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Abstract
This paper describes the potential for instructing animated

agents through collaborative dialog in a simulated
environment. The abilities to share activity with a human
instructor and employ both verbal and nonverbal modes of
communication allow the agent to be taught in a manner
natural for the instructor. A system that uses such shared
activity and instruction to acquire the knowledge needed by
an agent is described.  This system is implemented in
STEVE, an embodied agent that teaches physical tasks to
human students.

Introduction

The use of embodied agents in simulated environments
provides unique opportunities for communication with
human participants in a natural manner. An embodied agent
can both describe and demonstrate physical actions, use
gaze and gestures to focus attention on a particular object,
and provide feedback and conversational cues by speaking
or through physical expression. This verbal and non-verbal
interaction can allow agents and humans to build a
collaborative dialog centered around shared work on a
physical task such as maintaining a machine or operating a
control console.

One area in which the use of this expanded
communication between agent and human has been
explored is the use of animated agents as instructors
(Johnson, et al. 2000). Such work attempts to make
learning tasks as natural as possible for human students by
modeling the interaction between a human instructor and
student. Much like a human instructor in the real world,
embodied agents in a simulated environment can use both
verbal and non-verbal means to provide instruction,
demonstrations, and responses to student actions and
questions. The various modalities of communication
available allow the agent to tailor the delivery of a message
to the demands of its content. When a student takes a step
that progresses towards the end goal of their task, a simple
head nod can provide encouragement in an unobtrusive
manner. For a student that is thoroughly lost and asking for
help, describing what they should be doing and then
demonstrating how to do it may be more appropriate.

In addition to multiple modes of communication, a
natural seeming dialog must allow for either party to drive

the dialog. Building such a mixed initiative interaction
between human and agent requires that either one should be
able to take action that affects the shared environment. To
maintain the cohesiveness of the dialog, the agent must be
able to respond appropriately to any action that the student
takes. The effects of actions by a student during a
demonstration by the agent may change the state of the
world in a way that requires the agent do extra work to
successfully complete the task. Similarly, while trying to
perform a task being learned, a student may make errors
that change the steps required to complete the task. Because
of the potential for interference through student actions,
there is no way to predict an exact sequence of
environmental states the agent will have to respond to, even
in an environment with deterministic rules governing the
effects of actions.

With a practically limitless set of environmental states
and student actions to deal with, scripting all of the agent’s
actions is highly impractical at best. Instead, it is necessary
that the agent have the knowledge to dynamically adapt its
plans to new situations and be able explain that adaptation
to the student. This kind of flexibility requires that the
agent know a significant amount about its environment and
the tasks it can perform. In addition to the perceptual and
declarative knowledge of how to navigate in the world,
manipulate objects, and talk about them, the agent must
possess deep procedural knowledge about the task it is to
teach. Generating valid plans and explaining the reasons
behind those plans require that the agent know the goals of
the task, the steps that can be taken to achieve those goals,
and the constraints that govern how the steps can be
ordered.

Although it is possible to manually encode such
knowledge, such an approach can be time consuming and
requires that a domain expert formalize the knowledge to
be incorporated into the system. Even for experts, distilling
practical knowledge into the kind of declarative knowledge
needed by an agent can be a difficult process.

Other researchers have explored a number of ways to
facilitate providing knowledge to an agent. Systems have
been designed that use higher-level instruction languages to
make knowledge engineering quicker and more easily
understood (Badler, et al. 1998). Alternatively, some
systems seek to eliminate traditional programming through
instruction (Huffman & Laird 1994), example solutions



(Wang 1996) or experimentation (Gil 1992). Little attention
however has been paid to learning through collaborative
dialog based on activity in a virtual environment.

We believe that the same principles that guide an agent
performing instruction in a virtual world should guide the
way in which it learns. An agent should exploit the
properties of its environment and its embodied nature to
make instructing it as natural a process as possible. The
human instructor should be able to teach the agent through
a combination of interactive demonstration and instruction
that closely resembles how they would work with a human
student. For its part, the agent should function as an active
learner, experimenting in the environment to supplement
what it has been taught and utilizing verbal and non-verbal
communication to communicate with the instructor about
what it has learned and what gaps remain in its knowledge.

