Chapter

The Textual Expression
Language

This chapter describes the textual expression language that appears
in several places in our models. This language is used to define the
triggers of transitions and the implied actions in statecharts. It is also
used to describe static reactions that can be attached to a state (which
are also discussed in this chapter), as well as the mini-specs of activi-
ties and combinational assignments (which are discussed in Chap. 7).

The textual language supports data manipulation using arithmetical
and logical operations; it allows sensing the status of other elements,
handling timing issues, and many types of actions. Its syntax and
semantics are somewhat similar to procedural programming lan-
guages, although there are some important differences that relate
mainly to the stepwise execution of a model, as clarified in Chap. 6.

A complete description of the textual expression language is pre-
sented in App. A.

5.1 Event, Condition, and Data-ltem
Expressions

In the preceding chapters, events and conditions were used in triggers,
and data-items in interface definitions. We also saw some examples
that used more complicated expressions, and not just element names.
There were dependencies of expressions on other elements in the sys-
tem (e.g., in the condition expression in(S)) and compound expres-
sions that involved several elements (e.g., the event E1 or E2). We now
describe in more detail how to construct such expressions for events,
conditions, and data-items.

73

74 Chapter Five

5.1.1 Event expressions

Most of the transition triggers shown in Chap. 4 consisted of just an
event name. However, a trigger can be any event expression, as
described here. Figure 4.15 showed events that occur upon entering or
exiting a state, en(S) and ex (S). Other events indicate changes in
the status of other elements, such as changes in the values of condi-
tions and data-items, and in the status of activities. These will be dis-
cussed when the manipulation of the relevant elements is presented.

Expressions for compound events can be constructed by using the
Boolean operations and, or, and not. In the EWS example, the two
transitions from GENERATING_ALARM to WAITING_FOR_COMMAND in
Fig. 4.3 may be combined, using an event disjunction, as in Fig. 5.1.
The transition labeled with the event disjunction is taken when at
least one of the events occurs.

The negation of an event using the not operation must be approached
with caution. This negation means that the specified event did not
occur, and it makes sense only when the negated event is checked at a
specific point in time, that is, when combined with other events. This
is achieved by using an and operation or a compound transition. Thus,
for example, if the event E has been defined as E1 or E2 or E3 or
E4 or E5 (using the Data Dictionary, as explained in the next section),
then we may use either Fig. 5.2a or Fig. 5.2b instead of Fig. 5.2¢.
Recall that the junction connectors used in this figure denote the con-
junction of triggers.

Note also that the combination of an event and a condition, E[C]
(even if the event is absent, as in the trigger [C]), is considered an
event, so that E1[C1] and [C2] or E2, for example, is an event
expression, too.

Event expressions are evaluated according to the conventional prece-
dence rules of logical operations, and parentheses can be used in the
usual way to override the default orderings. See App. A for detailed
information about precedence of operations.

WAITING_FOR_
COMMAND

RESET or ALARM_TIME_PASSED

GENERATING
ALARM ‘

Figure 5.1 Disjunction of events.

The Textual Expression Language 75

ES E and E5
B ¥ —_— 9

(a) g5 (b)

El or E2 or E3 or E4

(©)

Figure 5.2 Negating an event.

All the aforementioned event expressions evaluate to yield a single
event (as opposed to an event array). A component of an event array can
be used whenever an event expression is allowed, and it is identified by
its index, for example, DIGIT_PRESSED (1) .

Very often we want to detect the fact that some unspecified com-
ponent of an event array has occurred. We use the operator any for
this. For example, the event expression any (DIGIT_PRESSED)
refers to the event array defined in Fig. 3.1, and captures the press-
ing of any one (or more) of the ten digit keys on the operator key-
board of the EWS. Similarly, although rarely used, the a1l operator
captures the simultaneous occurrence of all events in the array.

5.1.2 Condition expressions

Some of the transition labels presented in Chap. 4 include condition
expressions. In the simplest case, the condition expression is just the
condition name, such as SIGNAL_EXISTS in Fig. 4.4, but we also saw
the condition expression in (CONNECTED) used in Fig. 4.15. Other con-
dition expressions are also related to the status of other kinds of ele-
ments, and they will be presented as we go along.

