DATABASE SYSTEMS

Database programming in a web environment

Database System Course

o

TeL AVIV UNIVERSITY

AGENDA FOR TODAY

W\, The final project
W\, Advanced Mysq

W\, Database programming

W\, Recap: DB servers in the web

WY\, Web programming architecture

NG

P on a need-to-know basis.

Y\, How to use web APIs

THE FINAL PROJECT

W\ Project goal
W\ Building your very own web application
W\ Design a database, optimize it and compose several complex queries
W\ Data will be obtained from the world wide web
\,Requirements
W\, Coding in Python, or in PHP if you wish. No other languages allowed
W\ Teams of 4-5 (send me your names)

RThe web application will be deployed and run on university servers.

THE FINAL PROJECT
STEP BY STEP

| .Assemble 2.Find the
a team APl you like

3.Get a 4.Design the
oeneral Idea database
6.Compose o |
8.Build a Ul
9.Test on | 0. Write ,
|
UNI servers 1. Submit!

S.Fetch the
data

THE FINAL PROJECT

W\ Important tips
W\ Read the project document and the grading guide carefully!
W\, Working in a group of 4-5 is not easy. Plan and divide the tasks efficiently
W APIs have requests limits. Start using them early to fetch enough data.

W\, Your application should not rely on users contribution for its main
functions.

W\ Constantly test your code on the university servers, don't leave it to the
last minute.

W\ Focus on the DB design, optimizations and interesting queries, rather on
the Ul

W\ Get the bonus! (+10 points)

AGENDA FOR TODAY

W\, The final project

Y\, Advanced Mysq|

W\, Database programming

W\, Recap: DB servers in the web
Y\, Web programming architecture
W\, HTTP on a need-to-know basis.
Y\, How to use web APls

ADAVANCED MYSQL

Y\, More than just SELECT

CREATE TABLE students
C

StudentID int,
LastName varchar(20),
FirstName varchar(20),
Image blob

ok

 CREATE

00 NO O WON -

e INSERT

1 | INSERT INTO Students (StudentID, FirstName, LastName, Image)
2 | VALUES (309112442,"Robert","Smith",LOAD_FILE(C'/~/LittleBobby.png'));

« UPDATE

UPDATE Students
SET LastName='Tables'
WHERE CustomerName='Robert’;

H WN -

ADAVANCED MYSQL

Y\, More than just SELECT

e ALTER
1 TALTER TABLE Students 1 | ALTER TABLE Students
2 | ADD DateOfBirth Date; 2 |DROP COLUMN Image;
3 3
e DELETE
1| DELETE FROM Studnets
2 | WHERE FirstName='Robert’;
3 ||
e DROP

1 | DROP TABLE Students
215

ADAVANCED MYSQL

Y\, Creating tables:
 Field constraints:
e NOT NULL - Indicates that a column cannot store NULL value

o UNIQUE - Ensures that each row for a column must have a unique
value

e PRIMARY KEY - A combination of a NOT NULL and UNIQUE.
Ensures that a column (or combination of two or more columns) have

a unique identity which helps to find a particular record in a table
more easily and quickly

o FOREIGN KEY - Ensure the referential integrity of the data in one
table to match values in another table

e CHECK - Ensures that the value in a column meets a specific
condrtion

e DEFAULT - Specifies a default value for a column

ADAVANCED MYSQL

Y\, Creating tables

* Constraint{ | [CREATE TABLE Studnets

C

StudentID int NOT NULL AUTO_INCREMENT,
FirstName varchar(20) NOT NULL,
LastName varchar(20) NOT NULL,

Image blob,

PRIMARY KEY (StudentID),

CHECK (StudentID>0)

);

© 00O NO O WM

CREATE TABLE TeacherAssistants

C

TeacherID int NOT NULL,
TeachingSubject varchar NOT NULL,
StudentID int,

PRIMARY KEY (TeacherID),

FOREIGN KEY (StudentID) REFERENCES Students(StudentID)

);

