
DATABASE SYSTEMS

Database programming in a web environment

Database System Course, 2016-2017

The final project

Advanced Mysql

Database programming

Recap: DB servers in the web

Web programming architecture

HTTP on a need-to-know basis.

How to use web APIs

AGENDA FOR TODAY

Project goal

Designing and implementing a web application from the domain of venues and
entertainment

App should be context aware: output considers users preferences such as
location, age, etc.

Requirements

Coding in PHP or Python

Teams of 4-5 (send me your names)

Everything must run on university servers

Should be from the venues/entertainment domain

Should use the approved API services to retrieve venues data

THE FINAL PROJECT

Project phases:

1. Assemble a team of 4-5 people and send me your names. (I will send you back a DB user and a password)

2. Choose an idea/concept for a venue related app (e.g., “Date-night planner: Compose your perfect evening
plans”)

3. Browse through the available APIs and pick the one that contain data you might be using

4. Decide on the queries and the search options that will be available to your users,

5. Design your database according to the queries

6. Retrieve data via the API of your choice, then insert it to the DB (you can use either python/php scripts or
an SQL procedure)

7. Compose the complex queries and optimize them.

8. Wrap everything with a nice web UI

9. Upload everything to the university server and make sure it works

10. Write a documentation file

11. Submit via moodle.

THE FINAL PROJECT

Important tips

Working in a group of 4-5 is not easy. Plan and divide the tasks efficiently

APIs have requests limits. Start using them early to fetch enough data

Your application should not be based on users contribution (this is not a social network), but
on the data you retrieve via the API and a minimal user choices and preferences.

Our university has a python django/flask server for python web development, and a PHP
support (we will cover it in the next lecture). It might not contain external libraries and
deployment might be a pain. So make a “test run” every once in a while to make sure that it
works.

Remember that this is still a database course project, and focus on an effective design,
optimizations, and on composing interesting, complex queries.

THE FINAL PROJECT

The final project

Advanced Mysql

Database programming

Recap: DB servers in the web

Web programming architecture

HTTP on a need-to-know basis.

How to use web APIs

AGENDA FOR TODAY

More than just SELECT

• CREATE

• INSERT

• UPDATE

ADAVANCED MYSQL

More than just SELECT

• ALTER

• DELETE

• DROP

ADAVANCED MYSQL

Creating tables:

• Field constraints:

• NOT NULL - Indicates that a column cannot store NULL value

• UNIQUE - Ensures that each row for a column must have a unique
value

• PRIMARY KEY - A combination of a NOT NULL and UNIQUE.
Ensures that a column (or combination of two or more columns) have
a unique identity which helps to find a particular record in a table
more easily and quickly

• FOREIGN KEY - Ensure the referential integrity of the data in one
table to match values in another table

• CHECK - Ensures that the value in a column meets a specific
condition

• DEFAULT - Specifies a default value for a column

ADAVANCED MYSQL

Creating tables

• Constraints:

ADAVANCED MYSQL

Full Text search: MATCH … AGAINST

• Please don’t use “…LIKE “%MySQL%”.

• + for AND

• - for NOT,

• nothing for OR

ADAVANCED MYSQL

MySQL Optimizations

• Storage Engines (Database Engine):

• The underlying software performing CRUD operations:
Create, Read, Update, Delete.

• The storage engine implements the data structures and
memory usage strategy

• Many of the modern DBMS support multiple storage engines
within the same database

• MySQL support InnoDB and MyISAM

ADAVANCED MYSQL

MySQL Optimizations (Storage Engines)

• InnoDB:

• The default general-purpose MySQL storage engine

• ACID Compliant:

• Atomicity: A transaction (i.e., set of DB operations) is atomic

• Consistency: Any given database transaction must change affected data
only in allowed ways (Triggers, Constraints)

• Isolation: Concurrent transactions are isolated from one to another

• Durability: The ability of the system to recover committed transaction
updates if either the system or the storage media fails

• Main Features:

✦ Takes care of data integrity

✦ Row-level locking

ADAVANCED MYSQL

MySQL Optimizations (Storage Engines)

