PAGE
2

Java Programming and Internet Application

Final Project: Chat System

Submitted By:
Ron Marom,
ID 032822942

Omer Kadmiel
ID 032961336
Chapter 1: Top Level Design

Server Side
1. Works independently from the apple side.

2. Implemented in the form of the following components:

[image: image1]
Client Side

The Client is implemented using the following components:

[image: image2]
3. Concretely:

a. Main \ Login Server – is an "always running" application that waits for another Client to connect. When another one does, it creates a unique thread to handle the communication with the client, and then goes on o wait for the next client. Another task of the main server will be to initialize the DB connections.

b. Server Thread – these threads are responsible of the entire interface with the client. It enables it to register, un-register, login, logout, sending messages to active (via the main server) or inactive (via the database connections) user etcetera.

c. Database connections – are responsible for the interaction with the database.

d. The client runs two threads simultaniously: one to handle the users’s operations, and the other to handle messages coming from the server.

4. Database – We will use mySQL with ODBC drivers.

5. Platform – Should work on UNIX \ Linux system.

6. Client environment – the client was implemented as an applet, designed to work on Microsoft Internet Explorer. There is no reason for it not to work on other browsers as well.

7. Network requirements – both the client and server environment to support TCP/IP, where session should be enabled on port 4503.
8. Each of the elements in section 3 a-c will be implemented as a Java class. The main (public) class the main Server and the other classes with protected / package permissions.

9. Both threads of section d are implemented using the main applet class. It has several additional classes to handle the other user’s list, the socket connection and GUI objects.

10. Main Procedures \ Features of the Classes:

a. Main Server:

i. Main Features:

1. Init: Create the Database Connections, and wait for clients to login.

2. Connect To Client: Create the appropriate Server Thread.

3. Database Connectivity: Enable the created clients an access to the database in order to execute each and every desired query.

4. Send Message – to an active user only, using the list of active clients (see next).

5. Send the clients a list of the users (as based on the database), and notifications about the status of each user (if changes).

ii. Main Data Structures:

1. Create and maintain a linked list of the active clients. Therefore, in the "Login User", and "Logout User" stages (explained in 7.c.i.4 and 5) in the Database connectivity (7.a.i.3) it should update this list.

2. Create Database connections, and manage the load of the connections.

b. Server Thread:

i. Main Features:

1. Init – establish a connection with client.

2. Execute client commands.

ii. Main Data Structures – None.

c. Database Connection:

i. Main Features:

1. Init – create a connection to the database.

2. Register User – Add a new user and password to the database.

3. Un-Register User – Removes the user from the database, if the password was correct.

4. Login User – Check if the entered password is the same one stored in the Database; if so change User status, and inform the main Server to add it to the active user list (see 7.a.ii.1).

5. Logout User – Change user status, no need to check password.

6. Save Message – in the database for an inactive user. If the user is active, it should use the main server to send the active user the message.

7. Generate a user list with flags to indicate which is active and which is not.

ii. Main Data Structures: those relating to database connectivity.

d. Main Applet:

i. Main Features:

1. Init: Initialize and display GUI objects.

2. Register user: verify password and confirmation match, check illecgal characters, Open a socket, send information to server, receive confirmation, close the socket.

3. UnRegister user: check illecgal characters, Open a socket, send information to server, receive confirmation, close the socket.

4. Login User: check illecgal characters, Open a socket, send information to server, receive confirmation, run server messages handling thread, update GUI objects

5. Logout User: End sessions, update GUI objects.

6. Select users: Call GUI object and receive from it the users selected as destinations.

7. Send message: send user’s message and destination information to server;

8. Receive message: receive message from server and present it.

9. Update other users’ status: receive updated from the server and update the users’ object;

e. Socket connection:

i. Main features:

1. Init: open a connection to server.

2. Send a single string to the server.

3. Receive a single thread from server.

4. End the session.

f. Users List:

i. Main features:

1. Add a user.

2. Remove a user.

3. Get/Set information of whether a user is currently logged.

ii. Data Structures:

1. A user class holds the information about a single user.

2. The list is a vector of such users.

11. Even though the application will support multiple connections to the database, it should use locks on the database to avoid missing changes, or an update mechanism, if the database was changes.

