
DATABASE SYSTEMS
The very basics of Web programming

Database Systems Course

This lecture is an overview of the very complicated world
of web programming.

If you are a (very) experienced web developer - take a
2.5hr break and come back for the last 20 minutes of the
third period.

The goal of this talk is to introduce you to this world and
give you some tools to explore it by yourself.

You can do this,

even if you have no experience at all.

You may hate it now, and send me thank-you emails after
graduation. ^_^

BEFORE WE START…

The client:

1. Send and receive HTTP

2. Read and parse HTML (or Json
or XML if it is API)

3. I interact with the user

The server(s):

1. Listen and Wait for HTTP
requests

2. Process the request

3. Send a response

4. I’m stateless

CLIENT VS SERVER

I listen on port:80 I listen on port:
3306

HTTP GET Request

HTTP Response

MySQL connection

“Select * from
Images…”

OK: Img01,
Img02….

Part #1: Client side programming:

HTML, CSS Javascript

Responsive design

Front-end frameworks

Part #2: Server side programming

Python (Flask): Install, hello world, requests, cookies, sessions.

Using the university web servers.

Part #3: Using the university servers (python/
php)

AGENDA FOR TODAY

Open a text editor

Type this:

Save the file as my_website.html

Open in your favorite browser

Voila ! ---------------------------->

YOUR FIRST WEBSITE!

Content is identical, regardless (i.e. non-interactive)

To perform changes in content, the programmer has to change the HTML
file.

For example:

A STATIC WEB PAGE

To view the HTML source code, we can right click and select “view
source”

Or use the browser’s developer tools. e.g.

A STATIC WEB PAGE

HTML web page is a document, orgnizied in a tree structure, according to
the Document Object Model (DOM).

The most important nodes:

<html> the root of every web page

<head> containing meta-data and external sources

<body> holds the content of the webpage

<div> is the basic content container.

A STATIC WEB PAGE

Each node is an element

Each element beings and ends with a tag e.g. : <title> Noga Alon </title>

Each element has a set of attributes

• structure: attr = val

•

A STATIC WEB PAGE

Web forms:

Used to collect input from the user and submit it to the server

The values are sent to the web server via HTTP GET/POST requests:

GET: most web requests you will encounter, parameters are passed in the URL

POST: used to send files, large size parameters, and sensitive parameters (passwords)

BASIC “INTERACTIONS”

Web forms:

•The attribute action sets the web URI that will handle the request

•The attribute method will set the HTTP request method (“get” or “post”)

BASIC “INTERACTIONS”

•HTML was pretty “basic” and needed many 3rd party plugins (e.g. Adobe Flash)

•HTML was not standardised and the programmer had to check the rendering of her code in all
browser and handle irrational browser e.g., Internet Explorer.

•HTML5 was introduced in 2014 and includes new tags, attributes and cool features such as:

•Graphic elements: <canvas>, <svg>, <video>, <audio>

•Semantic elements: <footer>, <article>, <section>

•APIs: Geolocation, Drag and Drop, Local Storage

HTML5

So far we learned how to structure the content of a webpage (Like Noga)

This is Tova’s website without style. Looks familiar?

A STATIC WEB PAGE (WITH
STYLE)

For adding some “style”, we use a CSS (Cascading Style Sheet) file.

A STATIC WEB PAGE (WITH
STYLE)

How to set the style of an element:

Example of a CSS file:

CSS FORMAT

You can use multiple style sheets.

FYI: Your browser has its own CSS file that is used by default.

Cascading order (first one has the highest priority):

1.Inline style (inside an HTML element)

2.External and internal style sheets (in the head section)

3.Browser default

EMBEDDING STYLING IN
HTML

1.External CSS file: Include a link to the stylesheet file under the <head> tag
of your HTML file:

2.Internal Stylesheet: Include a tag <style> under the <head> tag:

EMBEDDING STYLING IN
HTML

3.Inline styling: by adding the attribute style:

EMBEDDING STYLING IN
HTML

1.Inheritance of style. (“I changed the font size but I can’t see the changes”)

The best tip in this lecture: use !important

2.Positioning of elements (“This stupid DIV keeps floating over the title”)

3.The box model (“Wait, is it margin-right? or padding-right? I’ll try both and see
what happens”)

WHY PEOPLE HATE CSS?

These are the most important attributes in CSS.

