardless of how the internal thread returns from run(), thefinal | y clause

315

13

ONITOOd AVv3dH |

316

Techniques

PART Il

(lines 77-83) ensures that the thread's interrupted flag is cleared (line 82) before returning to
runwr k() . Thisisimportant because if the flag comes back set, and noSt opRequest ed is still
true, @an erroneous | nt er r upt edexcept i on Will be thrown by the r emove() method on line 59.

If the interrupted flag was set by st opRequest (), no harm will be done by clearing it.

This is because, after runi t () returns (line 63), the very next action is a check of the

noSt opRequest ed flag (line 49). Because st opRequest () Setsthisfal se, runwer k() will
return (line 25), and the worker thread will die quietly as requested. | give afull explanation of
st opRequest () andisAlive() in Chapter 11.

Thr eadPool Mai n, shown in Listing 13.3, is used to demonstrate how Thr eadPool can be used
to run severa tasks and then recycle its threads to run more tasks.

LisTING 13.3 ThreadPoolMain.java—Used to Demonstrate ThreadPool

1: public class ThreadPool Mai n extends bject {

2

3 public static Runnabl e makeRunnabl e(

4: final String nane,

5: final long firstDel ay

6:) |

7

8 return new Runnabl e() {

9: public void run() {
10: try {
11: System out. println(nane +": starting up”);
12: Thread. sl eep(firstDel ay);
13: System out. printl n(

Onane + “: doing some stuff”);
14: Thr ead. sl eep(2000) ;
15: Systemout.println(name + “: |eaving”);
16: } catch (InterruptedException ix) {
17: System out . println(
Onane + “: got interrupted!”);

18: return;
19: } catch (Exception x) {
20: X. printStackTrace();
21: }
22: }
23:
24: public String toString() {
25: return name;
26: }
27: };
28: }
29:

30: public static void main(String[] args) {

Thread Pooling

31:
32:
33:
34:
35:
36:
37:
38:
39:
40:
41:
42:
43:
44:
45:
46:
47:
48:
49:
50:
51:
52:
53:
54:
55:
56:
57:
58:
59: }

CHAPTER 13

try {

Thr eadPool pool = new ThreadPool (3);

Runnabl e ra = makeRunnabl e(“RA”, 3000);
pool . execute(ra);

Runnabl e rb = nmakeRunnabl e(“RB", 1000);
pool . execut e(rb);

Runnabl e rc = makeRunnabl e(“RC’, 2000);
pool . execute(rc);

Runnabl e rd = makeRunnabl e(“RD’, 60000);
pool . execute(rd);

Runnabl e re = makeRunnabl e(“RE", 1000);
pool . execute(re);

pool . st opRequest | dl eWor kers();
Thr ead. sl eep(2000) ;
pool . st opRequest | dl eWbr kers();

Thr ead. sl eep(5000) ;
pool . st opRequest Al | Wor kers();

} catch (InterruptedException ix) {

i x.printStackTrace();

Thr eadPool Mai n creates five Runnabl e objects and passes them to the execut e() method of
ThreadPool . The st ati ¢ method makeRunnabl e() (lines 3-28) is used to manufacture
Runnabl e objects that are similar. It takes two parameters, the first being the nane to use in
output messages to differentiate the Runnabl e from the others (line 4). The second is the num-
ber of milliseconds to wait between printing the first and second messages (line 5). These two
parameters are declared fi nal so that they can be accessed from the anonymous inner class
that is created (lines 8-27).

The Runnabl e interface is implemented on-the-fly. The two methods that are defined are
tostring() (lines24-26) and run() (lines 9-22). ThetoString() method simply prints out
name. Therun() method prints several messages, all of which include the nane to clarify the
output (lines 11, 13, 15, and 17). The delay factor passed in is used to control the length of the
first sl eep() (line 12). If either sl eep() isinterrupted, a message is printed and the method
returns (lines 16-18). If any other exception occurs, a stack trace is printed and the method
returns (lines 19-21).

317

13

ONITOOd AVv3dH |

318

Techniques

PART Il

Inmai n(), aThreadPool object is constructed with the specification that it should create 3
instances of Thr eadPool Wor ker (line 32). The makeRunnabl e() method isinvoked 5 times, and
the results of each are passed to the execut e() method (lines 34—47). All 5 will not be able to
run at the same time because the pool has only 3 workers. The fourth and fifth calls to

execut e() will block briefly until aworker becomes available. After al 5 have been started
(and at least 2 will have finished), the st opRequest | dI eWor ker s() method is invoked (line 49)
on the pool to remove and shut down any and all workers that are currently not processing a
request. After 2 seconds (line 50), another request is issued to stop al idle workers (line 51).
After an additional 5 seconds have elapsed, the st opRequest Al | Wor ker s() method is called to
shut down any and al remaining workers, regardless of whether they are currently busy servic-

ing arequest (line 54).

Listing 13.4 shows possible output from running Thr eadPool Mai n. Your output should differ a

bit because of the whims of the thread scheduler.

LisTING 13.4 Possible Output from ThreadPoolMain

wor ker | D=0, ready for work

wor ker | D=2, ready for work

wor ker | D=1, ready for work

wor ker | D=0, starting execution
RA: starting up

wor ker | D=2, starting execution
RB: starting up

wor ker | D=1, starting execution
RC. starting up

RB: doing sone stuff

RC. doi ng sonme stuff
RA
RB

© 00N O WN B

el
N - O

doi ng sone stuff
| eavi ng
wor ker | D=2, ready for work
wor ker | D=2, starting execution
RD: starting up
RC. | eaving
wor ker | D=1, ready for work
wor ker | D=1, starting execution
RE: starting up
RA: | eavi ng
wor ker | D=0, ready for work
RE: doi ng sonme stuff

NNNRNNNRRRRRR R
GONWNROOOW-NODOU MW

RE: 1 eaving
wor ker | D=1, ready for work

NN NN
© 0N O

RD: got interrupted!

of

of

of

of

of

new

new

new

new

new

wor ker | D=0, stopRequest() received.

wor ker | D=1, stopRequest() received.
wor ker | D=2, stopRequest () received.

