Chapter

14

Generic Charts

Chapter 11 discussed the possibility of describing the contents of a box
element in a separate offpage chart. An offpage chart can describe only
a single box. In this chapter we introduce generic charts, which are
reusable components that may have multiple instances in a model. In
other words, a generic chart can be used to describe the contents of
several similar boxes.

Generic charts are linked to the rest of the model via parameters; no
other elements (besides the definitions in global definition sets) are
recognized by both generic charts and other portions of the model.

In this chapter we describe how generic charts and their formal
parameters are defined, how they are instantiated in the model, and
how the actual elements are bound to their formal parameters.

14.1 Reusability of Specification
Components

Many kinds of systems give rise to cases requiring a number of simi-
lar components. For example, assume that the EWS monitors several
sensors, each with its own processing function, and all with the same
pattern, as shown in Fig. 7.12. The new activity-chart with the mul-
tiple sensors is shown in Fig. 14.1a. The function PROCESS_SIGNALS
contains five similar activities, PS1 through PS5, which process
SIGNAL_1 through SIGNAL_5, respectively. Each PSi is described by
a separate Data Dictionary entry, similar to the one shown for PS1 in
Fig. 14.16. The output of the function dealing with the ith sensor
is sent to the COMPARE function via the ith component of the array
SAMPLES. The functions vary in the sampling interval, SAMPLE_
INTERVAL_i, and in the constant factor K_i that multiplies the
sampled signal.

187

188 Chapter Fourteen

EWS_ACTIVITIES -
EWS_CONTROL

................................

{ OPERATOR
COMPARE
T SAMBLES
PROCESS,_SIGNALS
i 1] i]
PS1 ps2 ps3 PS4 pss

L] Ld
SIGNAL T I'_SIGNAL_z l'__SIGNAL'__3“S_I'G“N-AL__4 SIGNAL 5

| SENSOR1| | SENSOR2 | | SENSOR3 | | SENSOR4 | | SENSORS |

Activity: PS1
Defined in Chart: EWS_ACTIVITIES
Termination Type: Reactive Controlled
Mini-spec: st/TICK; ;
TICK/ $SIGNAL_VALUE:=SIGNAL 1;

SAMPLES (1) :=K_1 * $SIGNAL_VALUE;

Figure 14.1 Processing multiple sensors in the EWS.

It is quite obvious that this solution is not efficient. In addition, it
does not make it clear to a viewer that the components are essentially
identical. There should be a way to specify a repetition of the same
component many times, as in electronic and software design, defining
the detailed contents only once and using the component generically
wherever needed. For this purpose our languages provide the mecha-
nism of generic charts.

We saw that when used the various components can differ in the
details of their connections with the outside world (i.e., in the data ele-
ments through which they exchange information), as well as in the
internal settings that determine the nature of each specific instance.
Both will be handled by parameters.

The generic chart mechanism can be used to model electronic
designs with repeating components, and software systems that con-
tain multiple objects of the same class.

Generic Charts 189

14.2 Definition and Instances of Generic
Charts

In a sense, generic charts are similar to offpage charts: in both cases we
draw an empty box and point to another chart that describes its con-
tents. Here, however, we can specify repetition; indeed, sometimes we
draw an offpage chart first, later realize that we really want to repeat
the specified portion, and switch to a generic chart. The similarities
and differences between these two mechanisms are discussed next.

14.2.1 Notation and basic rules of generics

A chart can be defined as a generic chart in its Data Dictionary entry,
and it can then have multiple instances in the model. An instance of a
generic chart is sometimes called a generic instance, to distinguish it
from an offpage instance. To apply this to the EWS example, we define
an activity-chart PROCESS_SIGNAL and specify it as generic. Its top-
level activity PROCESS_SIGNAL has a Data Dictionary entry. This is
shown in Fig. 14.2a. We then specify instances of this generic activity-
chart (Ps1 through PS5) inside PROCESS_SIGNALS, using the symbol
<, as in PS1<PROCESS_SIGNAL. See Fig. 14.2b. ‘

While this example was of a generic activity-chart, we can also have
generic module-charts and generic statecharts. The former can be use-
ful when the system is built of similar modules, such as multiple
signal processors, and the latter are often used to describe similar
orthogonal components, as we shall see shortly.

Because generic charts usually appear in different contexts, the
external boxes in a generic chart are not allowed to point to any
particular boxes in the model and are very often left unnamed. In
Fig. 14.2a, the SIGNAL comes from some “generic” SENSOR, while the
activity’s output flows to an unknown target, which is why the exter-
nal box is left unnamed.