We often want a condition to compare data-items in one of several
ways. To do so, we allow the following comparison conditions, where #
depicts inequality:

expl = exp2, expl # exp2,
expl > exp2, expl < exp2,
expl <= exp2, expl >= exp2

Assume that we have chosen to represent the operator command
of the EWS by a string data-item COMMAND that has three possible
values, namely, “execute’, “set-up" or “reset' . The exit from the

76 Chapter Five

WAITING_FOR_COMMAND state would be triggered by the event COM-
MAND_ENTERED, denoting the assignment of a value to this data-item,
and would be channeled to the appropriate state, depending on that
value. See Fig. 5.3.

The expressions on both sides of the comparisons must be of the same
type, both numeric or both strings. They can also be arrays or records
and are then compared component-wise. Arrays must be of the same
length and component type, and records can be compared only if they
are of the same user-defined type. For strings we allow only = and #.
~ As in the case of events, the Boolean operations and, or, and not
can be used to construct compound conditions. Figure 5.4 shows
two alternative ways to restrict the transition from WAITING_FOR_
COMMAND to COMPARING by using the conditions SET_UP_DONE and
in (CONNECTED).

Because conditions can be organized in arrays or constitute fields
in a record, the condition expression can have the corresponding syn-
tax. For example, if the EWS monitors an array of sensors and SEN-
SORS_CONNECTED is the array of conditions representing their
connection status, then SENSORS_CONNECTED (I) is a legal condition
expression specifying the status of the T1th component. To capture the
condition of at least one of the sensors being connected or all of them,
we may use the any and all operators, respectively, as in any (SEN-
SORS_CONNECTED). These operators can also be used to refer to a
slice of the array, as in all (SENSORS_CONNECTED (1. .3)), which is
true when the three first sensors are connected.

5.1.3 Data-item expressions

We mentioned conditions that compare data-item expressions. Data-item
expressions can also be used in other places in the textual language, such

| WAITING_FOR |
COMMAND
[COMMAND="reset "]

SETTING_UP

Figure 5.3 Comparison conditions.

COMMAND _ENTERED N COMPARING

[COMMAND=' execute’]

[COMMAND="set_up’]

The Textual Expression Language 77

i ECTED
WATTING_FOR EXECUTE [SET_UP_DONE and in(CONNECTED)]
_COMMAND
(@
[in (CONNECTED)]]

A4

COMPARING

EXECUTE [SET_UP_DONE)

WAITING_FOR

COMPARING
_COMMAND >

[not in(CONNECTED)] (b)

Figure 5.4 Condition expressions.

as in assignment actions, and can be of different types: numeric (integer,
real, bit, and bit-array), strings, and structured.

Numeric expressions consist of constants and numeric data-items (or
numeric components of structured data-items), combined by conven-
tional arithmetic and bit-wise operations with the usual precedence
rules. An example is Y+3*R.X-A (I+J). There is also a set of predefined
functions that can be used within numeric expressions, such as arith-
metic and trigonometric functions (e.g., abs (X), sin(a)), bit-array
operations (e.g., the logical shift-left operation 1shl (B)), and random
number generators (e.g., rand_normal (R, S)). See App. A.

In addition, in numeric expressions we allow the use of functions that
are not predefined. These are called user functions, and may employ
data-item and condition parameters that come from the model. These
functions usually denote parts of the system whose details are not cur-
rently essential. They may remain unspecified, and eventually could be
taken from an existing implementation.

Numeric expressions can involve the various numeric types, and
type conversion is carried out as needed. Integer and bit-array con-
stants can use bases other than the decimal base, such as binary
(e.g., 0B00101011), octal (e.g., 00053), and hexadecimal (e.g.,
0x2B). Real constants can be represented in exponential format
(e.g., 2.5e-3).

As mentioned earlier, string constants are enclosed in quotes, (e.g.,
“abc). There are no operations on strings, but the language offers sev-
eral functions for string manipulation, such as concatenation, substring
search in another string, and conversion between integer and string.
See App. A.

Structured data-items (i.e., arrays, records, and unions) do not
support operations, either. There is a special representation for array
constants that uses commas between the components. An asterisk
for repetitions is also allowed. For example, {20*0} is an array con-
stant consisting of 20 zeros, while {1,2,3,10*1,0,0} is an array
constant consisting of 15 integer components. However, the language
provides no record or union constants.

78 Chapter Five

Appendix A describes the full set of operations and functions that can
be applied to data-items and their relative precedence.