Runnabl e:

Runnabl e:

Runnabl e:

Runnabl e:

Runnabl e:

RA

RC

RD

RE

Thread Pooling

CHAPTER 13

Notice that the workers add themselves to the idle list in just about any order (output lines
1-3). However, the tasks are started in the requested order (lines 4-9). When the R8 task is
done (line 13), the worker that was running it, 2, adds itself back to the idle queue (line 14).
Task RD was blocked inside execut e(), waiting for a worker to become available. As soon as 2
putsitself on the idle queue, it is recycled and removed to run task RD (line 15). When worker
1 finishes running task R (line 17), it is recycled to run task rRe (lines 18-19). Next, worker 0
finishes task RA and adds itself to the idle queue (line 22).

The first request to stop the currently idle threads gets idle worker o to stop (line 24). The next
request getsidle worker 1 to stop. Task RD was started with a 60-second delay and is till run-
ning. When the request to stop al the threads comesin (line 28), task RD is interrupted during
its long sleep (line 29), but then returns to allow the thread to die.

A Specialized Worker Thread Pool: HttpServer

In this section, I'll show you how a simple Web page server can utilize thread-pooling tech-
nigues to service requests. In this case, the workers are specialized to handle requests for files
from Web browsers.

Web browsers and Web servers communicate with each other using the Hypertext Transfer
Protocol (HTTP). HTTP 1.0 (older, but smpler for this example than HTTP 1.1) is fully speci-
fied in RFC 1945, which is available at this URL :

http://ww. w3. org/ Protocol s/rfc1945/rfc1945

The basics of this protocol consist of a request from the Web browser client, and a response
from the Web server. The communication occurs over the | nput St r eamand Qut put St r eampair
available from a TCP/IP socket. The socket connection is initiated by the client and accepted
by the server. The request-response cycle occurs while the socket is open. After the response is
sent, the socket is closed. Each request uses a new socket. The client Web browser may make
several simultaneous regquests to a single server, each over its own socket.

The request consists of arequired request line, followed by optional header lines, followed by
arequired blank line, followed by an optional message body. In this example, only the request
line will be parsed. The request line consists of a request method, a space, the requested
resource, a space, and finally the HTTP protocol version being used by the client. The only
request method supported here is GET, so a sample request line would be

CGET /dirl/dir2/file.htm HITP/ 1.0

The response consists of a required status line, followed by optional header lines, followed by
arequired blank line, followed by an optional message body. In this example, if thefileis
found, the server will return the status line, one header line with the content length, another

319

13

ONITOOd AVv3dH |

320

Techniques

PART Il

header line with the content type, and a message body with the bytes of the requested file. The
status line consists of the HTTP protocol version, a space, a response code, a space, and finally
atextual explanation of the response code. In response to a GET request, a response such as the
following would be produced:

HTTP/ 1.0 200 OK

Content - Length: 1967

Content - Type: text/htm

<bl ank |ine>
<the 1,967 bytes of the requested file>

This simple Web server supports three response status lines:

HTTP/ 1.0 200 K
HTTP/ 1. 0 404 Not Found
HTTP/ 1. 0 503 Service Unavail abl e

The first is used when the requested file is found, the second if the file could not be found, and
the third if the server is too busy to service the request properly.

Class HttpServer

The Ht t pServer class, shown in Listing 13.5, serves as the main interface to the Web server
and creates several Ht t pwor ker objects (see Listing 13.6). The Ht t pSer ver object and the

Ht t pvor ker objects each have their own internal thread. The workers add themselves to a pool
when they are ready to accept another HTTP request. When a request comes in, the server
checks the pool for available workers and if oneis available, assignsit to the connection. If
none are available, the terse Servi ce Unavai | abl e response is returned to the client.

LisTing 13.5 HttpServer.java—A Simple Web Page Server

1: inport java.io.*;
2: inport java.net.*;
3:
: /] uses ObjectFlFO fromchapter 18

4
5:
6: public class HttpServer extends bject {
7:
8

: /1 currently avail abl e Htt pWorker objects
9: private ObjectFl FO idl ewrkers;

10:

11: /1 all HttpWworker objects

12: private HttpWrker[] workerlList;
13: private ServerSocket ss;

14:

15: private Thread internal Thread;

Thread Pooling 321

CHAPTER 13

16: private volatile bool ean noSt opRequest ed;

17:

18: public HttpServer(

19: Fil e docRoot,

20: int port,

21: i nt nunber O Wor ker s,

22: int mxPriority

23:) throws | OException {

24:

25: /1 Allow a nax of 10 sockets to queue up

26: /1 waiting for accpet().

27: ss = new Server Socket (port, 10);

28:

29: if ((docRoot == null) ||

30: I docRoot . exi sts() ||

31: I docRoot . isDirectory()

32:) {

33:

34: t hrow new | OException(“specified docRoot is null “ +
35: “or does not exist or is not a directory”);

36: } 13

37:

38: /1 ensure that at |east one worker is created

39: nunmber O Wor kers = Mat h. max(1, nunmber O Wor kers) ;

40:

41: /1 Ensure:

42: /1 (mnAllowed + 2) <= serverPriority <= (maxAl | owed - 1)
43: /'l which is generally:

44: 11 3 <= serverPriority <= 9

45: int serverPriority = Math. max(

46: Thread. MN_PRIORI TY + 2,

47: Mat h. mi n(maxPriority, Thread. MAX_PRIORITY - 1)
48:);

49:

50: /1 Have the workers run at a slightly lower priority so
51: /1 that new requests are handled with nore urgency than
52: /1 in-progress requests.