Regarding names, the box name can really be omitted in an instance
(and we can thus write, say, <GEN), as is usually done for offpage
instances. However, here this is not recommended, and it is only pos-
sible when the instance is unique on that level of decomposition. More
commonly, instance activities have their own individual names, as
in PS1, Ps2, etc. The name of the generic chart should not appear
when we refer to the instance, so we write expressions such as the
start action st ! (PS1) .

The instance box must be basic, that is, it may not contain subboxes.
Moreover, it cannot contain any behavioral information, and this
applies to all three kinds of charts: instance states in a statechart can-
not have static reactions and attached activities, instance activities in
an activity-chart cannot have mini-specs and combinational assign-
ments, and instance modules in a module-chart cannot be described by

190 Chapter Fourteen

activity-chart PROCESS_SIGNAL

PROCESS_SIGNAL SAMPLE

Activity-Chart: PROCESS_SIGNAL
Usage Type: Generic

Activity: PROCESS_SIGNAL
Defined in Chart: PROCESS_SIGNAL
Termination Type: Reactive Controlled
Mini-spec: st/TICK; ;
TICK/ $SIGNAL_VALUE:=SIGNAL;

SAMPLE:=K * $SIGNAL_VALUE;

sc! (TICK, SAMPLE INTERVAL)

@

EWS_ACTIVITIES
EWS_CONTROL

COMPARE
-
SAMPLES

PROCESS_SIGNALS

i |]] 1
PSl< PS2< PS3< PS4< PS5<
PROCESS_{ [PROCESS_| |[PROCESS_ PROCESS_| | PROCESS
SIGNAL SIGNAL SIGNAL SIGNAL SIGNAL

a

'y 7

SIGNAL 1 [SIGNAL_ 2 [SIGNAL_3 |SIGNAL 4 |SIGNAL 5

{SENSOR1 | | SENSOR2 | | SENSOR3 | | SENSOR4 | | SENSORS}

(®)

Figure 14.2 (a) A generic activity-chart and () its instances.

an activity-chart. All such information is inherited by the instances
from their describing generic charts.

In modeling a generic chart, one may include instances of offpage
charts, as illustrated in Fig. 14.3. Note that this reference to the off-
page chart COMPUTE in the generic chart PROCESS_SIGNAL implies
that there will be multiple occurrences of COMPUTE in the full expan-
sion of the model, but each of them will belong to a different scope.

Generic Charts 191

A generic chart may also contain instances of other generic charts, but
care must be taken to avoid cyclic instantiation thereof.

The notion of resolution is applied to charts just as it is applied to
other elements in the model; that is, a reference to a chart appearing
in an instance name will be resolved to a chart of appropriate type
whose definition in the Data Dictionary matches the reference.
Therefore, if an ordinary activity, for example, is named A>GEN, GEN
must be defined as a generic activity-chart. Similarly, a chart defined
as generic cannot be used as an offpage chart or as an activity-chart
describing a module. This means that if GEN is a generic chart, no box -
can be named AGGEN, and GEN cannot appear in the Data Dictionary
entry of any module in the field Described by Activity-Chart.
A model containing instances of charts that do not yet exist is incom-
plete, and in such a case the same chart cannot appear both as a gen-
eric and an offpage instance. For example, A1>A and A2@A is an
inconsistent situation, even when 2 is not yet defined; any completion
of such a model would be illegal.

14.2.2 Generic charts in the chart hierarchy

In Chap. 12 we discussed the hierarchy of charts. We saw that this
hierarchy is based on several kinds of relationships between a box and
a chart: an instance of an offpage chart, a control activity described by
a statechart, and a module described by an activity-chart. The hierar-
chy of charts in Fig. 14.4 is derived from the components of the EWS
model appearing in Fig. 12.2.

The hierarchy of charts defines the visibility scope of textual ele-
ments and has a dominant role in the resolution algorithm. Generic
charts have no parent charts; each generic chart is the root of a tree
that it induces in the chart hierarchy. The tree itself is defined as in
the ordinary case. Therefore, according to the visibility rules and the
resolution algorithm (see Chap. 13), generic charts do not recognize
elements from other clusters. Instead, they share elements with the
rest of the model via parameters, as we shall see. In addition, like all
portions of the model, generic charts can see the data in the global def-
inition sets, and they may thus use the definitions of constants and
user-defined types appearing there.

activity-chart PROCESS_ SIGNAL

PROCESS_SIGNAL :

SIGNAL SAMPLE oo .

| READ_ ~»| @OMPUTE —

SENSOR

Figure 14.3 A generic chart containing an offpage chart.