O© 0O NO O WON -

ADAVANCED MYSQL

Y\, Full Text search: MATCH ... AGAINST
* Please don't use “...LIKE “%6MySQL%"".
* + for AND
« - for NOT,
* nothing for OR

mysgl> SELECT * FROM articles WHERE MATCH (title, body)
—> AGAINST ('+MySQL -YourSQL' IN BOOLEAN MODE) ;

e o - +
| id | title | body |
e et e it +
1	MySQL Tutorial	DBMS stands for DataBase
2	How To Use MySQL Well	After you went through a
3	Optimizing MySQL	In this tutorial we will show ...
4	1001 MySQL Tricks	1. Never run mysqgld as root. 2.
6	MySQL Security	When configured properly, MySQL
+ -

ADAVANCED MYSQL

Y\, MySQL Optimizations
« Storage Engines (Database Engine):

» The underlying software performing CRUD operations:
Create, Read, Update, Delete.

- The storage engine implements the data structures and
memory usage strategy

» Many of the modern DBMS support multiple storage engines
within the same database

» MySQL support InnoDB and MyISAM

ADAVANCED MYSQL

Y\, MySQL Optimizations (Storage Engines)
* InnoDB:
* The default general-purpose MySQL storage engine
« ACID Compliant:
« Atomicity: A transaction (i.e., set of DB operations) is atomic

- Consistency: Any given database transaction must change affected data
only in allowed ways (Triggers, Constraints)

* Isolation: Concurrent transactions are isolated from one to another

* Durability: The ablility of the system to recover committed transaction
updates If either the system or the storage media fails

* Main Features:
+ Takes care of data integrity

+ Row-level locking

ADAVANCED MYSQL

Y\, MySQL Optimizations (Storage Engines)
e Myl[SAM (Indexed Sequential Access Method)
e Storage paradigm:

4+ Each entry points to a record in the data file, and the pointer is offset from the
beginning of the file

4+ This way records can be quickly read, especially when the format is FIXED
4+ Inserts are easy too, because new rows are appended to the end of the data file

+ However, delete and update operations are more problematic: deletes must leave
an empty space, or the rows' offsets would change; the same goes for updates, as the
length of the rows becomes shorter;

* Main features:
4+ Non Transactional (Does not support foreign keys)

4+ Fits for Read Mostly environments (because of the table level locking mechanism)

ADAVANCED MYSQL

Y\, MySQL Optimizations: Indexing
*|f you don't use indexes:
4 Your DB is small (or)
4+Your DB is slow
*Indexes are used to find rows with specific column values quickly
*Can be single or multi-column.
*Can use only part of the data:
Examples:
*CREATE INDEX last ON Students (LastName)
*CREATE INDEX full_name ON Students (FirstName, LastName)
*CREATE INDEX part_of_name ON Students (LastName(5));

ADAVANCED MYSQL

Y, MySQL Optimizations: Indexing

*Without an index, MySQL must begin with the first row and then read through
the entire table to find the relevant rows

*Updates cost more...

*Storing indexes:
*B-tree (Search, insert and delete are O(log(n))
*R-tree (Spatial Data)
*Hash tables

*Inverted lists (mapping words/numbers to DB entries)

*FULLTEXT

DB DESIGN: TIPS AND TRICKS

¥\, Schema Design: You will have/already had a dedicated class on DB design principles, so please
don't worry.

. Use primary keys:
* They have special indexes in InnoDB for fast lookups

« If your table is big and important, but does not have an obvious column or set of columns
to use as a primary key:

* Create a separate column with auto-increment values to use as the primary key.

* These unique IDs can serve as pointers to corresponding rows in other tables when
you join tables using foreign keys.

2. Use foreign keys:
* Mostly for data integrity
« For optimisation: Large tablesVs. Many small tables
 Consider splitting your less-frequently used data into separate tables

* Each small table can have a primary key for fast lookups of its data, and you can
query just the set of columns that you need using a join operation.