5.1.4 Named expressions

We mentioned earlier that an element expression can be abbreviated
by a simple element name. This is carried out by associating a defini-
tion with an element in the Data Dictionary, and here are the most
common reasons for doing so:

s To shorten a lengthy expression that appears many times in transi-
tions or in other places where the textual language is used. A short
definition in the Data Dictionary prevents errors of inconsistency,
enhances clarity, and economizes in writing. In the EWS example,
we can define the condition READY to be SET_UP_DONE and
in (CONNECTED). This will shorten the trigger on the transition in
Fig. 5.4a, yielding EXECUTE [READY] .

8 To abstract away the expression, hiding details that we might not have
decided upon yet or might want to change later on. In the EWS exam-
ple, we can define a data-item ALARM_DURATION whose value will
be specified later. In this example, the reason could be our desire to be
able to change the duration in a flexible way. Also, the exact time is not
really important in an early stage of the specification.

Such an abbreviating definition can be associated with any event,
condition, or data-item. An element with no definition is called a
primitive element, or a variable, and can be generated (in case of an
event) or modified (in case of a condition or a data-item) in the mod-
el in the usual way. An element that has an expression definition is
called a compound element (see Fig. 5.5a). The element is referred to
as a compound element even when the expression is just the name of
some other element. For example, the event E is defined to occur
when event G occurs. An element, a data-item, or condition, is
referred to as a constant when its definition is a literal constant
expression (see Fig. 5.5b).

Because compound elements or constants depend for their values on
their associated expressions, they cannot be affected directly by
actions. For example, such an element cannot appear on the left-hand
side of an assignment action, cannot label a flow-line, and cannot be a
component of an information-flow.

These limitations do not apply to the special case of attaching an alias
to a bit-array slice, which can be useful in applications such as digital
chip design and communication protocol specification. In such applica-
tions an individual bit or a slice of a bit-array might carry special
meaning, and it helps to be able to refer to the bit-array portion by a
special name. For example, a message can be composed of a series of

The Textual Expression Language 79

bits divided into groups that denote the message type, command code,
data fields, etc. Assume that MSG is a message that is implemented by
a bit-array of 64 bits, indexed from 0 to 63. The first three bits,
MSG (0. . denote the message type. An integer data-item MSG_TYPE
will be deﬁned to be an alias of MSG (0) (see Fig. 5.5¢). Now the
message sender can assign a value to MSG_TYPE, which is just like
assigning a value to MSG (0. .2), and the message reader can check
the value of MSG_TYPE in the decoding process. A lower level of the
communication protocol that handles these messages can be made to
access the individual bits, with no extra conversion to another data
structure.

It is possible to define a data-item of type integer, bit, or bit-array to
be an alias of an expression for a bit-array slice with a constant range
of indices. As mentioned, an alias is treated like a variable and can be
used wherever a variable is allowed, unlike compound and constant
data-items.

Any occurrence of the element that has an expression definition can be
viewed as if the expression were written out in full. Moreover, the expres-
sion is reevaluated whenever there is need to evaluate the element.

It is also possible to define named actions, as discussed in the next
section.

Condition: READY

Defined in Chart: ENS_CONTROL

Defined as: compound

Definition: SET_UP_DONE and 1n(CONNECTED)

Data-Item: ALARM DURATION
Defined in Chart: EWS_CONTROL
Defined as: constant
Definition: 60

Data-Item: MSG_TYPE
Data-Type: integer
Defined as: alias
Definition: MSG(O. 2)

(©)

Figure 5.5 Elements with definitions in the Data Dictionary: (a) compound,
(b) constant, and (c) alias elements.

80 Chapter Five

5.2 Actions

In addition to the transitions between states, other things may hap-
pen during execution of the model. They are usually specified by the
actions. We saw some examples of actions written along transitions.
In addition, actions can appear in static reactions, as described later
in this chapter, and in mini-specs of activities, as described in Chap. 7.
The textual language allows various types of actions, which are
described in the following sections. They can be classified as follows:

s Basic actions that manipulate elements, causing changes that can be |
checked and triggering other happenings in the system.

e Conditional and iterative actions, similar in structure to those in
conventional programming languages.

5.2.1 Element manipulation

The most basic actions manipulate three types of elements: events,
conditions, and data-items.

Event manipulation is really just sending the event. This is per-
formed by the action that is simply the name of the event. We saw
examples of actions that send events in Fig. 4.14: the events OPERATE
and HALT are sent when the transitions to and from the COMPARING
state are taken, respectively.