This paper describes our progress towards these goals.
We have designed a system to acquire the knowledge
needed by a pedagogical agent in a way that is consistent
with how an instructor might teach a human student. This
system, Diligent, has been implemented on an embodied
agent, named STEVE (Soar1 Training Expert for Virtual
Environments) (Rickel & Johnson 1999, 2000), designed to
teach physical tasks to students in a 3-D virtual
environment.

System Overview

STEVE
STEVE (Figure 1) serves as an instructor within 3-D
simulated environments. He can demonstrate physical tasks
(demonstrations involve explaining steps as they are
performed) or monitor a student performing a task.
Students performing a task may ask the agent what action
needs to be taken next and even ask the agent to show how
to perform that action. If the agent is demonstrating a task,
the student can ask the agent to stop and let the student
attempt to finish it. Should a student simply take an action
that helps or hinders STEVE while it is in the process of
demonstrating a task, the agent uses a partial-order
planning algorithm (Weld 1994) to adapt its actions and
explanations to the new state of the environment. Any time
a student is unsure why an action has been taken or needs to
be taken, they can ask STEVE “Why?” The agent will
describe the reasons behind the actions it has taken or
suggested in terms of the goals that steps satisfy.

Human students interact with STEVE and the virtual
environment through a simulator. This simulator has two
interfaces: a traditional mode for use on a computer
workstation and an immersive mode for use with a head-
mounted display and data gloves. In the traditional mode,
the mouse and keyboard are used to navigate the virtual

                                                
1 STEVE is implemented using Soar (Laird, Newell and Rosenbloom
1987).

world being displayed on the monitor and to manipulate
objects within it. GUI menus can be used by the student to
ask STEVE questions and to issue commands. In the
immersive mode, the student uses the data gloves to
manipulate objects and move around. Although an
immersed student’s head-mounted display does not display
all of the GUI menus for communicating with STEVE,
similar functionality is provided by speech recognition.

A commercial speech recognition engine is used to
recognize the commands and questions that STEVE is able
to respond to. A student, whether immersed or working at
the desktop, can issue verbal commands and queries to
STEVE that the agent will respond to. In turn, STEVE’s
messages to the students are both printed to a window and
made spoken by a text-to-speech program.

STEVE is designed to be portable between different
simulated environments and even completely different
simulators. For this reason, it is provided with no special
access to know about the state of its environment or to
effect changes to that state. Instead, STEVE relies on a
perceptual-motor system that receives updates of attribute-
value pairs from the environment, indicating changes in the
world, and alerts the simulator to the agent’s actions so that
the world can respond appropriately. To teach tasks in a
new environment, STEVE must acquire the knowledge
needed by the perceptual-motor system to recognize
actions, navigate, and manipulate objects in the virtual
world as well as the knowledge needed to create, modify
and explain plans for completing tasks.

Sources of Knowledge
STEVE agents have three primary sources from which to
acquire the knowledge they need: a human instructor, the
simulated environment, and a limited amount of initial
domain knowledge. How each of these sources is used is
governed by our goal of teaching embodied agents in a
natural manner.

The instructors serve as the guiding force for knowledge
acquisition. They are responsible for choosing a task to

 

Figure 1: STEVE



teach STEVE and for providing a demonstration of the
task. As learning continues, the instructor must
troubleshoot the knowledge acquired and answer questions
STEVE may have about the environment and task.
However, there are limitations to the kinds and amount of
information the instructor can be expected to supply.

It is assumed that the instructor is a domain expert with
the knowledge to perform a task and answer questions
about it. However, no assumptions are made that they
possess any programming background or even a formalized
representation of the knowledge being taught. For this
reason, we wish to limit the kinds of instruction that they
are expected to engage in; teaching STEVE should
resemble working with a human student as much as
possible rather than a programming or knowledge
engineering task.

In addition, we assume that the instructor’s time is
valuable. Indeed, this is the motivating factor behind using
an animated agent as an instructor in a simulated
environment. If instructors’ time were a limitless resource,
we could simply have them work with students as they tried
to learn tasks. Although it is reasonable for some time to be
spent on teaching an agent that can turn around and instruct
many students, we do not want to force the instructor to
perform hundreds of demonstrations or waste time teaching
things that STEVE can learn on its own.