Database
1. The database should include two tables:

a. Users’ Table – which will include the Usernames, Passwords, and a flag to indicate whether the user is active or not.

b. Messages table – which will include the Messages, recipients and senders.
Chapter 2 : Detailed Design
Server Side

1. Main Server:

a. Database Connections:

i. Should create a static database connections array.

ii. Should be able to do load balancing on the database connections (at least primitively): procedure named CheckLoad() that will return the current database connection to be used.

b. Active users:

i. Should Create and maintain a list (vector) of all active connections in a dedicated class, that should enable:

1. addElement (UserName, ServerThread).

2. findElement (UserName).

3. writeToElementAt (index);

4. writeToElement (UserName);

ii. Should support a BroadCast (User, Status) function which will inform all the active users of changes in the status of a user. (might consider in the next version to broaden broadcast capabilities, and enable a user to send messages to all active users).

c. Should implement the following user connectivity functions for the server threads:

i. RegisterUser (UserName, Password) – that will return the server thread confirmation or appropriate error message.

ii. UnReagisteUser (UserName, Password) – the same.

iii. LoginUser (UserName, Password) – a Boolean function that will (try and) login a registered user.

iv. DetachUser(UserName) – which will remove a logged in user (if exists).

v. SendMessage (FromUser, Message, ToUser) – returns a confirmation code or User Unavailable.

vi. SaveMessage (as above) – in the database, if the user is online this function should call SendMessage above.

vii. GetUserList() – to send a user the entire list of Users, it should translate a ResultSet to string.

viii. GetUsersPending Messages (UserName) – when the user has logged in.

d. CreateToClient() – method to create a new Server Thread.

e. Start \ Init – to start running (Server is the main application).

2. Database Connection (the DataBaseServer class):

a. Should be able to create and close a connection with a database.

b. Database queries:

i. Should support Boolean "shadow" functions for 1.c.i-iii, vi, and a void one to 1.c.iv.

ii. Should support a method that returns the ResultSet for section 1.c.vii. and 1.c.viii the last one should also remove those messages from the database.

3. Server Thread (User Connectivity module):

a. Should create a connection to the Client side, using socket, BufferedWriter and a BufferedReader.

b. Should be able to parse user commands (See Client-Server Interactions section) as well as asking the main server (calling its procedures) to execute those (Therefore it should hold which server it is connected to).

Client Side:

4. Main Applet:

a. Holds all GUI objects and all other objects.

b. Implements the following procedures:

i. Init: displays main applet window.

ii. Action: receives event of a button pressing, identifies the proper button and calls the proper procedure.

iii. HandleRegister: checks user/password legality, opens a socket, sends the information and closes the socket.Reqiures user, password and password confirmation.

iv. HandleUnRegister: checks user/password legality, opens a socket, sends the information and closes the socket.Reqiures user and password.

v. HandleLogin: checks user/password legality, opens a socket, sends the information and runs the listening thread.Reqiures user and password.

vi. HandleLogout: closes the socket and updated GUI objects. This method is also called when applet stops.

vii. HandleSelectUsers: creates a new UserSelectionWindow. It is the window’s responsibility to update user list (see UserSelectionWindow detailed design.

viii. HandleSend: retrieves destinations information and send them along with the message to server.

ix. HandleClearMessage: cleans the message field.

x. HandleClearDisplay: cleans the display area.

xi. Run: the main routine of the listening threads. It checks each time whether socket still exists, then reads the next message, recognizes it and calls the HandleServerMessage method.

xii. HandleServerMessage: recognizes the message and calls the proper message.

xiii. HandleChangeStatus: updates the user’s list about a certain user changing status.

xiv. HandleDeliver: display a recently received message and displays it.

xv. HandleError: opening a pop-up window and displaying the error.

xvi. HandleUnavailable: updating the user list that a certain user has logged out. It is a separate message, different than ChangeStatus, received as a response when the user sent a certain message to another user as the other user was logged in, but he logged out since.

5. Session Connection:

a. Contains the socket, a bufferred reader and a bufferred writer.

b. Supports the following operations:

i. Init: open the socket and the two strems.

ii. SendLine: send a single string, followed by newline, to the socket

iii. RecvLine: reads a single string, terminated by newline.

iv. IsAlive: checks if the socket and the two streams are still active.

v. KillSessions: closes the two streams and the socket.