* Queries might perform less /O and take up less cache memory because the

DB DESIGN: TIPS AND TRICKS

¥\, Schema Design: You will have/already had a dedicated class on DB design principles don’t
worry

3. Use indexes *when appropriate®:
* They take more storage and update costs more
« Multi columnVs. Single column: [t depends on the query (‘Or’ vs.'And’)
« For full text search use a reverse index.
* Rebuild indexes after your DB is stable.
4. Choose a storage engine
5. Use correct data types:
+ Smallest as possible to minimize disk space

6. Use “NOT NULL” as often as possible

* Enabling better use of indexes and eliminating overhead for testing whether each value is
NULL

/. Normalization ?(Avoiding redundant data by using unique |IDs)

* To save disk space, do it. For fast retrieval: Don't.

AGENDA FOR TODAY

W\, The final project

Y\, Advanced Mysq

Y\, Database programming
W\, Recap: DB servers in the web
Y\, Web programming architecture
W\, HTTP on a need-to-know basis.
Y\, How to use web APls

WORKFLOWYV:

Step 1: Establish a Connection
* Allocate Environment Handle

* Set ODBC Version

* Allocate Connection Handle

¢ Connect to MySQL Server

* Set Optional Connection Attributes

Step 2: Initialize the Statement
* Allocate Statement Handle
* Set Optional Statement Attributes

—_—

Step 3: Execute SQL Statement

* Prepare the SQL statement

* Execute the SQL statement or
execute it directly without prepare

—_—

SELECT / SHOW / Catalog API

Step 4: Fetch Results

¢ Get Number of Columns
¢ Get Column information
* Fetch Rows

* Get the data to buffers

*

Statement Type?

DELETE / UPDATE / INSERT

—

Step 4: Fetch Results

* Get Number of rows affected

e

o]

Step 5: Transaction
¢ Perform commit or rollback

—

Step 6: Disconnect

* Disconnect the connection
* Free Connection Handle

* Free Environment Handle

DB PROGRAMMING
HELLOWORLD

AN Using a mysqIDB (python 2.7x) or MySQLClient (python
3.X)

* |nstall mysglDB or mysalclient via PIP

~ sudo pip install Mysql-python
The directory '/Users/amitso/Library/Caches/pip/http’' or its parent directory is not owned by the current
user and the cache has been disabled. Please check the permissions and owner of that directory. If executi
ng pip with sudo, you may want sudo's -H flag.
The directory '/Users/amitso/Library/Caches/pip' or its parent directory is not owned by the current user
and caching wheels has been disabled. check the permissions and owner of that directory. If executing pip
with sudo, you may want sudo's -H flag.

Collecting Mysqgl-python
Downloading MySQL-python-1.2.5.zip (108kB)
100% | I | 112kB 548kB/s
Installing collected packages: Mysql-python
Running setup.py install for Mysql-python ... done
Successfully installed Mysqgl-python-1.2.5

|.THE CONNECTOR

IAN Using a mysqIDB (python 2.7x) or mysqlclient (python 3.x)
* In your Python script:

|, Import MySQLdb

2. Create a connector to the DB with: server name, user, password , DB name

#!/usr/bin/python
-*- coding: utf-8 -*-

import MySQLdb as mdb

con = mdb.connect('localhost', 'testuser', 'test623', 'testdb');

2. THE CURSOR

Y\, Using a mysqIDB (python 2.7x) or mysgqlclient (python 3.x)
* In your Python script:

|. Create a eursor (cur = con.cursor())

2. Execute a query (curexecute("<YOURSQL_QUERY>")

3. Fetch the rows in the results (rows=curfetchall())

#!/usr/bin/python
-*- coding: utf-8 -*-

import MySQLdb as mdb
con = mdb.connect('localhost', 'testuser', 'test623', 'testdb')

with con:

cur = con.cursor(mdb.cursors.DictCursor)
cur.execute("SELECT * FROM Writers LIMIT 4")

rows = cur.fetchall()

3.1 FETCHALL

Y\, Using a mysqDB (python 2.7x) or mysgqlclient (python 3.x)
* In your Python script:
|. Working the results:
|. Reference by position (row[0], row[!])