Condition manipulation is a little more flexible. Special actions can
cause a condition to become true or false. In our EWS example, we may
want to distinguish between success and failure of the setting-up proce-
dure to ensure that we start comparing values in the COMPARING state
only if the set-up succeeded. This may be achieved as follows. In Fig. 5.4,
we added theguarding condition SET_UP_DONE to the transition from
WAITING_FOR_COMMAND to COMPARING. Now, in Fig. 5.6, we add the
two self-explanatory events SET_UP_SUCCEEDED and SET_UP_FAILED,
which label two separate exits from the SETTING_UP state. In the case.

///;;s!(SET_UP_DONE) [in (DISCONNECTED)]

EXECUTE [SET_UP_DONE] [in (CONNECTED)]

WAITING_FOR

N .| coMPARING
_ COMMAND] >(C >

A A
SET_UP) SET_UP_SUCCEEDED/tr! (SET_UP_DONE)

4 |seTlue_rarLED

‘ SETTING UP I

Figure 5.6 Actions on conditions.

The Textual Expression Language 81

of success—and in that case only—we carry out the action make_true
(SET_UP_DONE) (abbreviated tr! (SET_UP_DONE)).

In general, the action tr! (C) has the effect of setting the truth value
of condition C to true, and the corresponding action make_false (C)
(abbreviated £s! (C)) sets it to false. The default entrance to
WAITING_FOR_COMMAND, for example, is labeled with a make_false
action that assigns a false value to SET_UP_DONE. So the system will
react to the EXECUTE command only if the setting-up procedure ended
successfully at least once.

Instead of the actions tr! (C) and fs! (C) we may use the assignment
actions C:=true and C:=false, respectively. In general, the right-hand
side of such a condition assignment can be any condition expression.

In addition to these actions, a condition C has two associated events,
true(C) and false (C), which occur precisely when C changes from
false to true and from true to false, respectively. We abbreviate them
as tr(C) and £s(C). The condition C can be a condition expression
that depends on other conditions or data-items. Interestingly, this
makes it possible to replace events by conditions. In Fig. 4.10, for
example, instead of the two events POWER_ON and POWER_OFF, we
could have a single condition, POWER_IS_ON, and use the two events
true (POWER_IS_ON) and false (POWER_IS_ON) .

A subtle point concerns the precise relationship between the actions
tr!(C) and fs! (C) and the events tr (C) and fs(C). For example,
does tr (C) always occur when tr! (C) is executed? The answer is no.
The events occur only when the truth value of C changes value, but the
actions can be executed without changing the truth value if it was
the desired one to start with. Thus, for example, if the setting-up proce-
dure completed successfully twice in succession, then the first execution
of the action tr! (SET_UP_DONE) will trigger the event
tr (SET_UP_DONE), but the second execution will not.

Assignment actions can also be used te manipulate data-items, and
as in the case of conditions, there are events and conditions associated
with them. In the EWS example, we may be interested in producing an
alarm only after three occurrences of OUT_OF_RANGE. This may be
achieved as in Fig. 5.7.

All types of data-items can be involved in assignments. The right-
hand-side expression of the assignment must be type consistent with
the assigned data-item on the left-hand side. Both sides must be
either numeric or string. They can also be arrays, in which case their
lengths must be the same and the component types must be consis-
tent. Assignments of an entire structured data-item (record or union)
are also allowed, but both sides must be of exactly the same user-
defined type.

Whenever an assignment to X takes place, the event written (X)
(abbreviated wr (X)) occurs. Thus, we may replace the trigger COM-
MAND_ENTERED in Fig. 5.3 with the event wr (COMMAND) . The exit

82 Chapter Five

MONITORING '
r-_"'_ﬂ /N::O
' COMPARING

OUT_OF_RANGE
[N<31] /N:=N+1

v

[N=3]

| GENERATING
ALARM

Figure 5.7 Actions and conditions on data-items.

from the WAITING_FOR_COMMAND state would be triggered by an
(external) assignment to COMMAND, and would be channeled to the
appropriate state, depending on its value. See Fig. 5.8.

A similar event is changed (X) (abbreviated ch (X)), which occurs
when and if there was a change in the value of the data-item ex-
pression X. Thus, in our example, we cannot replace the event
wr (COMMAND) by ch (COMMAND) (as a trigger of the transition from
WAITING_FOR_COMMAND), because that would make it impossible to
carry out two successive entries to SETTING_UP.

