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Abstract

In spite of mary successstoriesin variousdo-
mains,GeneticAlgorithm andGeneticProgram-
ming still suffer from somesignificant pitfalls.

Thoseevolved programsoften lack of someim-

portant propertiessuch as robustness,compre-
hensibility, transpareng modifiability and us-
ability of domain knowledge easily available.
We attemptto resole theseproblems,at least
in evolving high-level behaiours, by adopting
a techniqueof conditions-and-behavias origi-

nally usedfor minimizing the learningspacein

reinforcementearning. We experimentallyvali-

datetheapproacton aforagingtask.

1 Introduction

GeneticAlgorithm (GA) and GeneticProgramming(GP)
have alargenumberof successfudpplicationsn mary do-
mains. Much of their popularityis dueto the factthat GA
andGP arecompetitveif the spaceto besearchedks large,
is known not to be perfectly smoothand unimodal, or is
notwell understoodor if thefitnessfunctionis noisy, and
if quickly finding a sufficiently goodsolutionis enough([4,
[6]. However, thoseevolved programsby GA/GP often
lack of someimportantpropertiessuchasrobustnessgom-
prehensibility full specification,modifiability and taking
adwantageof domainknowledgeeasily available, eachof
whichis importantfor GA/GP paradigmto be morewidely
acceptecindused.

Evolved motion-controllerprogramsare, for example, of-
ten “brittle” in that they only work for a particulartask

n the Proceeding®f Geneticand EvolutionaryComputation
Confeence(GECCO-99)

ratherthana generalskill: slight perturbationsnay make
the programsfail [2], [9]. Eventhoughthe size of them
may be small, theseprogramsare usually ‘opaque’to hu-
maninterpretation2], [9], [12]. This opaqueneskeadsto
moredrawbacks.lt maybedifficult to tell how it will work
for a given conditionbeforeactually runningthe program
onit. It is noteasyto modify anevolvedprogramfor arel-
evantbut differenttasknorto encodeandtake advantageof
somedomainknowledgeeasilyavailable.

Themotivationbehindthiswork, in particular comesfrom

the fact that a few numberof GA/GP applicationswere

done[2], [7], [12] in computernimatiorwhichis ourmain

interest[13, but still suffer from mary of thesepitfalls and

are not much followed-up. We attemptto resole these
problems,at leastin evolving high-level behaiours, by

adoptinga techniqueof conditions-and-behavias orig-

inally usedfor minimizing state spacein reinforcement
learning[§. We usea foragingtask as a test-bedfor the

approach.

This paperis organizedasfollows. In SectionBehaviours
and Conditions, we introducethe benefitsof them. Sec-
tion The Foraging Problem describeghe taskfor which
a policy hasto evolve and an experimentalframework for
it. SectionExperiments givestheexperimentaresultsand
Discussions andConclusions follow it.

2 Behavioursand Conditions

2.1 Why Behavioursand Conditions?

Behavious are goal-driven control laws that achieve
and/ormaintainparticulargoalssuchashomingandwall-
following. Abstracting awvay the low level details, be-
haviours can be usedasthe basicrepresentatiotevel for
controlin mobilerobots[5]and computeranimation[8].

Behaviours aretriggeredby conditions predicatesn sen-
sorreadingghatmapinto apropersubsebf thestatespace.
Eachconditionis definedasthe partof the statethatis nec-



essaryand sufiicient for activating a particularbehaiour.
Thetruthvalueof aconditiondeterminesvhenabehaiour
can be executedand when it should be terminated,thus
providing a setof eventsfor the agents controlalgorithm.
Thisconditionsetis typically muchsmallerthantheagents
completestatespace[$.

Reformulatingstatesand actionsinto conditionsand be-
haviours effectively reducesthe searchspace,which is
then definedat a higher level of descriptiondue to the
abstracting-avay of the details: what GA/GP hasto do is
thento find a mappingfrom the power setof conditionsto
behaiours into the mosteffective policy for a giventask
(Tablel).

2.2 Morethan Reducing Search Space

Sinceapolicy definedatahigh-level descriptioris evolved
rather than a mechanicalmotion controller of low-level
statesand actions,it is robust: evolved programsfor me-
chanicalmotion controllersare often fragile that extra ef-
forts have to be givento make themrobust[Z], [9].

While programsevolvedby typical GA/GP arenotusually
easyto interpret[3, [12], this high level descriptionpro-
videsan easyinterpretationof an evolved policy. Thisis
usefulbothin studyingthe evolvedpolicy [1] andin mod-
ifying it. Thoseevolved by typical GA/GP arenot prone
to modificationsso that the evolutionary processwith a
new fitnessfunctionmayhave to bere-runevenfor asmall
changen theprograms’output[d.