192 Chapter Fourteen

IEWS (mc)l

._I EWS_ACTIVITIES (ac) I

-—[E’WS_FONTROL (scﬂ
-——[SET_UP_STATES (sc)]

._I CCU_ACTIVITIES (ac) I

ccu_sTaTES (sc))

__.{MONITOR__AC l

Figure 14.4 The hierarchy of charts for
the EWS model.

The external boxes in a generic chart cannot be resolved to other
boxes in the model because there is no parent chart to which they can
refer. As mentioned earlier, they are usually left unnamed.

Because the chart hierarchy is determined by making an offpage
chart an offspring of the chart in which it is referred to, this structure
is actually a kind of “table of contents” for the model that shows where
charts are used. When generic charts are involved, the chart hierarchy
is expanded to a chart usage hierarchy'; the generic charts appear
under the chart in which they are used (instantiated), just as offpage
charts do, but the special symbol < is used to distinguish them from
the others and to emphasize the fact that they do not participate in the
resolution algorithm. Note that a generic chart can appear along sev-
eral branches of the hierarchical structure as a leaf. Because a generic
chart may have many instances in the same chart, it can be useful to
provide the number of instances near the chart name.

As an example, let us assume that the chart EWS_ACTIVITIES con-
tains five instances of the generic chart PROCESS_SIGNAL, as described
earlier, and that this generic chart contains an instance of the offpage
activity-chart COMPUTE. Figure 14.5 contains the tree of Fig. 14.4
enhanced with these additional components. Note that this usage hier-
archy contains two separate trees.

14.2 Parameters of Generic Charts

Parameters are used to characterize the particular instances of a
generic chart and to link it to its environment. Parameters are the

In STATEMATE the chart usage hierarchy is called the model tree.

Generic Charts 193

main means by which an instance of a generic chart is able to share
data with the rest of the model.

14.3.1 Formal parameters of a generic chart

Each generic chart has a set of formal parameters. These are either
ports (i.e., channels, through which information flows in and out of
the component) or constant parameters (i.e., values used to character-
ize the particular instance at hand). The parameters are defined explic-
itly by the specifier in the Data Dictionary entry of the generic chart.
They are given by their name, element type (event, condition, data-
item, or activity), and mode (constant or one of the three port modes:
in, out, and in/out). Each formal parameter has a Data Dictionary
entry in which more information about the element can be added, such
as its structure and data-type.

The generic chart PROCESS_SIGNAL described earlier has an in
port SIGNAL, and an out port SAMPLE. In addition there are two
constant parameters, SAMPLE_INTERVAL and K, that make it possi-
ble to set some values differently for each individual instance; the first
influences the sampling rate of the sensor, and the second is used to
calibrate the sampled value. The Data Dictionary entries of the gen-
eric chart, including its parameters, are shown in Fig. 14.6.

Port parameters can be of any data-type and structure. Array para-
meters can be defined with or without an index range. The index range

! EWS (mc)l

_._I EWS_ACTIVITIES (ac)J

-—{Ews_comnon (sc)]
—-—{SET__UP_STATES (scﬂ

| 5<PROCESS_SIGNAL (ac)}

__| CCU_ACTIVITIES (ac)J

CCU_STATES (sc) }
__...E MONITOR_AC l

| <PROCESS_SIGNAL (ac) I

COMPUTE (ac) |

Figure 14.5 The chart usage hierarchy of
the enhanced EWS.

194 Chapter Fourteen

Usage Type: Generic
Formal Parameters:

Name Type Mode
SIGNAL Data-Item 1In
SAMPLE Data-Item Out
SAMPLE INTERVAL Data-Item Constant

K Data-Item Constant

Figure 14.6 Definition of formal parameters of a generic chart.

definition can use literal or named constants, constant parameters,
or it can be based on an index range (e.g., parameter A is array 1 to
length_of (A) of integer, which defines an array parameter whose
upper range index is equal to the length of the actual binding). When
the array parameter is defined without an index range, the index
limits are inherited from the actual binding, a notion defined in the
next section.

A generic chart that communicates with its environment via a queue
will have a queue in/out parameter. The example shown in Fig. 8.8,
in which four EWS instances communicate with two printers, can be
modified so that it uses generic charts for the EWS and the printer,
and each of these has a queue parameter.