•FYI: It is a nightmare to deal with. Go through this tutorial : http://www.w3schools.com/css/
css_positioning.asp

There are 2 types of elements: Block and Inline

•Block (e.g. DIV, FORM,H1..H6): starts in new line , always extend to the full width
available.

•Inline (e.g. SPAN, IMG, A) does not start on a new line and only takes up as much width
as necessary

The Display attribute: can alter the element’s type or hide it completely.

CSS: DISPLAY AND POSITION

All HTML elements are considered as “boxes” . The box model allows us to
add a border around elements, and to define space between elements:

Content: The content of the box, where text and images appear

Padding: Clears an area around the content. Padding is transparent

Border: A border that goes around the padding and content

Margin: Clears an area outside the border. The margin is transparent

For Example:

THE BOX MODEL

Positioning of elements:

Example:

CSS: DISPLAY AND POSITION

Selection by element ID: (Use when addressing unique elements)

Selection by element class: (can be used for multiple elements)

CSS SELECTORS

Selection by tag:

Grouping selection:

Descendant selection:

MORE CSS SELECTORS

Attributes selection (Attribute selectors selects elements based upon the attributes present
in the HTML Tags and their value):

ONE MORE CSS SELECTOR

Use to refer elements in different stages of execution.

Example: Changing the color of links:

CSS PSEUDO-CLASSES

Used to generate HTML content automatically.

Using the special attribute Content:

CSS PSEUDO-ELEMENTS

Responsive web design makes your web page look good
on all devices

Use only HTML & CSS to resize, hide, shrink, enlarge, or
move the content to make it look good on any screen

RESPONSIVE WEB DESIGN

Viewoports:

1. Do NOT use large fixed width elements

2. Use CSS media queries to apply different styling for small and large
screens -

RESPONSIVE WEB DESIGN

Media queries:

Mobile (default) Wider screens media query

RESPONSIVE WEB DESIGN

Each HTML web page is standalone. Using JavaScript we can make a
dynamic, single page and self-contained web application.

What is Javascript? It is a client-side programming language.

• It is not Java and not related to Java by nothing. (Sun was involved somehow and therefore the
name) . Actually the syntax is based on C.

• Code is evaluated by (and only by) the web browser

Why Javascript?

• Make your website “dynamic”:

• Handle browser events (e.g. click on a link, pressing a key)

• Send asynchronous HTTP requests

• Mine bitcoins, and basically do any complex, logical operation.

To embed javascript, include the tag <script>

•Internal: Just type your JS code in between the script tags

•External (recommended) <script src=external.js > </script>

JAVASCRIPT: WHAT, WHY,
HOW

Javascript basic features:

Traverse the tree using the document reserved word.

Function getElementByID(“<id>”): finds the HTML element

Variable innerHTML : holds the element HTML content

HelloWorld example

JAVASCRIPT: HELLO WORLD

This are the main events that happen in the web browser (there are more):

With these events JS can do:

•Things that should be done every time a page loads/closed.

•Action that should be performed when a user clicks a button.

Important:

•HTML event attributes can execute JavaScript code directly / call JavaScript Functions.

•You can assign your own event handler functions to HTML elements/ prevent handling events

JAVASCRIPT: BROWSER
EVENTS

AJAX: asynchronous JavaScript and XML. Lets you:

• Update a web page without reloading the page

• Request and receive data from a server - after the page has loaded

• Send data to a server - in the background

ASYNCHRONOUS REQUESTS

An example showing everything :

•The HTML page contains a <div> section and a <button>.

•The <div> section is used to display information from a server.

•The <button> calls a function (if it is clicked).

•The function requests data from a web server and displays it:

•BEFORE CLICKING

•AFTER CLICKING

JAVASCRIPT: AJAX

The JavaScript Code:

Ready states:

JAVASCRIPT: AJAX

Why designing a page from scratch when you can rely on
existing libraries that extend HTML, CSS and JavaScript?

★Bootstrap: An HTML+CSS+JavaScript framework for developing
Responsive websites

★AngularJS/ ReactJS: extends HTML by adding new tags and features

FRONT-END FRAMEWORKS

Bootstrap is the most popular HTML, CSS, and JavaScript framework for
developing responsive, “mobile-first" web applications

It's completely free

Many beautiful templates are available online

BOOTSTRAP

“installing” Bootstrap:

Just include these lines in your HTML header:

BOOTSTRAP

Grid system:

The core of Bootstrap is the grid system, allowing you to define up to 12 responsive columns.