53: int workerPriority = serverPriority - 1,

54:

55: i dl eWorkers = new oj ect FI FQ(number OF Wor ker s) ;

56: wor ker Li st = new Htt pWor ker [nunber O Wor ker s] ;

57:

58: for (int i =0; i < nunberOWirkers; i++) {

59: /1 Workers get a reference to the FIFO to add

continues

ONITOOd AVv3dH |

322

Techniques

PART Il

LisTING 13.5 Continued

60:
61:
62:
63:
64:
65:
66:
67:
68:
69:
70:
71:
72:
73:
74:
75:
76:
77:
78:
79:
80:
81:
82:
83:
84:
85:
86:
87:
88:
89:
90:
91:
92:
93:
94:
95:
96:
97:
98:
99:
100:
101:
102:
103:

/'l thensel ves back in when they are ready to
/1 handl e a new request.
workerList[i] = new HttpWrker(
docRoot, workerPriority, idleWrkers);
}

/1 Just before returning, the thread should be
/Il created and started.
noSt opRequest ed = true;

Runnabl e r = new Runnabl e() {
public void run() {
try {
runWor k() ;
} catch (Exception x) {
/1 in case ANY exception slips through
X. printStackTrace();

b

i nternal Thread = new Thread(r);
internal Thread.setPriority(serverPriority);
internal Thread. start();

}

private void runWrk() {
System out . println(
“Htt pServer ready to receive requests”);

whil e (noStopRequested) {

try {
Socket s = ss.accept();

if (idlewrkers.iseEmty()) {
System out. printl n(
“Ht t pServer too busy, denying request”);

Buf feredWiter witer =
new BufferedWiter(
new Qut put StreamWiter (
s.get Qut put Stream()));

witer.wite(“HTTP/ 1.0 503 Service “ +

Thread Pooling

104:
105:
106:
107:
108:
109:
110:
111:
112:
113:
114:
115:
116:
117:
118:
119:
120:
121:
122:
123:
124:
125:
126:
127:
128:
129:
130:
131:
132:
133:
134:
135:
136:
137:
138:
139:
140:
141:
142:
143:
144:
145:
146:

CHAPTER 13

“Unavail abl e\r\n\r\n");

witer.flush();
witer.close();
witer = null;
} else {
/1 No need to be worried that idl eWrkers
/1 will suddenly be enpty since this is the
/1 only thread renoving itens fromthe queue.
Ht t pWor ker wor ker =
(Htt pWorker) idl eworkers. renove();

wor ker . processRequest (s);
}
} catch (|1 Oexception iox) {
if (noStopRequested) {
i ox. printStackTrace();
}
} catch (InterruptedException x) {
Il re-assert interrupt
Thread. current Thread().interrupt();

public void stopRequest () {
noSt opRequest ed = fal se;
internal Thread.interrupt();

for (int i =0; i <workerList.length; i++) {
wor kerLi st[i].stopRequest();

if (ss!=null) {
try { ss.close(); } catch (|OException iox) { }
ss = nul |;

public boolean isAlive() {
return internal Thread.isAlive();

}

continues

323

13

ONITO0d AVv3adH |

304 Techniques

PART Il

LisTING 13.5 Continued

147: private static void usageAndExit(String nmsg, int exitCode) {
148: Systemerr.println(nmsg);

149: Systemerr.println(“Usage: java HttpServer <port> “ +
150: “<numior ker s> <docunent Root >") ;
151: Systemerr.println(" <port> - port to listen on “ +
152: “for HTTP requests”);

153: Systemerr.println(” <numAbr ker s> - number of “ +
154: “worker threads to create”);

155: Systemerr.println(* <docunent Root > - base “ +

156: “directory for HTM. files”);

157: System exi t (exit Code);

158: }

159:

160: public static void main(String[] args) {

161: if (args.length '=3) {

162: usageAndExi t (“w ong nunber of argunents”, 1);
163: }

164:

165: String portStr = args[0];

166: String numAorkersStr = args[1];

167: String docRoot Str = args[2];

168:

169: int port = 0;

170:

171: try {

172: port = Integer.parselnt(portStr);

173: } catch (Nunber For mat Exception x) {

174: usageAndExit (“coul d not parse port nunber from**“ +
175: portStr + “'*“, 2);

176: }

177:

178: if (port <1) {

179: usageAndExit(“invalid port nunber specified: “ +
180: port, 3);

181: }

182:

183: int numAorkers = 0;

184:

185: try {

186: numMrkers = | nteger. parsel nt (numMrkersStr);

187: } catch (Nunber For mat Exception x) {

188: usageAndExi t (

189: “coul d not parse nunber of workers from*'* +

190: numAor kersStr + “**, 4);

Thread Pooling

CHAPTER 13

191: }

192:

193: Fil e docRoot = new Fil e(docRoot Str);

194:

195: try {

196: new HttpServer(docRoot, port, numMrkers, 6);
197: } catch (I OException x) {

198: X. printStackTrace();

199: usageAndExit (“coul d not construct HttpServer”, 5);
200: }

201: }

202: }

Ht t pSer ver keeps a pool of idle workersini di ewor kers by using an ooj ect FI FO (line 9). In
addition, it keeps alist of al the H: t pwor ker objectsit created in an array (line 12). It also
uses the self-running object pattern shown in Chapter 11.

The constructor (lines 18-84) takes four parameters. The docRoot parameter (line 19) isaFile
referring to the directory on the server machine that is the base directory for al HTTP file
requests. The port parameter (line 20) is the TCP/IP port that the Web server will be listening
to for new sockets (requests). The nunber O Wor ker s parameter (line 21) indicates the number
of Htt pweor ker objects that should be created to service requests. The maxPri ori ty parameter
(line 22) is used to indicate the thread priority for the thread running inside Ht t pSer ver . The
threads running inside the H: t pver ker objects will run at a slightly lower priority:
(mexPriority - 1).