Record and union parameters must be defined with a user-defined
type that has the desired structure. This follows from the rule that the
actual bindings must be consistent in type with the formal parameter,
and two records/unions are consistent only if they have the same user-
defined type. This issue is discussed further shortly.

The formal parameters are used inside the generic cluster like any
other element, but their usage must be consistent with the parame-
ter’s mode: the value of an in parameter is expected to be used by
the component, while that of an out parameter should be affected by the
component. The value of an in parameter may be modified, as long as
the modified value is not used later on outside the component.

Constant parameters can be used in places where constants are
allowed: constant parameters can appear, for example, in the defini-
tion of an array index range, but they cannot label a flow-line or be
assigned a value in an assignment action. Very often, the instances
of a generic chart are arranged in an array, and an integer constant
parameter is used to identify the individual instances. For example,
in models of client/server architectures when multiple similar clients
send messages to a server via a queue, each client can be an instance
of a generic chart that identifies itself by its index.

Generic Charts 195

Statecharts (but not activity-charts or module-charts) may have
parameters of type activity. An activity parameter is considered to be
an in/out port, the idea being that the component can send a con-
trol signal to an activity (e.g., st! (&) or sp! (A)), and can sense its
status (e.g., by sp(2) or ac (a)). For example, assume that in the
processing unit of a mission-critical system there are several compo-
nents that perform a similar function. (Such redundancy is often
incorporated to enhance reliability.) Each of these components has
the same behavioral pattern, which is specified by the generic state-
chart ACT_CNTRL of Fig. 14.7. The formal parameters include the
input events that trigger transitions, and the activity A, which is
activated by the statechart. This pattern can control any activity that
is bound to the formal parameter when the chart is later instan-
tiated. The input events consist of control commands (GO, HALT, and
RESET) and an indication of an error in the input device. The out
parameter FAULT is used to report the status of the particular
instance. A sample usage of this generic statechart is illustrated in
Fig. 14.7.

statechart ACT_CNTRL

(’ HALT \

: ‘- ACTIVE) (
IDLE | N

Activities in State: | »{ Static Reactions:
{A (Throughout) | Ins/tr! (FAULT)|
et | xs/£s81 (FAULT)

Statechart: ACT_CNTRL
Usage Type: Generic
Formal Parameters:

Name Type Mode
GO Event In
HALT Event In
RESET Event In
ERROR Event In
A Activity In/Out

~EAULT ... Condition oOut .. T

Figure 14.7 A generic statechart with an activity parameter.

196 Chapter Fourteen

14.3.2 Actual bindings of parameters

For each instance of a generic chart there is a binding of actual ele-
ments to the formal parameters. Ports can be bound to variables or
aliases; in fact, any data element that labels a flow-line (with the
exception of an information-flow) can be bound. The port binding is
analogous to connecting components ports with signal lines in an elec-
tronic scheme. Every change in the actual element will be available
immediately to the instance, and every change inside the instance will
be sensed outside by the connected elements. Constant parameters are
bound to constant values, that is, literal constants, named constants,
or operators that yield constant values, such as those that relate to the
index range of arrays (e.g., length_of (A)).

The binding information is supplied in the Data Dictionary entry of
the instance. Figure 14.8 shows the parameter bindings for the
instances PS1 and PS2 of the generic chart PROCESS_STGNAL, whose
formal parameters were defined in Fig. 14.6. The different bindings to
the constant parameter SAMPLE_INTERVAL determine different sam-
pling rates in each component. HIGH_RATE and LOW_RATE are two
named constants; they can be defined, for example, in a global defini-
tion set. The in and out ports are bound to the actual data-items—the
signal that comes from the sensor and the corresponding component in
the array of SAMPLES.

As another example, we instantiate the generic statechart ACT_CNTRL
of Fig. 14.7 three times in the statechart PROC_CNTRL. The purpose of
the containing statechart is to activate three copies of an activity, each

Activity: PS1<PROCESS_SIGNAL
Defined in Chart: EWS_ACTIVITIES
Actual Bindings:

Name Type Binding
SIGNAL Data-Item SIGNAL 1
SAMPLE Data-Item SAMPLES(1)
SMPLE_INTERVAL Data-Item HIGH RATE
K Data-Item 0.5

Activity: PS2<PROCESS_SIGNAL
Defined in Chart: ENS_ACTIVITIES
Actual Bindings:

Name Type Binding
SIGNAL Data-Item SIGNAL 2
SAMPLE Data-Item SAMPLES(2)
SAMPLE_INTERVAL Data-Item LOW_RATE

Koo e, Data-~Ite 1.0

Figure 14.8 Activity instances and actual parameter bindings.