2. Reference by column name (row[“ld"], row["Name”])

#!/usr/bin/python
-*- coding: utf-8 -*-

import MySQLdb as mdb
con = mdb.connect('localhost', 'testuser', 'test623', 'testdb')
with con:

cur = con.cursor(mdb.cursors.DictCursor)
cur.execute("SELECT * FROM Writers LIMIT 4")

rows = cur.fetchall()

for row in rows:
print row["Id"], row["Name"]

3.2 FETCH ONE

Y\, Using a mysqDB (python 2.7x) or mysgqlclient (python 3.x)
* In your Python script:
|. Fetching row by row:
|, After execution get the number of results (cur.rowcount)

2. Ina FOR loop: Use fetchone() to get one row at a time.

#!/usr/bin/python
-*- coding: utf-8 -*-

import MySQLdb as mdb
con = mdb.connect('localhost', 'testuser', 'test623', 'testdb');
with con:

cur = con.cursor()
cur.execute("SELECT * FROM Writers")

for i in range(cur.rowcount):

row = cur.fetchone()
print row[0], row[1l]

4.ADDING USER INPUT

Y\, Using a mysqDB (python 2.7x) or mysgqlclient (python 3.x)
* In your Python script:

|. Working with user input: with regular string manipulation

>>> student_name = raw_input("Enter a student name”)
>>> query="SELECT * from Students WHERE FirstName = 9%s" % (student_name)

>>> Curexecute(query)

LITTLE BOBBY TABLES

>>> student_name = raw_input(“Robert’; DROP TABLE Students; --”)

>>> query=“SELECT * from Students WHERE FirstName = ‘%s’ ” %
(student_name)

>>> Cur.execute(query)

LITTLE BOBBY TABLES

>>> student_name = raw_input(“Robert’; DROP TABLE Students; --”)

>>> query=“SELECT * from Students WHERE FirstName =
(student_name)

>>> Cur.execute(query)

HI, THIS 1S

WE'RE HAVING SOME
COMPUTER TROUBLE.

\%m

YOUR SON'S SCHOOL.

OH, DEAR - DID HE
BREAK SOMETHING?

IN A WAY

%4

6%59 b %

DID YOU REALLY
NAME YOUR SON
Robert'); DROP
TABLE Students; -~ 7

~OH.YES. LUITTLE
RBOBBY TABLES,
WE CALL HIM.

WELL WE'VE LOST THIS
YEAR'S STUDENT RECORDS.
I HOPE YOURE HAPPY.

{

AND I HOPE
- YOUVE LEARNED
t TOSANMIZE YOUR
DATARASE INPUTS.

5. PREPARED STATEMENT

IAN Using a mysqDB (python 2.7x) or mysqlclient (python 3.x)
* In your Python script:

. Using a “Prepared Statement’ to:
*Prevents the reparsing of SQL statements

* Used for statements executed more than once

#!/usr/bin/python
-*- coding: utf-8 -*-

import MySQLdb as mdb
con = mdb.connect('localhost', 'testuser', 'test623', 'testdb')
with con:

cur = con.cursor()

cur.execute("UPDATE Writers SET Name = %s WHERE Id = %s",
("Guy de Maupasant", "4"))

print "Number of rows updated:", cur.rowcount

6.C/U/D OPERATIONS

Y\, Performing C U D operations:
« Commit() If everything went well

- Rollback() if there is something wrong

#!/usr/bin/python
import MySQLdb

Open database connection
db = MySQLdb.connect("localhost","testuser","test123","TESTDB")

prepare a cursor object using cursor() method
cursor = db.cursor()

Prepare SQL query to UPDATE required records
sql = "UPDATE EMPLOYEE SET AGE = AGE + 1
WHERE SEX = '%c'" % ('M")
try:
Execute the SQL command
cursor.execute(sql)
Commit your changes in the database
db.commit()
except:
Rollback in case there is any error
db. rollback()

disconnect from server
db.close()

6.1.BATCHED C/U/D OPS.