• MyISAM (Indexed Sequential Access Method)

• Storage paradigm:

✦ Each entry points to a record in the data file, and the pointer is offset from the
beginning of the file

✦ This way records can be quickly read, especially when the format is FIXED

✦ Inserts are easy too, because new rows are appended to the end of the data file

✦ However, delete and update operations are more problematic: deletes must leave
an empty space, or the rows' offsets would change; the same goes for updates, as the
length of the rows becomes shorter ;

• Main features:

✦ Non Transactional (Does not support foreign keys)

✦ Fits for Read Mostly environments (because of the table level locking mechanism)

ADAVANCED MYSQL

MySQL Optimizations: Indexing

•If you don't use indexes:

✦Your DB is small (or)

✦Your DB is slow

•Indexes are used to find rows with specific column values quickly

•Can be single or multi-column.

•Can use only part of the data:

•Examples:

•CREATE INDEX last ON Students (LastName)

•CREATE INDEX full_name ON Students (FirstName, LastName)

•CREATE INDEX part_of_name ON Students (LastName(5));

ADAVANCED MYSQL

MySQL Optimizations: Indexing

•Without an index, MySQL must begin with the first row and then read through
the entire table to find the relevant rows

•Updates cost more…

•Storing indexes:

•B-tree (Search, insert and delete are O(log(n))

•R-tree (Spatial Data)

•Hash tables

•Inverted lists (mapping words/numbers to DB entries)

•FULLTEXT

ADAVANCED MYSQL

Schema Design: You will have/already had a dedicated class on DB design principles, so please
don’t worry.

1. Use primary keys:

• They have special indexes in InnoDB for fast lookups

• If your table is big and important, but does not have an obvious column or set of columns
to use as a primary key:

• Create a separate column with auto-increment values to use as the primary key.

• These unique IDs can serve as pointers to corresponding rows in other tables when
you join tables using foreign keys.

2. Use foreign keys:

• Mostly for data integrity

• For optimisation: Large tables Vs. Many small tables

• Consider splitting your less-frequently used data into separate tables

• Each small table can have a primary key for fast lookups of its data, and you can
query just the set of columns that you need using a join operation.

• Queries might perform less I/O and take up less cache memory because the

DB DESIGN: TIPS AND TRICKS

Schema Design: You will have/already had a dedicated class on DB design principles don’t
worry

3. Use indexes *when appropriate*:

• They take more storage and update costs more

• Multi column Vs. Single column: It depends on the query (‘Or’ vs. ‘And’)

• For full text search use a reverse index.

• Rebuild indexes after your DB is stable.

4. Choose a storage engine

5. Use correct data types:

• Smallest as possible to minimize disk space

6. Use “NOT NULL” as often as possible

• Enabling better use of indexes and eliminating overhead for testing whether each value is
NULL

7. Normalization ?(Avoiding redundant data by using unique IDs)

• To save disk space, do it. For fast retrieval: Don’t.

DB DESIGN: TIPS AND TRICKS

The final project

Advanced Mysql

Database programming

Recap: DB servers in the web

Web programming architecture

HTTP on a need-to-know basis.

How to use web APIs

AGENDA FOR TODAY

WORKFLOW:

Using a mysqlDB (python 2.7x) or MySQLClient (python
3.x)

• Install mysqlDB or mysqlclient via PIP

DB PROGRAMMING
HELLOWORLD

Using a mysqlDB (python 2.7x) or mysqlclient (python 3.x)

• In your Python script:

1. Import MySQLdb

2. Create a connector to the DB with: server name, user, password , DB name

1. THE CONNECTOR

Using a mysqlDB (python 2.7x) or mysqlclient (python 3.x)

• In your Python script:

1. Create a cursor (cur = con.cursor())

2. Execute a query (cur.execute(“<YOURSQL_QUERY>”)

3. Fetch the rows in the results (rows=cur.fetchall())

2. THE CURSOR

Using a mysqDB (python 2.7x) or mysqlclient (python 3.x)

• In your Python script:

