Java language & Internet Applications

Project Requirements Specification

Proposed project: Multiple User communication system.

Submitted By:

Rom Marom,
ID: 032822942

Omer Kadmiel
ID: 032961336
1. Project Subject – Experimenting with Java related, server based programming, by building a client - server communication over the world-wide-web platform.

2. Project Scope – Windows \ IE based communication system, over the www, that will enable users to register, logon, logoff, choose one or more partners (from a list of registered users), send and receive messages. The messages are delivered in real time if the desired user is logged in at the specific moment, or stored if the user is not logged in.

3. Project Implementation – The project will be implemented as two parts: the client side is an applet, whereas the server side is a full server application, which uses sockets to communicate with the clients and JDBC interface with the user database.

The database includes two dynamic tables: user table and pending messages table.

The project will not include integrating existing code fragments relating specifically to the subject matter, or applications (such as ICQ and similar). That is because the main cause in this project should be to explore and understand the current abilities and requirements of the Java Programming language as a basis for client - server applications over the www.

4. The project should enable several individuals, using a browser, to communicate, relatively securely, through a server. It will support only text messaging in this current form.

5. User Interface – should enable the user to choose whom to send to, receive the users’ list (including liveness information), send and receive messages (preferably using visual representation) and to communicate relatively short messages in a real time environment to different users and combinations of users, using the www as a platform, securely (enough) and through a server (no need to resolve the other guy’s IP address).

Main Client-Server Flows

a. Register: User enters username, enters and confirms password (data is sent to server (server enters the new user to the database as inactive (Server sends the change in list to all clients.

b. Login: User logs in (server marks user as active (server updates users’ table and sends activeness information to all clients (server sends all pending messages to client (client present the messages on screen.

c. Send Message: User selects desired users to send the message (user enter the message text (client sends the message (including destinations info) to server.

d. Process Message: Server receives message (case user is active (has an open socket – check in DB) message is sent to the user immediately. Case user is not active message is stored in DB as pending (only if this users’ quota is not exceeded). If the message is for multiple users this process is performed several times.

e. Receive Message: Client receives message from server (presents it on screen.

f. Receive User List change: Client receives message from the server about a change in user list (client refreshes the user list, constantly presented on screen.

g. Logoff: Can be done by user’s specific request or by closing the browser (logoff message is sent to the server (server marks user as inactive and sends the new user list to all clients.

h. Timeout: whenever a user does not log off (e.g. computer crash) after a certain while the server marks the user as inactive by it’s own “decision”.

6. Miscellaneous points –

a. Privacy – the system should not look for and or store unnecessary information about the users. If implemented as a logon server, for example, it should not require more than a user name, a password and pure technical information (number of messages, time not active etc.)

b. Security – the system should be relatively secure, and not easily eavesdropped. It is implemented in a way a user can choose for each message which users should receive it.

c. Simplicity / “Lightness” – the system should be as “light” as possible, negating a long download time – especially as it is implemented as applet. In the current implementation, the client is an applet and the server is an executable, which avoids complex installation procedures.

d. Multi-linguisty – The program should support the normal ASCII. It cannot be responsible for the extra – non-English – signs, and will not try to convert – for example the Cyrillic alphabet to the Hebrew one. In this level, the program should send the input “as is” (or actually try and display it as such).