AN Performing C U D operations:
- Using Batch CUD operations to boost performance:
* If it not fast enough, auto-commit might be ON.

- Add “SET autocommit 0;” to your SQL transaction.

con = mysqldb.connect(
host="1localhost",
user="user",
passwd="**"
db="db name”

cur = con.cursor()

for data in your_data list:
cur.execute("data you want to insert: %s" %data)

con.commit()
con.close()

DB PROGRAMMING:
GUIDELINES

1. Use efficient SQL statements:

o “SELECT * FROM Students” vs* SELECT "FirstName’, LastName™ FROM Students”
2. Secure your code

ePrepared statements

*|nput sanitation.

*Define MySQL users correctly

3. Separate the DB layer from the Ul |

ERS

AGENDA FOR TODAY

W\, The final project

Y\, Advanced Mysq

W\, Database programming

AN Recap: DB servers in the web
Y\, Web programming architecture
W\, HTTP on a need-to-know basis.

Y\, How to use web APls

DATABASE ARCHITECTURE
ON THE WEB (NETWORK)

R\/\/eb browser and web server are communicating via the HTTP
protocol.

W\, Web servers (and MySQL clients) are communicating via the MySQL
protocol (TCP)

“Select * from

Images...” -
MySQL connection ~
< =S
o OK: Imgol, g
ImgO02....
Web Server Database Server

Listening on port:80 Listening on port:3306

Web Browser

WEB PROGRAMMING:
DEFINITIONS

A computer program that accepts HT TP requests and return HT TP responses with optional data
content.

R Web Server:

A computer that runs a computer program as described above.

Most common platforms: Apache, 11S (Microsoft), Enginex

\\Web Client (browser):

A software application for retrieving, presenting, and traversing information resources on the VWorld
Wide Web

Usually parses HTML (HyperText Markup Language) , CSS and JavaScript and present it to the user
as a web page. (More details on the next recitation).

Most common browser: Firefox, Google Chrome, Ms Internet Explorer, Safari

W\ \Web API (Application Programming Interface):

A publicly exposed endpoint to a defined request-response message system, (typically expressed in
JSON or XML)

WEB PROGRAMMING:
DEFINITIONS

Y\, Web Server programming language:

A server-side programming language for executing code that reads HT TP requests and generates
HT TP responses.

Designed for the web architecture:
» Multiple clients accessing a web server on the same
» Content Is dynamic

Most programming languages can handle HT TP requests (e.g., C, C++, Python, Java etc.)

PHP
ASP.NET

82.1%

Java
static files
ColdFusion
Ruby

Perl
JavaScript
Python
Erlang

Miva Script
W3Techs.com, 5 April 2016

Percentages of websites using various server-side programming languages
Note: a website may use more than one server-side programming language

AGENDA FOR TODAY

W\, The final project

Y\, Advanced Mysq

W\, Database programming

W\, Recap: DB servers in the web

Y\, Web programming architecture

Y\, HTTP on a nheed-to-know basis.
W\, How to use web APIs

INTRO TO HTTP

WHTTP (Hyper Text Transfer Protocol)

An application layer protocol

Hyper Text: A text displayed on a computer display or other electronic devices with references (hyperlinks)
to other text which the reader can immediately access, or where text can be revealed progressively at
multiple levels of detall

Based on Client Requests of Resources (URI) and Server Response
Resources to be accessed by HT TP are identified using Uniform Resource Identifiers (URIs).

Can be referring to web pages, media (image/video) or other data objects.

Application R = e e e e e e e » Application HTTP
Presentation €-------------~-~------- + Presentation SSL
Session L R T > Session
Transport ittt DL LI LI LD L » Transport TCP
Network <--p Network <-»> Network IP
Data Link <-> Data Link <-» Data Link IEEE 802.11x
Physical <+ > Physical <4 b Physical

Immediate Nodes (routers)

ISO OSI 7-layer network

HTTP over TCP/IP

INTRO TO HTTP

RHTTP Session

An HTTP client initiates a request by establishing a Transmission Control Protocol (TCP)
connection to a particular port on a server (typically port 80,)

An HTTP server listening on that port waits for a client's request message.