While the instructor serves as the primary guide to
knowledge acquisition, the simulated environment is the
most prevalent source of that knowledge. It serves both as a
place for the instructor to demonstrate procedures for the
agent and as a place for the agent to improve its
understanding of the world and a given task by
experimenting in the environment.

As mentioned earlier, the environment is implemented
wholly external to STEVE for reasons of portability. The
agent lacks any ability to directly access or change the state
of the world aside from taking physical actions. Instead, the
simulator runs as a separate program with a well-defined
API for message exchange with the agent (Rickel &
Johnson 1999). The simulator passes the agent messages
updating the values for attributes of the environment and
the actors within it. The agent is responsible for receiving
these messages and using them to maintain its own model
of its environs.

From agent to simulator, two kinds of events may be
passed: physical actions and a reset message. To manipulate
objects or move its own body, the agent sends a message to
the simulator, which updates the environment in the
appropriate ways. The agent can use the reset message to
restore the environment to a predefined state, allowing it to
start experiments and student lessons from a consistent
reference state.

Finally, the agent’s initial domain knowledge allows it to
specify to the simulator which attributes it is interested in
monitoring. This requirement is largely a product of the
simulator currently used for STEVE, which requires
instructions as to which events to notify an agent about.

How the Agent Learns
STEVE begins learning about a task through a process of
programming by demonstration (Cypher 1993). The human
instructor tells STEVE to observe his actions, and then
performs the task by manipulating objects in the simulated
world. As the agent watches, it learns both necessary
information about the environment and the procedural
knowledge associated with the task.

Each time an instructor manipulates an object that is new
to STEVE, the agent records the perceptual knowledge
necessary to interact with it. It notes where the object is
located, updating the information used by the agent’s
navigational system to find its way from point to point in
the world. In addition, it uses information about where the
instructor was standing in relation to the object and
knowledge about its own body to infer where the front of
the object is and where it should stand when manipulating
it.

To acquire information that is not accessible through this
observation of physical events, STEVE asks questions of
the instructor. This is how it learns about the names of
objects. Whenever the instructor interacts with an object
STEVE is unfamiliar with, the agent generates a question to
ask the instructor. For example, on seeing the instructor
manipulate a button it is unfamiliar with, STEVE asks,
“What is the name of that button?” and creates a GUI via
which the instructor can respond. In keeping with our goal
of making instruction as flexible and natural as possible, the
instructor can either answer a question immediately or have
STEVE hang on to it until later. If STEVE has been told to
hold all its questions, it continues to generate them, but
does not ask them immediately. Instead, the agent waits for
the instructor to signal that they are ready to answer
questions and then asks any it may have. Because questions
that STEVE has been waiting to ask may be outside of the
current context of discourse between instructor and agent,
STEVE works to establish meaningful context for delayed
questions by moving to the appropriate object and pointing
it out as he asks for its name.

In addition to learning information about objects as the
instructor performs each action, STEVE records the action
itself, noting the state of the environment before and after
the action. This information forms the basis for its
understanding of the operators that govern what happens
when actions are taken in the environment. Each operator
relates changes caused by an action to the preconditions
necessary for those effects to take place. For example, in
one of STEVE’s domains, the operation of turning a valve
handle causes the effect of shutting the valve if the
precondition that the valve is currently open is satisfied.
Separate operators represent other effects this same action
might have under different circumstance, like opening the
valve if the valve is currently closed.

Each step in the task is recorded as an instance of some
operator. By the time the task is complete, STEVE has
learned a series of steps that can be used to perform the
task. This list of steps is sufficient to perform the task, but
not to allow the agent to adapt its plan of action or explain



why actions are necessary to a student. To carry out these
more complicated activities, the agent must understand the
goals of the task and the constraints and dependencies
between steps.

To establish the goals of the task, STEVE examines the
end state of each attribute that changed during the
demonstration of that task. For example, given a task in
which a valve was opened and a light was turned on and
then back off, STEVE would conclude that the goal state is
to have the valve open and the light off. After STEVE has
derived its list, the instructor is allowed to review it and
remove goals that are merely side effects. Once the task’s
goals are established, STEVE is prepared to learn how the
steps relate to one another in satisfying those goals.