• The Bootstrap grid system has four classes:

xs (for phones - screens less than 768px wide)

sm (for tablets - screens equal to or greater than 768px wide)

md (for small laptops - screens equal to or greater than 992px wide)

lg (for laptops and desktops - screens equal to or greater than 1200px wide)

BOOTSTRAP

Hello world:

BOOTSTRAP

The MVC approach separates the UI (views) from the data
and logics (models) and let them communicate via
designated I/O methods (controllers)

Examples: Angular-js, React-js, Redux, etc.

MVC FRAMEWORKS

How to install Angular? Simply include the following script in your <head>
scope:

A bit complicated example for creating a table with data from the server:

ANGULAR JS: EXAMPLE

The results:

ANGULAR JS: EXAMPLE

Part #1: Client side programming:

HTML, CSS Javascript

Responsive design

Front-end frameworks

Part #2: Server side programming

Python (Flask): Install, hello world, requests, cookies, sessions.

Using the university web servers.

Part #3: Using the university servers (python/
php)

AGENDA FOR TODAY

Flask is a web-server library. Let’s hello world it:

1.Install flask - you already know by now :-)

2.Create server.py:

3. Run the server by:

PYTHON (FLASK) - HELLO

1.We use static HTML templates. For everything.

2.Create a template folder :

4.Create template.html:

5. Edit server.py

TEMPLATES

 Template file

 Server.py

TEMPLATES (ADVANCED)

The HTTP request is passed to the web server and Flask gives it to you as a request object.

Important attributes:.

• args − parsed contents of query string which is part of URL after question mark (?).

• form − It is a dictionary object containing key and value pairs of form parameters and
their values

• cookies − dictionary object holding Cookie names and values.

• files − data pertaining to uploaded file.

• method − current request method (GET/POST/…)  

HANDLING REQUESTS

http://flask.pocoo.org/docs/0.12//api/#flask.Request

Login page template:

 

HANDLING REQUESTS

Server side code:

 

HANDLING REQUESTS

A browser cookie is a small piece of data stored in the web browser

•Useful since the internet (and HTTP) (and PHP) are STATELESS .

•Example use: Your shopping cart in amazon.com.

•Cookies are saved per web page.

•The browser will send the cookie content to the web-page if it contains one.

In Flask:

• The Request object contains a cookie’s attribute.

• cookies are set on Response object

COOKIES

http://amazon.com

Server side code:

 

COOKIES

Unlike cookies, “sessions” are stored on the server…..

•Session is the time interval when a client logs into a server and logs out of it.

•The data, which is needed to be held across this session, is stored in a temporary directory on
the server.

In Flask:

•A session with each client is assigned a Session ID.

•The Session data is stored on top of cookies and the server signs them cryptographically.

• For this encryption, a Flask application needs a defined SECRET_KEY.

SESSIONS

SESSIONS

PYTHON

1.Full instructions: http://www.cs.tau.ac.il/system/django

2.Supports Flask and Django

3.Server name: delta-tomcat-vm (accessible from uni only)

4.Instructions in a brief:

1.SSH to delta-tomcat-vm and run: sudo create-my-django-dir

2.Copy your application files to your django dir : /specific/scratch/<username>/django/

3.Choose an available port and use it in your configuration file.

4.Run your app *detached*:

nohup python3 -m "from my_flask_web_server import run_server;
run_server.run_server()" &

UNIVERSITY SERVERS

http://www.cs.tau.ac.il/system/django

PHP

1.Connect to NOVA

2.Create a new directory called html

3.Create your project dir under ~/html

4.Create a “hello.php” file under ~/html/project

5.Access the url from your web browser: cs.tau.ac.il/~<your_username>/project/hello.php

UNIVERSITY SERVERS

We overviewed the world of web programming in a brief

“hello-world”-ing

Bad news: This is barely enough to get started

Good news: You know enough to continue learning this by yourself

Use the online resources:

w3schools

Google

system@cs.tau.ac.il

Our class forum

Come to projects day

Bye.

THIS IS THE END?

mailto:system@cs.tau.ac.il

PHP stands for “PHP: Hypertext Preprocessor”

Why PHP:

★PHP is one of the leading web development languages.

★PHP is compatible with almost all servers used today (Apache, IIS, etc.)