We may also use the actions write_data (X) and read_data (X)
(abbreviated wr! (X) and rd! (X), respectively). These actions apply
to all types of data-items, including ones that are structured, and
even to conditions. These actions cause the occurrence of the events
written (X) and read (X), respectively. They will be discussed fur-
ther in Chap. 8.

Note that we do not allow actions to be carried out on named com-
pound elements. It makes no sense to perform the action tr! (C) when
C is defined as C1 or C2, or similarly to assign a value directly to
x1+x2. (Of course, these changes can be achieved by operating on the
components, i.e., by changing the values of C1,C2,X1, or X2.)

5.2.2 Compound actions and context
variables

We already mentioned that it is possible to perform more than one
action when a transition is taken. This compound sequential action is
written by separating the component actions by a semicolon (e.g.,
Al;A2;A3).

The Textual Expression Language 83

Another kind of compound action is the conditional action, in which
the actual action carried out depends on a condition or an event. The
two cases differ in their format:

if C then A else B end if
when E then A else B end when

where A and B are actions, C is a condition expression and E is an event
expression. The meaning of these is self-explanatory. In both cases the
else B part is optional.

For example, in the EWS we may define an event SET_UP_COM-
PLETED to be the disjunction SET_UP_SUCCEEDED or
SET_UP_FAILED. Figure 5.9 may then be used to specify the transi-
tions from SETTING_UP to WAITING_FOR_COMMAND concisely, and it
should be compared with Fig. 5.6.

Actions can be lengthy sequences of compound actions, and may
involve complex expressions. It is thus helpful to attach a name to an

(WAITING FOR)
| commanD
[COMMAND="'reset

SETTING UP |,

Figure 5.8 An event related to a data-item.

“

WAITING FOR_
COMMAND

a

wr (COMMAND) | COMPARING

[COMMAND="'execute’]

[COMMAND='set_up’]

SET_UP_COMPLETED/

when SET_UP_SUCCEEDED then
tr! (SET_UP_DONE)

end when

A\

l SETTING UP '

Figure 5.9 A compound action.

84 Chapter Five

action, using the Data Dictionary. For example, the conditional action
in Fig. 5.9 can be named SET_SUCCESS, shortening the transition
label to SET_UP_COMPLETED/SET_SUCCESS.

When a sequence of actions involves assignments, the timing in
which the left-hand-side variable gets its new value is significant. As
explained in Chap. 6, the model is executed in steps, and the actual
assignment is performed only at the end of the step using the values
from the end of the preceding step. Therefore, an action like X:=1;Y:=X
will result in Y becoming equal to the value that X had before the action
execution, which may not necessarily be 1. Moreover, if we check the
value of a variable X in a conditional action that follows an assignment
to X, the value used will be the one from the preceding step. For
example, in the action sequence X:=Y; if X=Y then Al else A2
end 1f, the action Al is not necessarily carried out because X and Y
might have had different values before the action.

This method of computation is sometimes inconvenient, especially
when true sequentiality is required. For this purpose we provide con-
text variables, identified by a prefixed $. In contrast to regular data-
items and conditions, context variables get their values immediately,
sothat $X:=1; Y:=$Xresultsin Y being equal to 1, and $X:=Y; if $X=Y
then Al else A2 end if causes Al to be performed in any case.

Context variables have limited scope. They are recognized only with-
in the action expression in which they appear, and their value is not
saved between different invocations of the same action. Thus context
variables used in the definition of a named action A are not recognized
in an action instantiating A, and vice versa. Also, actions that appear in
labels of different transition segments connected by a connector do not
share the context variables, even when they are performed in the same
step. Context variables have no entry in the Data Dictionary; thus they
inherit their type from the expression first assigned to them.