Inside the constructor, a Ser ver Socket is created to listen on port (line 27). It also specifies
that the VM should accept up to 10 sockets more than what has been returned from the

accept () method of Server Socket . If there are any problems setting up the Ser ver Socket , an
I Oexcept i on Will be thrown and will propagate out of the constructor (line 23). The docRoot
parameter is then checked to be sure that it refers to an existing file and that it is also a direc-
tory (lines 29-36). The nurmber Of Wor ker s parameter is silently increased to 1 if it was less than
that before (line 39). The priorities for the server thread and the worker threads are silently
forced into a valid range (lines 45-53), so that

Thread. MN_PRIORI TY < workerPriority <
OserverPriority < Thread. MVAX_ PRI ORI TY

wherewor ker Priority isjust 1 lessthanserverPriority.

An j ect FI FOis created with enough capacity to hold all the workers (line 55). A list of all
the workers, idle or busy, is created (line 56), and each of the Ht t pwor ker objectsis con-
structed and added to this list (lines 58—-64). Each H: t pwer ker is passed a reference to the

i dl ever ker s FIFO queue so that it can add itself to the queue when it is ready to process a
new request.

325

13

ONITOOd AVv3dH |

326

Techniques

PART Il

The rest of the constructor (lines 68-83) follows the pattern in Chapter 11, with just one minor
addition: The priority of the internal thread is set before it is started (line 82).

The runwor k() method (lines 86-127) isinvoked by the internal thread. Aslong as no stop has
been requested (line 90), the method continues to accept new sockets (line 92). When a socket
is accepted, runwer k() checks whether any idle workers are available to process the request
(line 94). If the pool is empty, the request is denied, and a minimal response is created and sent
back over the socket connection (lines 98-108). In HTTP message headers, an end-of-lineis
marked by a carriage-return, line-feed pair: “\r\n”.

If an idle worker isfound in the poal, it is removed (lines 113-114). The pr ocessRequest ()
method of that Ht t pwer ker isinvoked, and the socket that was just accepted is passed to it for
servicing (line 116). If an | Cexcept i on occurs in the process of accepting a socket and hand-
ing it off to be processed, and no stop has been requested, the exception will have its stack
trace dumped (lines 118-121). If an I nt er r upt edExcept i on Occurs, it is caught, and the inter-
rupt is reasserted (lines 122-124).

The st opRequest () method (lines 129-141) follows the pattern of Chapter 11, but adds another
two steps. After signaling the internal thread to stop, it invokes st opRequest () on each of the
Ht t pVor ker objects. Because the internal thread may be blocked on the accept () method of
Server Socket (line 92), steps have to be taken to unblock it. It does not respond to being inter-
rupted, so if the internal thread is blocked on accept (), theinterrupt () cal (line 131) is
ineffective. To unblock the accept () method, the Ser ver Socket is closed (line 138), which
causes accept () to throw an | OExcepti on. This| CExcepti on is caught (line 118), and if a
stop has been requested, the exception isignored. In this case, a stop was requested, so the
exception thrown by forcibly closing the ser ver Socket is silently ignored. This technique can
be used to unblock various I/O methods that do not respond to interrupts. | explain it in detail
in Chapter 15, “Breaking Out of a Blocked 1/0O State”

The st ati ¢ method usageAndExi t () (lines 147-158) assists mai n() in reporting command-
line mistakes and printing the proper command usage. For example, if Htt pSer ver isrun with
no command-line arguments,

java HttpServer

the following output is produced:

wrong nunber of arguments

Usage: java HttpServer <port> <numrkers> <docunent Root >
<port> - port to listen on for HITP requests
<numAbr ker s> - nunber of worker threads to create
<docunent Root > - base directory for HTM. files

After the error message (line 148) and the usage lines (lines 149-156) are printed,
usageAndExi t () causestheVM to exit with the exit code that was passed to it (line 157).

Thread Pooling

CHAPTER 13

The mai n() method (lines 160-201) is used to parse and validate the command-line options
and to construct an Ht t pSer ver instance. Ht t pSer ver can simply be used asaclassin alarger
application, or it can be run as its own application using mai n() . First, the port number passed
on the command line is converted to ani nt (lines 169-176) and is checked to be a positive
number (lines 178-181). If either step fails, usageAndExi t () isused to halt the application
with an appropriate message. Second, the number of Ht t pWr ker objectsto create is parsed
and validated (lines 183-191). Third, the document root directly passed on the command line
is converted into a platform-independent Fi | e object (line 193). Finally, an attempt is made to
construct an Ht t pSer ver object with these parameters and a maximum thread priority of 6
(line 196).

The Ht t pSer ver object’sinternal thread will run at a priority of 6, and each of the Ht t pwor ker

objects' internal threads will run at a priority of 5 (line 53). Constructing an Ht t pSer ver object
might throw an | Cexcept i on, especialy if the port is already in use. If this or another problem
occurs, amessage is printed and the VM exits (lines 197-199). If all goes well, the constructor
returns after starting the internal thread, and the mai n() method compl etes.

Class HttpWorker

Ht t pWor ker objects, shown in Listing 13.6, are used as the specialized pool of threaded
resources accessed from Ht t pSer ver . He t pWor ker issimilar to Thr eadPool Wor ker (refer to
Listing 13.2), and I'll point out only the major differences.

LisTING 13.6 HttpWorker.java—The Helper Class for HttpServer

1. inport java.io.*;
2: inport java.net.*;
3: inport java.util.*;
4:
5: /1 uses class ObjectFI FO fromchapter 18
6:
7: public class HttpWrker extends bject {
8: private static int nextWrkerlD = 0;
9:

10: private File docRoot;

11: private ObjectFl FO idl eWrkers;

12: private int workerlD;

13: private bject Fl FO handof f Box;

14:

15: private Thread internal Thread,

16: private volatile bool ean noSt opRequest ed;

continues

327

13

ONITOOd AVv3dH |

328

Techniques

PART Il

LisTING 13.6 Continued

17:
18:
19:
20:
21:
22:
23:
24:
25:
26:
27:
28:
29:
30:
31:
32:
33:
34:
35:
36:
37:
38:
39:
40:
41:
42:
43:
44
45:
46:
47:
48:
49:
50:
51:
52:
53:
54:
55:
56:
57:
58:
59:
60:

publ

publ

publ

ic HttpWrker(
Fi |l e docRoot,
int workerPriority,
oj ect FI FO i dl eWorkers

) A

thi s. docRoot = docRoot;
this.idl ewrkers = idl eWrkers;

wor ker 1 D = get Next Worker 1 D) ;
handof f Box = new Obj ectFIFQ(1); // only one slot