★PHP is free. Download it from the official PHP resource: www.php.net

★PHP is easy to learn and runs efficiently on the server side

What can PHP do:

★PHP can generate dynamic HTML content

★PHP can collect and process user input from GET and POST requests

★PHP can send and receive cookies

★PHP can add, delete, modify data in your database

PHP : INTRODUCTION

On your local machine (Windows):

1.Install XAMPP (or WAMP) from https://www.apachefriends.org/download.html

2.It will install Apache (web server) + MySQL database + PHP + phpMyAdmin

3.Open the XAMPP control panel and click Start on everything.

4.Open the folder C:/xampp/htdocs and create hello.php

5.Access from your web browser:

1.http://localhost/hello.php

INSTALL PHP

https://www.apachefriends.org/download.html
http://localhost/hello.php

hello.php

PHP: HELLOWORLD

1.This is a simple HTML form in a static page (form.html)

•Note that it contains the parameters Name and Email.

•These are sent to welcome.php via a POST request

2.What does welcome.php looks like?

•Using $_POST superglobal array to access parameters

3.What does the user see?

PHP: HANDLING REQUESTS

SuperGlobals: PHP has several predefined arrays that are “super globals”: means
they are available in all scopes throughout a script without using any special prefix.

And they are:

$GLOBALS stores all global variables

$_SERVER stores information about the current server e.g. path of the script,
server name.

$_GET stores the parameters that are passed via HTTP GET

$_POST stores the parameters that are passed via HTTP POST

$_FILES stores files that are uploaded to the server via HTTP POST

$_COOKIE stores the parameters of the HTTP cookie

$_SESSION stores information for a user in a session.

$_REQUEST stores all data passed via GET and POST

PHP: SUPER GLOBALS

What if some of the user didn't send a required parameter?

•Never trust the user, always validate input on the server side!

Like that:

•Use $_SERVER superglobal to read meta-data about the current request

PHP: MISSING REQUEST
PARAMETERS

PHP allows the programmer to include (or require) other scripts.

footer.php can be

When to use:

★Separate DB handling from the logics.

★Separate HTML generation from the logic.

★Dedicated files for methods and functions

PHP: INCLUDE FILES

HTTP Cookie (Browser cookie) is a small piece of data stored in the
web browser

★Useful since the internet (and HTTP) (and PHP) are STATELESS .

★Example use: Your shopping cart in amazon.com.

★Cookies are saved per web page.

★The browser will send the cookie content to the web-page if it contains one.

PHP: COOKIES

http://amazon.com

Using setcookie():

Example:

The browser will sent the request :

PHP: SET COOKIES

PHP Sessions: are a way to store information (in variables) to be used across multiple
pages.

Unlike a cookie, the information is not stored in the browser but in the server!

How to:

1.Session_start() , the first thing on the page even if the session is not new!

2. Read and write to $_SESSION super global

3.session_unset() will delete all session variables

4.session_destroy() will destroy the session

PHP: SESSIONS

How is a PHP session created?

•PHP first creates a unique identifier for that particular session which is a random string of 32
hexadecimal numbers such as 3c7foj34c3jj973hjkop2fc937e3443.

•A cookie called PHPSESSID is automatically sent to the user's computer to store unique session
identification string.

•A file is automatically created on the server in the designated temporary directory and bears
the name of the unique identifier prefixed by sess_ ie sess_3c7foj34c3jj973hjkop2fc937e3443.

How does PHP retrieves session information?

•PHP automatically gets the unique session identifier string from the PHPSESSID cookie.

•then looks in its temporary directory for the file bearing that name and a validation can be done
by comparing both values.

How do sessions end?

•When the cookie is lost.

•the server will terminate the session after a predetermined period of time, commonly 30
minutes duration.

PHP: SESSIONS

PHP can use one of two methods for Database handling:

•MySQLi extension (the "i" stands for improved)

•PDO (PHP Data Objects)

PHP + MYSQL

Prepared statements using:

•prepare

•bind

•execute

PHP + MYSQL

Remember: PHP is not always configured to display errors and warnings

PHP stores all error and warning to a log.

Depends on the configuration, it also prints annoying messages to the screen such as :

Theses are the available error levels: use error_reporting() to control it:

PHP ERROR HANDLING

Are store in a file called error.log that can be found in the apache directory

• Sadly , the log is restricted in the uni web-server

• You will have to configure your php file to display error via the method
error_reporting

APACHE+PHP ERROR LOGS

Apache configurations are stored in a file called httpd.conf

•To make changes: You can make changes in the httpd.conf file then restart the server

•Holds informations such as the server port, supported modules etc.

PHP configurations are stored in a file called PHP.ini

APACHE+PHP CONF. FILES