Generic Charts 197

processing a signal from a different sensor. The statechart also contin-
uously monitors the status of these activities, and when all of them
fail it issues a fault alarm. See Fig. 14.9, which shows the activity-
chart that contains PROC_CNTRL, the statechart itself, and the Data
Dictionary entries of the state instances. These entries contain the
actual parameter bindings; in particular, they contain the binding to
the activity parameter.

The actual binding must have the same type and structure as the
formal parameter. In particular, in the case of data-items the following
rules hold:

® When the formal parameter is of a user-defined type, the actual
binding should also be of this user-defined type.

® Arrays must be of the same length and must have the same com-
ponent types. If the index range of an array formal parameter is
not specified, the index range values are inherited from the actual
binding.

B Queues must have the same component types.

® Formal parameters cannot be defined directly as records and unions,
because these structures are considered to be consistent only if they
have the same user-defined type.

Note that because generic charts are the roots of the separate trees in
the chart hierarchy, only elements appearing in global definition sets
are commonly visible by them and to the charts of their instances.
Therefore, user-defined types and constants that are used in the defini-
tion of the formal parameters must belong to some global definition set.

Finally, the bindings to ports must be consistent with the flow of
information that appears in the activity-chart or module-chart of the
instance. The binding to an in port should flow into the instance and
the binding to an out port must be an output of the instance. This has
indeed been adhered to in the example, as can be seen by inspecting
Figs. 14.2b and 14.8.

14.4 Referring to Elements in Instances

An element that belongs to a generic chart will have an occurrence
in the model for each instance of the chart. As explained earlier,
instances of generic charts share elements with the rest of the model
only via the parameters. In other words, it is impossible to refer to ele-
ments appearing in instances of charts outside the generic cluster, and
therefore references to these elements do not appear in expressions of
the model. However, testbenches, which do not obey any visibility rules
(see Sec. 12.4.2), should be allowed to refer to elements in generic
instances for purposes of analysis. In addition, external tools, such as

198 Chapter Fourteen

activity-chart PROCESS
GO . PROCESS
HALT »1@PROC_CNTRL
RESET i
ERRORS . p
1AL A2 A3 FAULT
SENSORS e,
SIGNALS & o2 1 '
statechart PROC_CNTRL
CAl< CA2< CA3<
ACT CNTRL ACT CNTRL ACT_CNTRL

State: CAL<ACGH CNTRL
Defined in Chart: PROC_CNTRL

Actual Bindings:
Name Type- Binding
GO Event GO
HALT Event HALT
RESET Event RESET
ERROR Event ERROR 1
A Activity Al
FAULT Condition FAULTS (1)

State: CA2<ACT_ CNTRL
Defined in Chart: PROC_CNTRL

Actual Bindings:
Name Type Binding
GO Event GO
HALT Event HALT
RESET Event RESET
ERROR Event ERROR_2
A Activity A2
CFRAULT oo s Condi tion ™ FAULTE (R)

Figure 14.9 State instances and actual bindings.

Generic Charts 199

simulators and prototype generators, should also allow references to
these elements. For example, such tools should be able to present the val-
ue of each instance of an element, and we must provide a way to do so.

Going back to the example in Fig. 14.2, the TICK event is local to
the generic chart PROCESS_SIGNAL. It has five occurrences in
PROCESS_SIGNALS, one in each instance PS1 through PS5. Each
occurrence can be identified by its instance name (e.g., PS1"TICK,
which means “the element TICK in the instance PS1”). When the
element name is not unique in the generic cluster, the chart name
should be added to the element name. For example, if there is another
TICK event in the subchart COMPUTE of Fig. 14.5, PS1"COMPUTE: TICK
is how we would refer to the occurrence of COMPUTE: TICK in PS1,
which is different from PS1~PROCESS_SIGNAL:TICK. The situation
becomes more complicated when generic instances are nested within
other generic charts, resulting in a chain of instance names (e.g.,
PS1~CMP3~X, which is “the element X in the generic instance CMP3
in the generic instance PS1”). Box names that might not be unique in
their charts are identified in these references by unique pathnames.
See App. A.1.