1. Working the results:

1. Reference by position (row[0], row[1])

2. Reference by column name (row[“Id”], row[“Name”])

3.1 FETCH ALL

Using a mysqDB (python 2.7x) or mysqlclient (python 3.x)

• In your Python script:

1. Fetching row by row:

1. After execution get the number of results (cur.rowcount)

2. In a FOR loop: Use fetchone() to get one row at a time.

3.2 FETCH ONE

Using a mysqDB (python 2.7x) or mysqlclient (python 3.x)

• In your Python script:

1. Working with user input: with regular string manipulation

 student_name = raw_input(“Enter a student name”)

 query=“SELECT * from Students WHERE FirstName = %s” % (student_name)

 Cur.execute(query)

4. ADDING USER INPUT

LITTLE BOBBY TABLES
 student_name = raw_input(“Robert’);DROP TABLE Students; --”)

 query=“SELECT * from Students WHERE FirstName = %s” %
(student_name)

 Cur.execute(query)

Using a mysqDB (python 2.7x) or mysqlclient (python 3.x)

• In your Python script:

1. Using a “Prepared Statement” to:

•Prevents the reparsing of SQL statements

•Used for statements executed more than once

5. PREPARED STATEMENT

Performing C U D operations:

• Commit() if everything went well

• Rollback() if there is something wrong

6.C/U/D OPERATIONS

Performing C U D operations:

• Using Batch CUD operations to boost performance:

• If it not fast enough, auto-commit might be ON.

• Add “SET autocommit 0;” to your SQL transaction.

6.1. BATCHED C/U/D OPS.

1. Use efficient SQL statements:

• “SELECT * FROM Students” vs “ SELECT `FirstName`,`LastName` FROM Students”

2. Secure your code

•Prepared statements

•Input sanitation.

•Define MySQL users correctly

3. Separate the DB layer from the UI layer:

DB PROGRAMMING:
GUIDELINES

DB Logic GUI

Interface

Interface

Data Data

The final project

Advanced Mysql

Database programming

Recap: DB servers in the web

Web programming architecture

HTTP on a need-to-know basis.

How to use web APIs

AGENDA FOR TODAY

Web browser and web server are communicating via the HTTP
protocol.

Web servers (and MySQL clients) are communicating via the MySQL
protocol (TCP)

DATABASE ARCHITECTURE
ON THE WEB (NETWORK)

Listening on port:80 Listening on port:3306

HTTP GET Request

HTTP Response

MySQL connection

“Select * from
Images…”

OK: Img01,
Img02….

 Web Server:

A computer program that accepts HTTP requests and return HTTP responses with optional data
content.

A computer that runs a computer program as described above.

Most common platforms: Apache, IIS (Microsoft), Enginex

Web Client (browser):

A software application for retrieving, presenting, and traversing information resources on the World
Wide Web

Usually parses HTML (HyperText Markup Language) , CSS and JavaScript and present it to the user
as a web page. (More details on the next recitation).

Most common browser: Firefox, Google Chrome, Ms Internet Explorer, Safari

Web API (Application Programming Interface):

A publicly exposed endpoint to a defined request-response message system, (typically expressed in
JSON or XML)

WEB PROGRAMMING:
DEFINITIONS

 Web Server programming language:

A server-side programming language for executing code that reads HTTP requests and generates
HTTP responses.

Designed for the web architecture:

• Multiple clients accessing a web server on the same

• Content is dynamic

Most programming languages can handle HTTP requests (e.g., C, C++, Python, Java etc.)

WEB PROGRAMMING:
DEFINITIONS

The final project

Advanced Mysql

Database programming

Recap: DB servers in the web

Web programming architecture

HTTP on a need-to-know basis.

How to use web APIs

AGENDA FOR TODAY

HTTP (Hyper Text Transfer Protocol)

An application layer protocol

Hyper Text: A text displayed on a computer display or other electronic devices with references (hyperlinks)
to other text which the reader can immediately access, or where text can be revealed progressively at
multiple levels of detail

Based on Client Requests of Resources (URI) and Server Response

Resources to be accessed by HTTP are identified using Uniform Resource Identifiers (URIs).