Sinceabehaiour is mappedor eachof the conditions,an

evolvedpolicy becomegransparentor every possiblecon-

dition: afull specificatiorof the policy! Most of programs
evolvedby typical GA/GPdo not provide this sortof trans-
pareng so that they have to be actuallyrun on it to see
its performancedor a given condition. It hasto be noted
thatthe easyinterpretationdoesnot necessarilymply this

transpareng In [1], a parsetreewasusedfor specifying
an agents policy which still provides easyinterpretation
of it. It is not, however, a mappingfrom the power setof

conditionsto behaiourssincenot only behaviour but also
conditionprimitivescomprisehe nodesof thetree:in fact,

oneof the bestevolvedpolicy consistedf only behaiiour

nodeswithout a single condition node so that its perfor

mancewasnottransparendn ary condition.

Sincean agents policy is specifiedin parallelratherthan
sequentiallyit is easierto modify part of the policy with
less affecting the rest of others. If it was sequential
suchasa parsetreewhich is skimmedthroughby a con-
troller successiely performingeachprimitive encountered
in nodes[], achangein a precedinghodecould affect the
following nodessothatit is not soproneto modifications.

If thereis domainknowledgeeasily available, it may be
encodedn genotypeandreducesearchspacefurther. Do-
main knowledge,if ary, areusuallytakenadvantageof in
the form of fitnessfunctions. This implicit useof domain
knowledgestill leavesa humanuserto setits correspond-
ing parametersn fithessfunctions[q, [5]. If this domain
knowledge can be expressedn termsof conditions-and-
behaiours asin the following section,this caneasily be
encodedaspartof genotypen thebeginningandthesearch
processasto fill in only therestof others.

We experimentallyalidatethesepointsonaforagingprob-
lem.

3 TheForaging Problem

Foragingproblems goalis to make anagentfind andtake
homesampledn anunpredictableervironment. This bio-
logically inspiredproblemsenesasacanonicabhbstraction
of avarietyof real-world applicationsuchasdeminingand
toxic clean-up[$ andhasbeenusedin alot of possiblede-
rivedapplicationsn artificial intelligenceandartificial life
(for morereferencesee[1]).

Thebasicbehaiour repertoire givento the agenta priori,
consistof thefollowing fixed set:

e homing: moveto ahomebase
e grasping: graspasample
e dropping: dropasample

e wandering: moveto arandomlocation

Thesebehaiours are ‘protected’ as protecteddivision %
is typically pre-setto return,say 1, whendivided by O in
GP[4: homingdoesnothingif it is calledwhenno home
bases seen.Similarly, graspinganddroppingdo sofor no
sampleseen.

A simpleGA wasusedto searchtheappropriateeconditions
for triggeringeachof the abose behaiours. Sinceonly the
spaceof conditionsnecessarandsuficient for triggering
the behaviour setis consideredthe statespaceis reduced
to the power setof thefollowing clusterectonditionpredi-
cates:

e any-home? is ary homebaseseen?
e at-home?. is theagentatahomebase?
e any-sample? is ary samplenot collectedseen?

e carrying-sample? is theagentcarryingary sample?



Condition

Behaviour Behaviour Behaviour

at-home?| carrying-sample?| any-sample?| any-home?

hand-written evolved engineeed

0 0 0

0
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wandering homing
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wandering
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?

wandering
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Tablel: : Theforagingpolices.A hand-writtenone,anevolvedonewith a heterogeneoutnessfunction,andangenetic-
engineeed-&-evolved one with a monolithic fithessfunction. Sinceany-home?is never FALSE if at-home?TRUE,
behaiour entriesfor theseimpossibleconditionsareleft outandmarkedwith ‘?’. Only the entriesdifferentfrom thoseof
the hand-writtenoneareshavn in the secondandthe third policy. ‘! is markedfor the geneticengineeed partsof the
third policy to bethe sameastheir counterpartén thethe hand-writtenone.

3.1 Genetic Codefor an Agent’sForaging Policy

The agents foraging policy is specifiedasa table consist-
ing of columnsfor conditionsand a columnfor their cor-
respondingoehaioursasin Table 1. An 1-d arraycorre-
spondingo this behaiour columnis usedasthegenotype:
oneof the simplestpossiblegenotypes!

3.2 Fitness Function for the Foraging Policy

A monolithic functionis typically usedfor a fitnessfunc-

tionin GA/GP Constructingsuchamonolithicfithessfunc-

tion could be a complicatedtaskin somedomainshaving

dynamicfeaturessuchasthis foragingproblem,sincethe

ernvironmentmay provide someimmediaterewardsandde-

layedreinforcement.To enableand acceleratahe search
process,both of heterogeneousewarding functions and
progressestimatingfunctionswerelately usedwhich took

adwantageof implicit domainknowledge[1], [5].

In our experimentgeportedhere,we usedonly the hetero-
geneoudunctionsfor thefithessfunctionthoughincluding
the progressestimatingfunctionswasreportedto improve
the performancef the policy further[5. Thisis partly be-
causeof simplicity, but mainly becausave would like to
focus on thoseaspectanentionedearlier suchas easeof
interpretatiorandmodificationof theevolvedpolicy rather
thanthe performancemprovement.