Upon receiving the request, the server sends back a status line, such as "HTTP/I.1 200 OK" and a
message of its own.

(2) Browser sends a request message

(1) User issues URL from a brow:::er | GET URL HTTP/1.1
http://host:port/path/file Host: host:port
(3) Server maps the URLto a
| file or program under the
(4) Server returns a response message document directory.

. -
| HTTP/1.1 200 OK /
(5) Browser formats the response N eccecacncccannsa ;
and displays , r‘

Client (Browser) HTTP (Over TCP/IP) | Server (@ host :port)

INTRO TO HTTP

W HTTP Requests
Most common client requests are HT TP GET and HTTP POST

HTTP GET can transfer parameters within the URL

Example: https://www.google.co.il/?q=database+systems

HTTP POST s used to post data up to the web server

W HTTP Request headers

Used to pass information to the web server such as language, supported encoding, User-Agent, etc.

GET /doc/test.html HTTP/1l.1 > Request Line A
Host: www.test101.com)
Accept: image/gif, image/jpeg, */* Request
Accept—Langue.\ge: en:us . Request Headers > Message
Accept-Encoding: gzip, deflate Header
User-Agent: Mozilla/4.0
Content-Length: 35 y J

> A blank line separates header & body
bookId=12345&author=Tan+Ah+Teck - Request Message Body

'

https://www.google.co.il/?q=database+systems

INTRO TO HTTP

W HTTP Response
The first line is called the status line, followed by optional response header(s).
The status line has the following syntax:
* HT TP-version status-code reason-phrase
e HT TP-version:The HT TP version used in this session. Either HTTP/1.0 and HTTP/I.1.
e status-code: a 3-digit number generated by the server to reflect the outcome of the request.
*reason-phrase: gives a short explanation to the status code.

Common status code and reason phrase are "200 OK", "404 Not Found", "403 Forbidden", "500 Internal Server
Error".

HTTP/1.1 200 OK > Status Line 3
Date: Sun, 08 Feb xxxx 01:11:12 GMT)
Server: Apache/1.3.29 (Win32) Response
Last-Modified: Sat, 07 Feb xxxx Message
ETag: "0-23-4024c3a5" >Response Headers / Header
Accept-Ranges: bytes
Content-Length: 35
Connection: close
Content-Type: text/html J /

> A blank line separates header & body
<h1>My Home page</h1> '} Response Message Body

i

AGENDA FOR TODAY

W\, The final project
Y\, Advanced Mysq

W\, Database programming

W\, Recap: DB servers in the web

Y\, Web programming architecture

NG

P on a need-to-know basis.

R How to use web APIs

WEB SERVICES

Y\, A web service is like a website but is structured.

Y\ It is for programs, not for humans.
Y\, RESTful: REpresentational State Transter (ful)
Y\, REST APIs have the following characteristics:

{

sRepresentations: which are the objects like in OOP "Nome" s M Vaggas”,
"Email": "m.vaqgas@gmail.com“,

eMessages: the client and the servers are sending messages to eack) Country™: "India
other B
eStateless: Like the internet. REST Is stateless.

<Person>
*Links between resources: Same as in URI and URLs. <ID>1</ID>

L\, The response message will be in JSON or XML <Name>M Vaqggas</Name>

<Email>m.vaqgas@gmail.com</Email>

<Country>India</Country>
</Person>

STACKEXCHANGE AP

L\, Q&A platform , one of its known instances is stack
overflow

Parse JSON in Python

A, My project is currently receiving a JSON message in python which | need to get bits of information
out of. For the purposes of this, lets set it to some simple JSON in a string:
41

v

jsonst[‘ — '{"one" : ll1ll’ "tWO" : ll2ll’ Ilthreell : Il3ll}l

So far I've been generating JSON requests using a list and then json.dumps but to do the opposite
of this | think | need to use json.loads but | haven't had much luck with it. Could anyone provide
10 me a snippet that would return "2" with the input of "two" in the above example?