5.2.3 lterative actions

We have seen how to define arrays of events, conditions, and data-
items. To help manipulate these arrays we provide iterative actions. In
particular, the for loop action makes it possible to access the individ-
ual array components in successive order. The for loop action has the
following syntax:

for $I in N1 to N2 loop
A
end loop

Here, $1I is a context variable, N1 and N2 are integer expressions, and
A is an action. For example, assume that there is an array of sensors
monitored by the EWS. For each sensor I, there is a corresponding
SAMPLE (1) whose value is checked for being in the desired range, pro-

The Textual Expression Language 85

ducing an array of self-explanatory IN_RANGE conditions. This can be
done as follows:

for $I in 1 to NUMBER_OF_SENSORS loop
IN_RANGE ($I):=(SAMPLE($SI) => LEGAL_RANGE.LOW_LIMIT)
and (SAMPLE($I) =>LEGAL_RANGE.HIGH_LIMIT)
end loop

The iterations can be carried out with the context variable repeatedly
decremented, by using the keyword downto instead of to in the range
designation.

Assume now that instead of producing the IN_RANGE values for all
the sensors, it suffices to identify one sensor for which the value is out
of legal range. When this happens, the OUT_OF_RANGE event should be
produced. This can be done by the following for loop action:

for $I in 1 to NUMBER_OF_SENSORS loop

if ((SAMPLE ($I) < LEGAL_RANGE.LOW_LIMIT) or
(SAMPLE ($I) > LEGAL_RANGE.HIGH_LIMIT)) then
OUT_OF_RANGE ;
break

end 1f
end loop

The action break, which is performed when an out of range situa-
tion is detected, will skip the rest of the loop’s iterations, and the
action that follows the loop construct (if there is such an action) will be
the next one to execute.

Another iterative action, the while loop construct, iterates until some
condition becomes false. The preceding operation for the sensors can
be implemented with this construct as follows:

SI:=1;

SALL_IN_RANGE:=true;

while

({$I =< NUMBER_OF_SENSORS) and $ALL_IN_RANGE) loop
if ((SAMPLE($I) < LEGAL_RANGE.LOW_LIMIT) oxr
(SAMPLE ($I) > LEGAL_RANGE.HIGH_LIMIT)) then
OUT_OF_RANGE;
SALL_IN_RANGE:=false
end if;
ST := S$I+1
end loop

The break action can also be used in the while loop to jump out of
the loop without completing the iteration.

Notice that the iteration counter in the for loop action and the iter-
ation condition in the while loop involve context variables. The rea-
son is that the values of these expressions must change during the
execution of the action, that is, within the same step.

Iterative actions can be used wherever any other action can be writ-
ten, particularly inside another iterative action. No limit is set on the
level of nesting of iterations.

86 Chapter Five

5.3 Time-Related Expressions

Many kinds of reactive systems have timing restrictions, and their
behavioral specification must involve reference to time delays and
timed-out events. Our textual language provides several constructs to
deal with timing.

5.3.1 Timeout events

One way to introduce explicit timing information into a statechart
is by using the timeout event. The general form is t imeout (E, T) (abbre-
viated as tm(E, T)), where E is an event and T is an integer expression.
This expression defines a new event, which will occur T time units after
the latest occurrence of the event E. In the EWS example, we
may replace the event ALARM_TIME_PASSED of Fig. 4.3 by the
more informative and detailed event: tm (en (GENERATING_ALARM) , AL
ARM_DURATION) . The new event will occur ALARM_DURATION
time units after the state GENERATING_ALARM is entered.
The waiting time, ALARM_DURATION, is measured in some
abstract time unit. The way these units refer to concrete time units, such
as seconds or minutes, is not part of the language and may be specified
informally in the Data Dictionary. In addition, the relationship can be
fixed in related tools, such as simulators, where concrete units are mean-
ingful. In any case, the same abstract time units are used in all timing
expressions throughout the entire statechart.

A subtle point related to the timeout (E, T) event is that the clock
that “counts” the time from the occurrence of E is reset to zero each
time E occurs. Thus if less than ALARM_DURATION time units elapsed
since the system entered the GENERATING_ALARM state, and in
the meantime that state was left and reentered, thus retriggering the
event en (GENERATING_ALARM), the counting of ALARM_DURATION
will restart and the alarm will last until this new duration ends.

5.3.2 Scheduled actions

A construct that is in a way dual to the timeout event is the scheduled
action. The general format is schedule (G, T) (abbreviated as
sc! (G, T)), where G is an action and T is an integer expression. It
schedules G to be performed T time units from the present instant.
Referring to Fig. 4.7 of the EWS example, we can define the action that
should be taken if NO_STIGNAL is true to be sc! (1f NO_SIGNAL then
ISSUE_DISCONNECTED_MSG, 3). This will cause the system to wait
for 3 time units and then check whether there is still no signal before
issuing the message.