/1 Just before returning, the thread should be
/] created and started.
noSt opRequested = true;

Runnabl e r = new Runnabl e() {
public void run() {
try {
runWrk();
} catch (Exception x) {
/1l in case ANY exception slips through
X. printStackTrace();

internal Thread = new Thread(r);
internal Thread. setPriority(workerPriority);
internal Thread. start();

ic static synchronized int getNextWrkerlD() {

/'l synchronized at the class |evel to ensure uni queness
int id = nextWrkerlD;

next Wor ker | D++;

return id;

ic void processRequest (Socket s)
throws I nterruptedException {

handof f Box. add(s) ;

Thread Pooling

61:
62:
63:
64:
65:
66:
67:
68:
69:
70:
71:
72:
73:
74:
75:
76:
77
78:
79:
80:
81:
82:
83:
84:
85:
86:
87:
88:
89:
90:
91:
92:
93:
94:
95:
96:
97:
98:
99:
100:
101:
102:
103:
104:

private void runWrk() {
Socket s = null;
I nput Streamin = null;
Qut put Stream out = nul | ;

whil e (noStopRequested) {
try {
/1 Worker is ready to receive new service
Il requests, so it adds itself to the idle
/'l worker queue.
i dl eWorkers. add(this);

/1 Vit here until the server puts a request
/1 into the handoff box.
s = (Socket) handof f Box. renove();

in = s.getlnputStream);
out = s.getQutputStrean();
gener at eResponse(in, out);
out.flush();
} catch (I OCException iox) {
Systemerr. println(
“I/O error while processing request, “ +
“ignoring and adding back to idle “ +
“queue - workerlD=" + workerlD);
} catch (InterruptedException x) {
/'l re-assert the interrupt
Thread. current Thread().interrupt();
} finally {
/1 Try to close everything, ignoring
/1 any | OExceptions that m ght occur.
if (in!=null) {

try {
in.close();
} catch (| OCException iox) {
/1 ignore
} finally {
in=null;
}
}
if (out !'=null) {

CHAPTER 13

continues

329

13

ONITOOd AVv3dH |

330

Techniques

PART Il

LisTING 13.6 Continued

105:
106:
107:
108:
109:
110:
111:
112:
113:
114:
115:
116:
117:
118:
119:
120:
121:
122:
123:
124:
125:
126:
127:
128:
129:
130:
131:
132:
133:
134:
135:
136:
137:
138:
139:
140:
141:
142:
143:
144:
145:
146:
147:
148:

try {
out.cl ose();

} catch (I CException iox) {

/1 ignore
} finally {
out = null;
}
}
if (s!=null) {
try {
s.close();
} catch (| Cexception iox) {
/1 ignore
} finally {
s = null;
}

private void generat eResponse(
I nput Stream in,
Cut put St r eam out
) throws | CException {

Buf f eredReader reader =
new Buff er edReader (new | nput St reanReader (in));

String requestLine = reader.readLine();

if ((requestLine == null) ||
(requestLine.length() < 1)
) |

t hrow new | OException(“could not read request”);

}

System out. println(“workerl D=" + workerlD +
“, requestLine=" + requestLine);

StringTokeni zer st = new StringTokeni zer (requestLine);
String filename = null;

Thread Pooling 331
CHAPTER 13
149:
150: try {
151: /'l request nethod, typically ‘GET, but ignored
152: st. next Token();
153:
154: /'l the second token should be the fil enane
155: filename = st.next Token();
156: } catch (NoSuchEl enent Exception x) {
157: t hrow new | OExcepti on(
158: “coul d not parse request line");
159: }
160:
161: File requestedFile = generateFile(fil enane);
162:
163: Buf f er edQut put St ream buf f Qut =
164: new Buf f er edQut put St rean{ out);
165:
166: if (requestedFile.exists()) {
167: System out. println(“workerl D=" + workerlID +
168: “, 200 K: “ + filenane);
169: 13
170: int fileLen = (int) requestedFile.length();
171:
172: Buf feredl nput Stream fileln =
173: new Buf f er edl nput St r ean(
174: new Fil el nput Strean(requestedFile));
175:
176: /1l Use this utility to nake a guess obout the
177: /1 content type based on the first few bytes
178: /1 in the stream
179: String content Type =
180: URLConnect i on. guessCont ent TypeFr onft r ean(
181: fileln);
182:
183: byte[] headerBytes = createHeader Byt es(
184: “HTTP/ 1.0 200 X',
185: filelLen,
186: cont ent Type
187:);
188:
189: buffQut.wite(headerBytes);
190:
191: byte[] buf = new byte[2048];

continues

ONITOOd AVv3dH |

332

Techniques

PART Il

LisTING 13.6 Continued

192:
193:
194:
195:
196:
197:
198:
199:
200:
201:
202:
203:
204:
205:
206:
207:
208:
209:
210:
211:
212:
213:
214:
215:
216:
217:
218:
219:
220:
221:
222:
223:
224:
225:
226:
227:
228:
229:
230:
231:
232:
233:
234:
235:

int blockLen = 0;

while ((blockLen = fileln.read(buf))

buffQut.wite(buf, 0, blockLen);
}

fileln.close();
} else {

1= 1) {

System out. println(“workerl D=" + workerlD +
“, 404 Not Found: “ + filenane);

byte[] headerBytes = creat eHeader Byt es(

“HTTP/ 1.0 404 Not Found”,
-1,
nul |

)

buf f Qut. wri t e(header Byt es);

buf fQut. fl ush();
}

private File generateFile(String filenane) {

File requestedFile = docRoot; // start at the base

/1 Build up the path to the requested file in a

/1 platformindependent way. URL's use
/1 path, but this platformmy not.