6. User:

a. Contains, the username, whether or not the user is logged in, and whether or not he was selected as a destination.

b. Support the following operations:

i. Init: initializes the username and status. By defaultuser is not selected.

ii. GetName: returns the username as string.

iii. IsActive: returns whether or not the user is active.

iv. IsChecked: returns whether or not the user is selected.

v. SetActive: updates that the user logged in/out.

vi. SetChecked: updates that the user was selected/unselected.

c. The username is the unique identifier, therefore cannot be updated.

7. User Vector:

a. Contains a vector of user objects (from section 6), and the number of the next user to scan.

b. Supports the following operations:

i. Init: creates an empty vector.

ii. AddUser: creates a new user and adds it to the vector.

iii. RemoveUser: removes a user with a given name from the vector.

iv. SetActive: Calls 6.b.v. for the proper user. If the user does not exist, calls AddUser.

v. SetChecked: calls 6.b.vi. for the proper user.

vi. Checked: calls 6.b.iv for the proper user.

vii. GetFirstUser: returns the first user in the vector.

viii. GetNextUser: returns each time the next user in the vector. The result of this method is undefined if called without GetFirstUser. The result is null if the end of the vector is reached.

8. User Selection Window.

a. A GUI object which displays a window for selection of users to send message to.

b. Supports the folloeing operations:

i. Init: presents all the users and an “OK” button.

ii. Action: when OK button was pressed, updates the user list about which users were selected and closes the window.

9. Alert Message:

a. A GUI object which displays a window for any alert message.

b. Support the following operations:

i. Init: presents the alert and an “OK” button.

ii. Action: when OK button was pressed, closes the window.

10. Session Exception:

a. An exception thwrown by the SessionHolder object.

Client – Server Interactions.

	#
	Message type
	Originating side
	Format

	1
	Register
	Client
	r~username~password

	2
	Unregister
	Client
	u~username~password

	3
	Login
	Client
	l~username~password

	4
	Logout
	Client
	o~

	5
	Send Message
	Client
	s~message~dest1~s1~dest2~s3...

	6
	Deliver Message
	Server
	d~message~source

	7
	Change in user status
	Server
	c~username~change code

	8
	User Unavailable (message becomes pending)
	Server
	u~username

	9
	OK on last transaction
	Server
	y~

	10
	Error on last transaction
	Server
	e~message

	11
	User List
	Server
	a~User1~S1~User2~S2~…

Notes on interactions table.
1. ‘~’ is a seperator char. Therefore, it is an illegal character as part of the message. This is the only illegal char.

2. Each communication is ended with a newline.

3. send message: dest1, dest2 etc. are destination usernames. s1, s2 etc. are chars which are ‘a’ if this user is on line or ‘i’ if he is offline.

4. change status: change code is ‘r’ for a new user registering, ‘u’ for a user unregistering, ‘a’ for user going online and ‘i’ for a user going offline.

5. error is a generic message for all error types. It is server’s responsibility to add a string explaining the error type.

6. User list is sent whenever a new user logs in, abou all currently registered user.

7. The system is very stiff, whenever a malformed message is detected by any side, this side assumes the socket is throwing garbage and this socket is closed.
Database
1. The following fields should be implemented in the tables:

a. Users’ Table (UsersTable):

i. UserName (VarChar(20)): a primary \ unique key.

ii. Password (VarChar(20)).

iii. Active (Bit).

b. Messages Table (MessagesTable):

i. Message (VarChar (255).

ii. Source (VarChar (20)).

iii. User (Recipient) (VarChar (20)).

2. All SQL statements in the project should use capitals when using SQL keyword, and the exact spelling and capitalization as stated above.
3. Please note that due to 1.a.i being a unique key, there’s no need to double check when trying to register an already existing user.

4. Database specification (as received from the system team) –

a. Username – kadmielo.

b. Password – kadmielo.

c. Database name – kadmielo.

5. Using the “sun.jdbc.odbc.JdbcOdbcDriver”.

Client

Side

Main Server

(login server)

Server Threads

(User Connectivity)

Database Connections

Database

Connection

Creation

Creation

Communication

Communication

Communication

Users Structure

Connection Socket

Server Side

User

GUI

Message Handler