The following events produce immediate positive rein-
forcement:

e [;: grasped-sample

e [y dropped-sample-at-home

The following event resultsin immediatenegative rein-
forcement:

e Fs5: dropped-sampleveay-from-home

The eventsarecombinednto thefollowing heterogeneous
reinforcemenfunction:

T1 1f El

_ T2 1f E2

R(C) o T3 1f E3
0 otherwise

ri,m2 > 0,73 <0

The fitnessfunction is a sum of the reinforcementR re-
ceivedovertimet:

Z R(c,t)



4 Experiments

The agenthasa limited visual depthof field with a view
angleof 360 degreeand the experimentswere donewith
thefollowing parameters:

Populatior= 300,Generatior= 300,
PCrosswer=0.7,PMutation= 0.1

| r1=2,7r3 = 100,r5= -2

4.1 TheBasic Foraging Task

Dueto notoriousdifficulties of evaluatingthis sortof per

formance,we define corvergenceas a particular desired
policy asdonein[5]. We simply comparea hand-written
policy andanevolvedone(Table 1): only thoseentriesdif-

ferent from their counterpartdn the first one are shavn

in the second. Sinceany-home?is never FALSE if at-

home?TRUE, behaiour entriesfor theseimpossiblecon-
ditions areleft out and marked with ‘?" in Table 1. The
sizeof thesearctspacds thenreducedrom 4'6 to 412,

Amongtwelve entriesin the evolved policy, threearedif-

ferent from thosein the hand-writtenone: (12 — 3)/12

= 75% of the correctpolicy (Table 1, Figure 1). If the
progressestimatingfunctions had beenusedin addition
to the heterogeneousward functions,the performancef

the evolved policy might have beenimproved asreported
in[5].

4.2 Variationson the Theme
421 Many Homes

Thelocationof the homebaseis not known to theagentin
our experiment:the agenthasto look for it whenhoming
while theworld coordinateof the homebasewasavailable
to the agentin the previouswork[5]. This coordinate-free
homingallows the evolved policy to be moregenuineand
flexible. We ranit in othersituationwherethereare two
homebasesand the samepolicy still works well (Figure
2).

4.2.2 Carrying Morethan One Sample

During the evolution of the foraging policy, carrying-
sample? was TRUE while it carried at least one sam-
ple. Since the evolved policy doesnot have ary en-
try of graspingfor conditionsof carrying-sample? RUE,
the agent can bring home only one sampleat a time
even though it may encounteranotherin the mid of
the way. By interpreting the condition more gen-
uinely such as carrying-sample(s-enough-tte-able-to-
take-any-moe)?, the samepolicy canallow the agentto

bring homemary samplesatatime: two samplesatatime
wereconsideredo beenoughasif carryingonein theright
handandthe other, theleft hand(Figure 3).

4.2.3 Genetic Engineering rather than Rewarding

Due to this transparentepresentatiorof genotypeswith
conditions-and-behdours, some of domain knowledge
may be directly encodedin the genotyperatherthan be
implicitly informed of by fitnessfunctions. For the con-
ditions satisfyingboth carrying-sample AL SE andany-
sample?TRUE, graspingneedsto be encoded: this cor
respondsto the rewarding for E;. For those of at-
home?TRUE andcarrying-sample? RUE, dropping this
is equivalent to the rewarding for F5. Thesegenetic-
engineeregartsof a genotypearelabeledas‘!” in Table
1

Then, a GA hasto simply fill in the restof the entries
for aforagingpolicy whosesize of the searchspaceis re-
ducedfrom 42 to 47. The fitnessfunction now becomes
a monolithic function: the numberof samplesollectedat
the homebasewhena policy’s runningends. A foraging
policy evolved and wasthe sameasthe hand-writtenone
(Table 1).

The following are some of possible benefitsfrom this
‘gene-manipulationcomparedo the useof the heteroge-
neoudfitnessfunctions:

¢ lessloadin monitoringconditionsandbehaioursfor
thefitnessevaluationduringtheevolution.

e lessburdenin choosingparameteraluesthanthat of
theheterogeneousinctions.

e bothdomainknowledgeinformedof andreductionof
searchspace only theknowledgeinformedof in the
caseof theheterogeneousinctions.

4.2.4 Porting the Evolved Policiesinto 3D Computer
Animation

Runninga policy duringthe evolution wasdonein arather
crudesimulationof sensingandbehaiours andthosetwo
of the evolved policiesin Table 1 workedwell in it. The
first policy of 75%correctnesdiowever, did notperformed
well whenwe portedthesepoliciesinto 3D computeran-
imation wheremoretight managemensf sensingandbe-
haviours were employed suchas a limited view angle of
the agents. In the beginning of the animation,it seemed
to be all right. Whensamplesnearthe homebaseswere
alreadycollected,the agentscollectedother samplesand
startedhoming But, the agentsoonstoppedhomingbe-
fore completingit andswitchedinto wanderingthenhom-
ing andsoon: they neverreachedh homebase.



Figure2: Many homes.Clockwise,from upperleft.



Figure3: Carryingmorethanonesampleat atime. Clockwise,from upperleft.

We, however, were soonableto seewhereit wentwrong  foragingtaskandthe variationsincludingits realizationof
and how it hadto be correctedby simply monitoringthe 3D computeranimation.

conditionsandthe behaiioursduringthe animation.When

theconditionwas0111,it startechoming If nosamplewvas References
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