python json parsing

share improve this question edited Nov 8 '15 at 6:00 asked Oct 14 '11 at 17:00

e [{evin Guan ing0
10.3k 9 #23 47 10.8k =31 » 105 * 161

5 Answers

active oldest votes

A, Verysimple:

96 import json
j = json.loads('{"one" : "1", "two" : "2", "three" : "3"}')
A 4 print j['two']

V share improve this answer answered Oct 14 '11 at 17:05

B John Giotta

STACKEXCHANGE AP

Y\, Stack exchange APl example :

Usage of /answers

Discussion
Returns all the undeleted answers in the system.

The sorts accepted by this method operate on the follow fields of the answer object:

activity - last_activity_ date
creation — creation_date
votes - score

activity is the default sort.

It is possible to create moderately complex queries using sort, min, max, fromdate, and todate.

This method returns a list of answers.

Try It
Stack Overflow [edit] s link | | default filter [edit] ¥
page (995 pagesize B fromdate 2016-04-01
todate [2016-04-02 order desc min
max sort activity
/2.2/answers?fromdate=1459468800&todate=1459555200&order=desc&sort=activity&site=stackoverflow Run

STACKEXCHANGE AP

Usage of /answers

Y\, The result is a huge json: Discussion

Returns all the undeleted answers in the system.

The sorts accepted by this method operate on the follow fields of the answer object:

activity - last_activity_date

" "
items": [
queries using sort, min, max, fromdate, and todate.

{
"owner": {
"reputation": 16,
"user id": 6099389,
"user_ type": "registered",

"profile_image": "https://www.gravatar.com/avatar/5afafd61418ff5c968f2b35438a0f46e?s . .. B . o

e link | T default filter [edit] ¥

\gesize B fromdate 2016-04-01 |

"display name": "Huzaifa Tapal", R B
SO activity >
"link": "http://stackoverflow.com/users/6099389/huzaifa-tapal”
} :14595552008&0rder=desc&sort=activity&site=stackoverflow Run
’ e

"is_accepted": false,

"score": 1,

"last_activity date": (41460432328,
"last_edit date": 1460432328,
"creation_date": 1459528752,
"answer id": 36361513,
"question_id": 12631290

}o
{
"owner": {
"reputation": 4279,
"user id": 2530594,

USING PYTHON FOR WEB API

mtim.port urllib
W\ 1import urllib2

url = 'http://www.someserver.com/cgi-bin/register.cgi’
values = {'name' : 'Michael Foord',
'location’ 'Northampton',
W\ £ 'language’ '"Python’' }

C

data = urllib.urlencode(values)
req = urllib2.Request(url, data)
response = urllib2.urlopen(req)
the page = response.read()

<meta name="application-name" content="Python.org">

<meta name="msapplication-tooltip" content="The official home of the Python Programming Language">
<meta name="apple-mobile-web-app-title" content="Python.org">

<meta name="apple-mobile-web-app-capable" content="yes">

<meta name="apple-mobile-web-app-status-bar-style" content="black">

<meta name="viewport" content="width=device-width, initial-scale=1.0">
<meta name="HandheldFriendly" content="True">

<meta name="format-detection" content="telephone=no">

<meta http-equiv="cleartype" content="on">

<meta http-equiv="imagetoolbar" content="false">

<script src="/static/js/libs/modernizr.js"></script>

USING PYTHON FOR WEB API

Y\, Using a “request” object, you can generate a post request:
*Create a dictionaries with variables and values

Create a new Request object and load it with the URL and
the dict.

sExecute the request via urlopen

import urllib
import urllib2

url = 'http://www.someserver.com/cgi-bin/register.cgi’
values = {'name' : 'Michael Foord',

"location' : 'Northampton',

'language’ : 'Python' }

data = urllib.urlencode(values)
req = urllib2.Request(url, data)
response = urllib2.urlopen(req)
the page = response.read()