v

intheir

StringTokeni zer st = new StringTokeni zer (fil enane,

while (st.hasMoreTokens()) {
String tok = st.nextToken();

if (tok.equals(“..”)) {

/1 Silently ignore parts of path that m ght
/1 lead out of the docunment root area.

conti nue;

requestedFile =
new Fi |l e(requestedFile, tok);

if (requestedFile.exists() &&

o

)

Thread Pooling

236:
237:
238:
239:
240:
241:
242:
243:
244:
245:
246:
247:
248:
249:
250:
251:
252:
253:
254:
255:
256:
257:
258:
259:
260:
261:
262:
263:
264:
265:
266:
267:
268:
269:
270:
271:
272:
273:
274:
275:
276:
277:
278:

CHAPTER 13

requestedFile.isDirectory()

) |

/1 If a directory was requested, nodify the request
/1 to look for the “index.htm” file in that
/1 directory.
requestedFile =
new Fil e(requestedFile, “index.htm”);

}

return requestedFile;

private byte[] createHeaderBytes(

String resp,

int contentlLen,

String contentType
) throws | OException {

Byt eArrayQut put Stream baos = new Byt eArrayQut put Strean();
Buf feredWiter witer = new BufferedWiter(
new CQut put StreamWiter(baos));

/1 Wite the first line of the response, followed by
/1 the RFC-specified line termnati on sequence.

witer.wite(resp + “\r\n");

/1 1f a length was specified, add it to the header

if (contentLen !=-1) {
witer.wite(
“Content-Length: “ + contentLen + “\r\n");

/1 1f a type was specified, add it to the header
if (contentType != null) {
witer.wite(
“Content-Type: “ + contentType + “\r\n");

/1 A blank line is required after the header.
witer.wite(“\r\n");
witer.flush();

continues

333

13

ONITOOd AVv3dH |

334

Techniques

PART Il

LisTING 13.6 Continued

279: byte[] data = baos.toByteArray();
280: witer.close();

281:

282: return data;

283: }

284:

285: public void stopRequest() {

286: noSt opRequest ed = fal se;

287: internal Thread.interrupt();

288: }

289:

290: public boolean isAlive() {

291: return internal Thread.isAlive();
292: }

293: }

The constructor of Ht t pver ker (lines 18-48) is passed docRoot , the base directory for files
(line 19), the priority to use for the internal thread (line 20), and a reference to the idle worker
pool. The internal thread priority is set just before the thread is started (line 46). A one-slot
handoff box is created (line 28) for passing the socket accepted in the Ht t pSer ver thread to
this worker's interna thread.

The processRequest () method (lines 57-61) is invoked by the Ht t pSer ver object and puts
the reference to the new socket into the handoff box. It should never block because a worker
will add itself to the idle pool only when it is ready to process a new request. Also, the server
will invoke the pr ocessRequest () methods only on workers it just removed from the idle
pool.

The runver k() method (lines 63—125) is where the internal thread does the bulk of the pro-
cessing. Basicaly, the internal thread loops until a stop is requested (lines 68-124). Each time
through, the worker adds itself to the server’s list of idle workers (line 73). It then blocks,
indefinitely waiting for an assignment to be dropped off in its handoff box (line 77). When a
Socket referenceis picked up, the worker retrieves the | nput St r eamand Qut put St r eamfrom
the reference and passes them to the gener at eResponse() method (lines 79-81). After

gener at eResponse() has read the request from the | nput St r eamand written the proper
response to the cut put St r eam the cut put St r eamis flushed to ensure that the data is pushed
through any buffering (line 82). If an | CExcept i on occurs during any of this, a message is
printed (lines 83-87). Whether or not an | Oexcept i on occurs, thefinal | y clauseis used to
ensure that the streams and socket are closed properly (lines 91-112). Next, the whi | e expres-
sion is re-evaluated (line 68). If no stop request has been made, the worker adds itself back to
the idle queue and waits for its next assignment.

Thread Pooling

CHAPTER 13

The gener at eResponse() method (lines 127-213) is used to analyze the HTTP request on the
I nput St r eamand generate an appropriate HT TP response on the cut put St ream The raw

Qut put St r eamfrom the socket is wrapped in a Buf f er edQut put St r eamto data transfer
efficiently (lines 163-164). The raw | nput St r eamfrom the socket is wrapped in a

Buf f er edReader (lines 132—-133). Thefirst line is read from the request (line 135-142) and
broken up into tokens to pick out the filename (lines 147—159). The gener at eFi | e() method is
used to create anew Fi | e instance that refers to the requested file (line 161).

Inside gener at eFi | e() (lines 215-247), the request is parsed on the* /* character to build up
anew Fi | e object starting from docRoot . When the parsing is complete, a check is done to see
if the requested file is adirectory (lines 235-236). If a directory was requested, “i ndex. htm *
is appended as the default file to return from a directory (lines 242-243).

If the requested file is found, it is sent back to the client (lines 166-198). Firt, the length of
the file in bytes is determined for the response header (line 170). Next, the content type for the
file is guessed by the use of the st ati ¢ method guessCont ent TypeFr onsst r ean() on the class
j ava. net. URLConnect i on (lines 179-181). Then the cr eat eHeader Byt es() method (see the
following description) is used to format the response header and convert it to an array of bytes
(lines 183-187). This header information is written to the stream (line 189), followed by the
contents of the file (lines 191-198).

If the requested file is not found, a brief response indicating that this is sent back to the client
(lines 199-209). The cr eat eHeader Byt es() method is used to format a404 Not Found
response (lines 203-207). These bytes are written back to the client (line 209).

The cr eat eHeader Byt es() method (lines 249-283) is used to format a response header and
write it to an array of bytes. Theresp string passed in is written asis (lines 255-261). If a
valid content length is passed in, the Cont ent - Lengt h: header field is appended (lines
264-267). If a content type is specified, the Cont ent - Type: header field is appended (lines
270-273). All headers end with a blank line (line 276). The resulting byt e[] is passed back to
the caller (lines 185-188).