We have already noted that formalizing such knowledge
sufficiently to provide direct instruction can be a difficult
task for an instructor. It is much easier for STEVE to learn
the deeper knowledge about the steps in a task by observing
the consequences of performing those steps in alternative
orderings. With the knowledge it has acquired about the
correct ordering of steps, STEVE is capable of generating
these alternative orderings for himself by experimenting
with the task.

These experiments focus on understanding the
demonstration the agent has seen rather than solving
practice problems to ensure the agent acquires the
knowledge it will need to teach the task. A demonstration
has an initial state and a sequence of actions that lead to its
final state. In contrast, practice problems consist of an
initial state and a goal state but no specification of the steps
needed to reach the final state. Although they are useful for
learning general knowledge in systems (Gil 1992), practice
problems are hard to solve with little domain knowledge.
Such learning can require many demonstrations and
practice problems, as seen in OBSERVER (Wang 96). In
addition, practice problems may not be focused on
understanding the dependencies between the actions in a
particular plan for completing the task. Because STEVE has
a very limited amount of initial domain knowledge and our
goal is for the agent to learn the information necessary to
teach a particular task, experimenting to learn about the
demonstration provided by the instructor is more
appropriate than solving practice problems.

STEVE’s experiments on the demonstration consist of
performing the task it is learning on its own, iteratively
omitting a single step in each performance. Thus, STEVE
skips the first step the first time it performs the task, the
second step during the second performance, etc. Using this
method, the agent has the opportunity to learn about how
every step is affected by the absence of each step that
comes before it. The experiments are of a manageable size
for reasonably complex tasks, requiring the agent to
perform on the order of n2 steps where n is the number of
steps in the task. In the domains we have studied even the
longest tasks involve no more than 50 steps. Furthermore,
large tasks can often be broken down into a hierarchy of
subtasks, each of which can be experimented on separately.

Learning is performed by refining the preconditions of

operators associated with each action. This is done through
a modified version space (Mitchell 1978) that maintains
bounds representing the most specific and most general
combinations of preconditions possible for that operator.
The state of the world before each action the agent takes,
and the changes that occur afterwards, are used to create
new operators and update old ones. Successful applications
of old operators under new conditions can be used to
broaden the most specific representation of the operator’s
preconditions. Similarly, actions that fail to replicate the
changes of an old operator may be useful in narrowing
down the most general set of preconditions for an operator.

Ideally, these two bounds will meet to define the exact
preconditions of an operator. However, this process can be
slow. Additionally, even after experiments with a task are
complete, it is likely that the general and specific sets of
preconditions for the operators involved will not have met
to form a clear concept. Many facets of the environment
will not change at all during experiments with the
demonstration, making it unclear how they relate to the
steps in the task being learned. For this reason, STEVE
maintains a third set of preconditions, known as the
heuristic set. This heuristic set is bounded by the general
and specific sets and focuses on preconditions whose states
change during the execution of the step or during the
execution of a previous step in the task.

This set represents STEVE’s assumption that the
ordering of steps in a demonstration has significance. The
agent assumes that the instructor has a reason for
performing each step at a particular point – that effects of
earlier actions are likely to be preconditions for later
actions. Experiments refine the agent’s understanding of the
preconditions, giving the agent the knowledge it needs to
decide which of these step orderings in a task are important
to keep and why they are important. Thus the heuristic set
does not speed the learning of a proven set of
preconditions, but does provides a useful starting point for
performing and learning about a task despite limited initial
domain knowledge. (For a complete discussion of how
STEVE uses demonstration and experimentation to learn
procedural knowledge see Angros 1997, 2000).

Once the agent is finished with its experiments, it can
create a task model (Figure 2) using a hierarchical partially
ordered plan representation based on the operator rules
learned. This representation, consisting of a set of steps and
the ordering constrains and causal relations between those
steps, has proven effective in a wide variety of research on
task-oriented collaboration and generating procedural
instructions (Delin et al. 1994, Mellish & Evans 1989,
Young 1997). Causal links (McAllester & Rosenblitt 1991)
record which steps establish the preconditions of other steps
while ordering constraints insure that a step does not
disturb the preconditions of a later step. For STEVE, this
knowledge is sufficient to adapt its plan to unforeseen
changes to the environment and to explain to a student why
individual steps need to be performed (Rickel & Johnson
1999).