USING PYTHON FOR WEB API

Y\, Using a “request” object, you can generate a post request:
*Create a dictionaries with variables and values

Create a new Request object and load it with the URL and
the dict.

sExecute the request via urlopen

import urllib
import urllib2

url = 'http://www.someserver.com/cgi-bin/register.cgi’
values = {'name' : 'Michael Foord',

"location' : 'Northampton',

'language’ : 'Python' }

data = urllib.urlencode(values)
req = urllib2.Request(url, data)
response = urllib2.urlopen(req)
the page = response.read()

USING PYTHON FOR STACK
EXCHANGE API

*We will need to import libraries for HTTP handling, JSON
handling and Zlib compression handling.

Y, SETUP

*Using the stack exchange API key we get more quota.

#!/usr/bin/env python
-*- coding: utf-8 -*-

#IMPORTS

import urllib,urllib2
import json

import zlib

import time

oo WN =

14 SO_API_URL="https://api.stackexchange.com/2.2/"
15 API KEY="gg7oHfBwbgaikrT3CgvfLg(("

USING PYTHON FOR STACK
EXCHANGE API

*We will need to import libraries for HT TP handling, SON handling and
Zlib compression handling.

Y, SETUP

*Using the stack exchange API key we get more quota.

#!/usr/bin/env python
-*- coding: utf-8 -*-

#IMPORTS

import urllib,urllib2
import json

import zlib

import time

oo WN =

14 SO_API_URL="https://api.stackexchange.com/2.2/"
15 API KEY="gg7oHfBwbgaikrT3CgvfLg(("

USING PYTHON FOR STACK
EXCHANGE API

Y\, We want to get answers to questions by their question ID.

* Assume this is the question ID list : QUESTION_LIST=["3577641","379906","91362"]

* The basic method for retrieving: |

|. Preparing list of url encoded parameters (line 24)
2.compiling the URL (line 25)

3. Executing the request (line 30)

4.decompressing the results (3 1)

5.Parsing the Json into a dictionary and return it (line 32)

22 def get answers json(question ids,page):

23 try:

24 params=urllib.urlencode({"site":"stackoverflow", "page":str(page), "key":API KEY})
25 url=SO API URL+"questions/"+";".join(map(str,question ids))+"/answers?"+params
26 except:

27 print "failed Encoding”

28 print ";".Jjoin(question ids)

29 print url

30 res=urllib2.urlopen(url).read()

31 gz_deflate=zlib.decompress(res,16+z1lib.MAX WBITS)

32 return json.loads(gz deflate)

USING PYTHON FOR STACK
EXCHANGE API

L\, Still it is not so simple as stack exchange are not D" INXM19:

% Requests quota is limited
*“Backoff”: If you don’t wait the backoff, you are b 22 des
y y

23
24
*They don’'t send all results at once (“hasMore”) g
27
% No more than 100 questions IDs can be sent at on %
3
32

éet_answers_json(question_ids,page):
try:

params=urllib.urlencode({"site":"stackoverflov

url=SO API URL+"questions/"+";".join(map(str,c
except:

print "failed Encoding"”

print ";".join(question_ ids)
print url
res=urllib2.urlopen(url).read()
gz_deflate=zlib.decompress(res,16+zlib.MAX WBITS)
return json.loads(gz_deflate)

39 has more=True
40 page=1
41 remaining answers quota=1000

42 while has more and remaining answers quota>0:

43 js=get answers json(question batch,page)
44 if js.has key("backoff"):

45 time.sleep(js["backoff"])

46 has more=js["has more"]

47 remaining answers quota=js['quota remaining"]
48 page+=1

49 for ans in js["items"]:

50 answers list.append(ans)

51

52 output=open (ANSWERS OUTPUT, "wb")

53 output.write(json.dumps(answers list))

ON THE NEXT LECTURE

W\ The very basics of web programming:
W\ Installing Xampp (Apache, MySQL,PHP)
W\ Introduction PHP and server side scripting

W\ Introduction to HTML, CSS and JavaScript programming