Sample Files to Be Served

To demonstrate this simple Web server, | created a directory named ht n di r, with the follow-
ing files and subdirectory:

./htmdir/index. htm
.Ihtmdir/inmges/five.gif
.Ihtmdir/inmges/four.gif
./htm dir/inmages/one. gif
./Ihtmdir/inmages/three. gif
./htmdir/inages/two. gif

335

13

ONITOOd AVv3dH |

336

Techniques

PART Il

Theindex. ht m fileisthe main file served, and it makes references to the graphics stored in
the i mages subdirectory. When the server is launched, ht ni di r will be used as the document
root directory.

Thei ndex. htni file, shown in Listing 13.7, uses the Hypertext Markup Language (HTML) to
specify the layout of aWeb page. You can read more about it at this URL:

http://ww. w3. org/ TR REC-ht M 32. ht m

Listing 13.7 index.html—An HTML File for Demonstrating HttpServer

NNNNRRRRRRRERRPR
WNEFPOO®OWNOOUNWRNIERERO

N
&)

W wWwwwNDNDN

w
o

© 00N O WN PR

N
A

N
[e2]

w W
R A

<htm >
<head><titl e>Thread Pooling - 1</title></head>
<body bgcol or =" #FFFFFF" >
<center>
<tabl e border="2" cellspacing="5" cell paddi ng="2">
<tr>
<td valign="top”><ing src="./inmages/one.gif”></td>
<t d>Thread pooling helps to save the VMthe work of creating and
destroyi ng threads when they can be easily recycled. </td>
</tr>
<tr>
<td valign="top”"><ing src="./imges/t wDOESNOTEXI ST. gi f " ></t d>
<td>Thread pooling reduces response tine because the worker
thread is already created, started, and running. It’'s only
only waiting for the signal to <i>go</i>!</td>
</tr>
<tr>
<td valign="top”><ing src="./images/three.gif”"></td>
<td>Thread pooling holds resource usage to a predeterm ned upper
limt. Instead of starting a new thread for every request
recei ved by an HTTP server, a set of workers is available to
service requests. Wen this set is being conpletely used by
ot her requests, the server does not increase its |oad, but
rejects requests until a worker becones avail able.</td>
</tr>
<tr>
<td valign="top”"><ing src="./inages/four.gif"></td>
<td>Thread pooling generally works best when a thread is
needed for only a brief period of tine.</td>
</tr>
<tr>
<td valign="top”"><ing src="./inmages/five.gif"></td>
<t d>When using the thread pooling techni que, care nust
be taken to reasonably ensure that threads don't becone
deadl ocked or die.<td>
</tr>

Thread Pooling

CHAPTER 13

37: </table>
38: </ body>
39: </htnl >

ThisHTML file makes references to 5 images that will subsequently be requested by the Web
browser. All but one of them exists. Instead of t wo. gi f, t wWoDOESNOTEXI ST. gi f iS requested
(line 12) to cause the simple server to generate a404 Not Found response.

Running HttpServer with 3 Workers

Firgt, I'll show you what happens when the Ht t pSer ver application is run with only 3 workers
in the pool:

java HttpServer 2001 3 htmdir

The Web server will be listening on port 2001 for connections. If you can’t use this port on
your system, specify a different one. (Generally, Web servers listen to port 80, but on some
systems, only privileged users can run processes that listen to ports less than 1024.) The second
command-line argument indicates that 3 workers should be created to service requests. The
third argument is the directory where the HTML files are located. On my machine they arein
ht m di r, which is a subdirectory of the current directory. You can use a fully qualified path-
name if necessary.

Possible output from this simple Web server application is shown in Listing 13.8.

LisTING 13.8 Possible Output from HttpServer with 3 Threads

1: HttpServer ready to receive requests
2: workerl D=0, requestLine=GET / HTTP/1.0
3: worker| D=0, 200 OK: /index.htm
4: HttpServer too busy, denying request
5: HttpServer too busy, denying request
6: worker| D=1, requestLine=CET /inages/one.gif HITP/ 1.0
7: worker| D=0, requestLine=CGET /inages/five.gif HITP/ 1.0
8: workerl D=2, requestLine=CGET /inages/twDOESNOTEXI ST. gi f HTTP/ 1.0
9: workerl D=1, 200 OK: /inmmges/one.gif
10: worker|I D=0, 200 OK: /images/five.gif
11: worker| D=2, 404 Not Found: /inmages/twoDOESNOTEXI ST. gi f
12: worker| D=1, requestLine=CGET / HTTP/ 1.0
13: workerl D=1, 200 OK: /index.htm
14: wor ker | D=0, requestLine=CGET /i nages/twoDOESNOTEXI ST. gi f HTTP/ 1.0
15: worker|I D=2, requestLine=CGET /inmages/three.gif HITP/ 1.0
16: worker| D=1, requestLine=CGET /inages/four.gif HITP/ 1.0
17: worker| D=0, 404 Not Found: /inmages/twoDOESNOTEXI ST. gi f
18: worker| D=2, 200 OK: /images/three.gif

=
©

wor ker | D=1, 200 OK: /inmges/four.gif

337

13

ONITOOd AVv3dH |

338

Techniques

PART Il

When the server is up and running and ready to received requests, it prints a message (line 1).
| used Netscape 4.5 to request the following URL :

http://1ocal host: 2001/

NoTE

The hostname | ocal host is used in TCP/IP networking to generically refer to the cur-
rent machine. If you don’t have | ocal host defined on your system, you can supply
another hostname or an IP address. Additionally, you can consider adding the follow-
ing line to your machine’s host s file (it may be / et ¢/ host s, C: \ wi ndows\ host s, or
something else):

127.0.0.1 | ocal host

The Web browser requests a connection on port 2001 of | ocal host . Then, it asks for filename
/. Thisrequest is handed off to worker o (line 2). The worker responds with /i ndex. ht mi (line
3). When the browser parses this HTML file, it very quickly requests the 5 graphic files refer-
enced. Only 3 workers are available, so when the server is flooded with these requests, it
denies 2 of them (lines 4-5). Worker 1 is assigned to /i mages/ one. gi f (line 6), finds it, and
sendsit (line 9). Worker 0 isassigned to / i mages/ fi ve. gi f (line7), findsit, and sends it (line
10). Worker 2 looks for the nonexistent file /i mages/ t woDOESNOTEXI ST. gi f (line 8), can’t find
it, and sends back the 404 Not Found response (line 11).