After the agent has finished experimenting and
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generating this task model, the instructor can review the
knowledge STEVE has acquired. The instructor may do so
by either examining a graph of STEVE’s partially ordered
plan (Figure 3) or by allowing STEVE to demonstrate its
understanding of the task by trying to teach it back to the
instructor. The instructor (now playing the part of a
student) can ask questions and take unanticipated actions to
observe how STEVE responds as it demonstrates the task or
monitors the instructor performing it. During this review,
the instructor can use GUIs to change the way in which the
agent manipulates objects (where it stands, how it grasps
the object, etc.) and modify the graph of STEVE’s plan to
refine its understanding of the task by introducing or
removing causal links or ordering constraints.

Towards a Richer Collaborative Dialog

 STEVE currently makes use of many of the opportunities
for learning that a dialog between human and embodied
agent in a virtual world affords. Significant improvements
however, are needed to allow STEVE to forge
demonstration, experimentation, and instruction into a
cohesive dialog that uses verbal and non-verbal
communication. In deciding how this dialog should be
formed, we intend to build on recent computational models
of human collaborative dialog (Rich & Sidner 1998, Traum
1994, Lochbaum 1994) and to extend those models to
account for the nonverbal interactions between
collaborators in a shared environment. For this to happen,

the agent’s application of communication modalities such
as verbal instruction, physical examples and gestures all
must be made more flexible.

STEVE’s ability to accept instruction is a good example
of the ways in which the agent’s present limitations prevent
the smooth interleaving of different modes of
communication. A human instructor is able to directly
provide only some of the types of information that STEVE
needs. Even for many of these types of knowledge, direct
instruction is possible only when STEVE has asked a
question about a subject. For example, there is no means for
an instructor to provide the name for an object other than to
manipulate it and wait for STEVE to ask for the object’s

Figure 3: The Partial Order Plan

Figure 2: How the Agent Learns Procedures
 



name. To foster a better dialog, the agent must be able to
accept instruction about any type of knowledge it possesses
and be a more active learner by demanding such instruction
when it can identify gaps in its own knowledge.
Furthermore, such interaction should be able to happen at
any time. Although it is reasonable to make expectations
based on context, and to require the instructor to adequately
establish context for switches in the focus of dialog, context
should not be enforced by limiting what a person can
discuss with the agent at any given time.

Once the agent can use physical actions, instruction and
gesture in a flexible manner, it will be possible to build a
more natural and powerful dialog for instruction. Even
abilities, such as watching demonstrations and performing
experiments, that are already well developed in STEVE will
profit from the ability of an instructor to mix instruction
modalities at will.

As an example, consider demonstrations performed for
STEVE. The agent watches the instructor’s actions to learn
about both physically performing steps and the rules
governing the operators that those steps apply. Currently,
there is no way for the instructor to focus STEVE’s
attention on any particular feature of the world – a very
natural process in instructing humans. If the instructor and
agent were able to mix verbal and non-verbal instruction
into the demonstration, the instructor would be able to point
out through words and gestures the features of the world
worth particular attention. By telling STEVE “Watch that
light” and gazing towards a particular one, the instructor
should be able to specify that STEVE evaluate an action
solely based on the effect it has on that particular light.

Not only would the instructor be able to use an improved
dialog with STEVE to focus what the agent reasons about,
but also to suggest what it should be doing. While the agent
experiments with a task, the instructor should be able to
focus the agent’s experimentations by suggesting particular
steps or relations to consider. If explicitly told that a set of
steps could be performed in any order, STEVE could forgo
the need to perform experiments that test for ordering
constraints between those steps, using the instructor’s
advice to update its knowledge of the relationships between
those steps. Such tailored instruction would be useful to
STEVE both in its own learning and in guiding what it
should emphasize when later on it instructs human students.

Conclusion

STEVE illustrates the potential for instructing animated
agents through collaborative dialog in a simulated
environment. Such dialogs meld verbal and nonverbal
interaction with the performance of a task in the
environment. This combination allows for a wide variety of
complementary learning techniques such as demonstration,
experimentation and instruction to be employed in ways
that simulate the way that human instructors work with
human students in shared environments.
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