Can be referring to web pages, media (image/video) or other data objects.
⦿ Resources to be accessed by HTTP are identified using Uniform Resource Identifiers (URIs).

INTRO TO HTTP

HTTP Session

An HTTP client initiates a request by establishing a Transmission Control Protocol (TCP)
connection to a particular port on a server (typically port 80,)

 An HTTP server listening on that port waits for a client's request message.

 Upon receiving the request, the server sends back a status line, such as "HTTP/1.1 200 OK", and a
message of its own.

INTRO TO HTTP

HTTP Requests

Most common client requests are HTTP GET and HTTP POST

HTTP GET can transfer parameters within the URL

Example: https://www.google.co.il/?q=database+systems

HTTP POST is used to post data up to the web server

HTTP Request headers

Used to pass information to the web server such as language, supported encoding, User-Agent, etc.

INTRO TO HTTP

https://www.google.co.il/?q=database+systems

HTTP Response

The first line is called the status line, followed by optional response header(s).

The status line has the following syntax:

•HTTP-version status-code reason-phrase

•HTTP-version: The HTTP version used in this session. Either HTTP/1.0 and HTTP/1.1.

•status-code: a 3-digit number generated by the server to reflect the outcome of the request.

•reason-phrase: gives a short explanation to the status code.

Common status code and reason phrase are "200 OK", "404 Not Found", "403 Forbidden", "500 Internal Server
Error".

 

INTRO TO HTTP

The final project

Advanced Mysql

Database programming

Recap: DB servers in the web

Web programming architecture

HTTP on a need-to-know basis.

How to use web APIs

AGENDA FOR TODAY

A web service is like a website but is structured.

It is for programs, not for humans.

RESTful: REpresentational State Transter (ful)

REST APIs have the following characteristics:

•Representations: which are the objects like in OOP

•Messages: the client and the servers are sending messages to each
other

•Stateless: Like the internet. REST is stateless.

•Links between resources: Same as in URI and URLs.

The response message will be in JSON or XML

WEB SERVICES

Q&A platform , one of its known instances is stack
overflow

STACKEXCHANGE API

Stack exchange API example :

STACKEXCHANGE API

The result is a huge json:

STACKEXCHANGE API

Using a library called urllib2.

This examples show how to fetch a website content:

After executing the above commands, html will be a string
containing the website’s content.

USING PYTHON FOR WEB API

Using a “request” object, you can generate a post request:

•Create a dictionaries with variables and values

•Create a new Request object and load it with the URL and
the dict.

•Execute the request via urlopen

USING PYTHON FOR WEB API

Using a “request” object, you can generate a post request:

•Create a dictionaries with variables and values

•Create a new Request object and load it with the URL and
the dict.

•Execute the request via urlopen

USING PYTHON FOR WEB API

SETUP

•We will need to import libraries for HTTP handling, JSON
handling and Zlib compression handling.

•Using the stack exchange API key we get more quota.

USING PYTHON FOR STACK
EXCHANGE API

SETUP

•We will need to import libraries for HTTP handling, JSON handling and
Zlib compression handling.

•Using the stack exchange API key we get more quota.

USING PYTHON FOR STACK
EXCHANGE API

We want to get answers to questions by their question ID.

•Assume this is the question ID list :

•The basic method for retrieving:

1. Preparing list of url encoded parameters (line 24)

2.compiling the URL (line 25)

3. Executing the request (line 30)

4.decompressing the results (31)

5.Parsing the Json into a dictionary and return it (line 32)

USING PYTHON FOR STACK
EXCHANGE API

Still it is not so simple as stack exchange are not פרייארים:

★Requests quota is limited

★“Backoff”: If you don’t wait the backoff, you are banned.

★They don't send all results at once (“hasMore”)

★No more than 100 questions IDs can be sent at once.

USING PYTHON FOR STACK
EXCHANGE API

The very basics of web programming:

Installing Xampp (Apache, MySQL,PHP)

Introduction PHP and server side scripting

Introduction to HTML, CSS and JavaScript programming

ON THE NEXT LECTURE