After this, the browser looks like Figure 13.1. Notice that the graphics for 2, 3, and 4 are miss-
ing. The graphic for 2 does not exist and looks slightly different than the surrogate images sup-
plied by Netscape for 3 and 4.

To attempt to get the other graphicsto load, | clicked on the Location field in the Web browser
and pressed the Enter key to retrieve the page again. Referring back to Listing 13.8, you can
seethat the/ fileisrequested again (line 12) and served back by worker 1 (line 13). Thistime,
only 3 images are requested because the other 2 are aready |oaded. The t woDOESNOTEXI ST. gi f
image is requested again (line 14) by the Web browser in the hope that the image is now there.
It isnot, and the 404 Not Found response is sent again (line 17). Workers are available this
timetosendthree. gi f andfour. gif (lines 15-16 and 18-19).

After this second try, the browser looks like Figure 13.2. Notice that everything is drawn,
except for the missing t woDOESNOTEXI ST. gi f image.

Thread Pooling

F ﬂ'ﬂldaliu j Lexatarn e ricoaros a1 |

CHAPTER 13

Thread pocling hedps 1o sae the WM the work of creating and destroying
ihreads when they can be ey recyshed,

Thread pocling reduces responss time sncs the worker thread s already
preated, staried, and running. | is enky waiting for the signal e go!

Thiead poslng holds resourcs wsage 16 4 predelemised, upper s,
Instead of starting a mew thread for every request recefved by an MTTP
sEnvar, a sel of workers s available 10 sendoe neguests. When this set is
Bang complalaly ussd by clhar ragiissls, Ihe demer doas nal ingreass ils
load, bt rejecls requests ol a worksr becomes available,

Thread pocling generaly works best when a thread is only nesded for 2
briaf panicd of tma

Wihen uging the Bresd pooling bechaiges, fare musl be laken fo
reasanably srsure thal thresds don't become deadiockad or dis.

il

| D Doy (BN N

Ficure 13.1

The first attempt to retrieve the page, with only 3 worker threads.

ﬂ'ﬂldaliu j Locaian e 1ot R — =]

|

®
®

Thread pocling hedps 1o sawe the WM the work of creating and destroying
ihreads when they can be ey recyshed,

Thread pocling reduces responss time snos the worker thread s already
preated, staried, and running. | is enky waiting for the signal e go!

Thread pocling holds respures wsage 16 3 predetermised, upper s,
Insted of starting a mew thread for every request recenved by an HTTP
sEnvar, a sel of workers is available 1o serdce requests. Whan this sat is
Baing complalely ussd by clher raguesls, (he semner doas nal ingreass ils
load, (bt rejects requests ot a worksr bacomes availakbile.

Thread pocling generaly works best when a thread is only needed for a
brial panad of tma

Wihen uging the Bresd pooling bechaiges, fare mes ba laken fo
reasanably srsure thal threasds don't become deadlockad or dis.

| sz Diarm L e g O oWl |

Ficure 13.2

The second attempt to retrieve the page.

339

13

9NITOOd AvIdH |

340 Techniques

PART Il

Running HttpServer with 10 Workers

If, instead, Ht t pSer ver is started with 10 workers,
java HttpServer 2001 10 htmidir

more resources are available to meet the demands. The Web browser is closed and restarted,
and the same URL is requested. Thistime, the server output is shown in Listing 13.9. The Web
browser looks like Figure 13.2 on the first try.

LisTiNG 13.9 Possible Output from HttpServer with 10 Threads

1: HttpServer ready to receive requests
2: workerl D=0, requestLine=GET / HTTP/1.0
3: worker| D=0, 200 OK: /index.htm
4: worker| D=4, requestLine=GET /images/four.gif HITP/ 1.0
5: worker| D=1, requestLine=CET /inages/one.gif HITP/ 1.0
6: workerl D=2, requestLine=CGET /inages/twDOESNOTEXI ST. gi f HTTP/ 1.0
7: workerl D=3, requestLine=GET /images/three.gif HITP/ 1.0
8: workerl D=4, 200 OK: /images/four.gif
9: workerl D=1, 200 OK: /immges/one.gif
10: workerI D=3, 200 OK: /immges/three.gif
11: workerlI D=2, 404 Not Found: /i nmages/twoDOESNOTEXI ST. gi f
12: worker| D=6, requestLine=CGET /inages/five.gif HITP/ 1.0
13: worker|I D=6, 200 OK: /images/five.gif

With 10 workers running, none of the requests are denied—the simple Web server hasidle
workers to spare. When you run the server, you are likely to see slightly different ordering of
requests and responses.

You can expand on this design to include a short wait before requests are denied. This would
allow some time for a worker to finish up and put itself back into the idle queue.

Summary

Thread pooling can be used when athread is needed for a relatively short time. Thread pooling
allows a thread to be assigned to a task and, when the task completes, to be recycled for use in
another task. Because threads in the pool are already up and running, response time is usually
reduced. The number of threads in the pool can be fixed to an upper limit to prevent a sudden
overloading of the application.

I showed you how to create a generic pool of threads to execute therun() method of objects
that implement the Runnabl e interface. Then, | showed you how to create a specialized pool of
threads to service HTTP requests. Both these techniques can be elaborated on to provide more
specialized and robust solutions in your code.