It is interesting to compare two ways of specifying that G is to occur T
time units from a present occurrence of the event E. If we do this by

The Textual Expression Language 87

using E/sc! (G, T), then indeed nothing can prevent G from being car-
ried out on time. In contrast, if we use tm(E, T) /G, then, as mentioned
earlier, a second occurrence of E before T units elapse resets the clock to
zero, and G might take longer to occur or might never get around
to doing so.

5.4 Static Reactions
5.4.1 Reactions on entering and exiting
a state

We are often interested in associating actions with the event of entering
or exiting a particular state. This may be done by adding the required
actions to all entering or exiting transitions. A better way, especially
when there are many such transitions, is to associate corresponding
reactions with the state in the Data Dictionary. These reactions are trig-
gered by entering and exiting events (abbreviated by ns and xs).

To use the EWS as an example, refer to Fig. 4.14. The event OPER-
ATE is generated on all transitions entering the COMPARING state, and
the event HALT is generated on the exiting transitions thereof. We may
instead omit these actions from the chart and associate two reactions
with the COMPARING state in the Data Dictionary (separated by a dou-
ble semicolon), as shown in Fig. 5.10.

Exactly when the events of entering and exiting a state occur in stan-
dard cases was explained in Sec. 4.4.1. However, there is a somewhat
more subtle case—that of looping transitions. In Fig. 5.11, assume we
are in state S2. In Fig. 5.11a the only entering and exiting events that
occur when the transition is taken are those related to S2, but, in con-
trast, in Figs. 5.116 and 5.11c¢ the ones related to S occur, too.

5.4.2 General static reactions

The reactions attached to a state in the Data Dictionary are called
static reactions. The general static reaction construct makes it possi-
ble to define the reaction of the system to an event within a particu-
lar state, even without associating it with a transition between states.

State: COMPARING
Defined in Chart: EWS_CONTROL

Static Reactions:
ns/OPERATE ;;

Figure 5.10 Reactions on entering and exiting a state.

88 Chapter Five

afca®

()

s * N
(O (&) (O)
1 \
(b) ()

Figure 5.1 Looping transitions.

Associating the reaction trigger/action with state S in the Data
Dictionary means that as long as the system is in state S, the action
is performed whenever the trigger occurs. As in the case of a label of
a transition, the trigger can be any event expression (not only enter-
ing and exiting, which are special cases), and the action can be any
action expression.

In the EWS example, assume that there is no built-in clock that allows
" us to use the event tm(en (GENERATING_ALARM) , ALARM_DURATION)
to exit from the GENERATING_ALARM state. We may instead employ a
“self-made” clock that, from the moment GENERATING_ALARM is
entered, generates an event TICK every time unit. We can then intro-
duce the data-item NO_OF_TICKS, and associate two static reactions
with the GENERATING_ALARM state, as shown in Fig. 5.12.

We may then exit from GENERATING_ALARM when we have “seen,” say,
three ticks. This could be achieved by a transition exiting from GENER-
ATING_ALARM, and labeled with the condition [NO_OF_TICKS=3].

It is often tempting to replace a static reaction with a self-looping
transition labeled with the reaction, so as to depict more of the speci-
fication graphically. This should be done with care. For example, we
cannot naively replace the second static reaction for the GENERAT-
ING_ALARM state with the transition in Fig. 5.13 because each time we
reenter GENERATING_ALARM, the first static reaction will set the data-
item NO_OF_TICKS to zero.

Finally, let us note that it is useful to mark on the chart those states
that have associated static reactions in the Data Dictionary. We use the
> character for this. Thus, for instance, when we add static reactions
to the GENERATING_ALARM state, the name will be appended with a >,
to mark the existence of additional information. See Fig. 5.14.

The Textual Expression Language 89

State: GENERATING_ALARM
Defined in Chart: ENS_CONTROL

Static Reactions:
ns / NO_OF TICKS:=0;;

Figure 5.12 General static reactions in a state.

OUT_OF_RANGE
/NO_OF_TICKS:=0

[NO_OF_TICKS=3]

GENERATING_
ALARM

TICK/
NO_OF TICKS:=

NO_OF_TICKS+1 A,//

Figure 5.13 Looping transition instead of static reaction.

[NO_OF _TICKS=3]

GENERATING
ALARM>

Figure 5.14 Marking a state having static reactions.

