
Exercise in Embedded Computing: Driving an

Alphanumeric LCD

Sivan Toledo, Tel-Aviv University

November 7, 2010

The purpose of this exercise is to drive an alphanumeric LCD display. These dis-

plays are inexpensive and very common. These displays are usually controlled by

a dedicated LCD controller chip, an HD44780 LCD or a clone. The LPC2148 Edu-

cation Board contains a clone, KS0070B; the data sheet fo the HD44780 is clearer,

so you should probaly use it rather than the data sheet of the KS0070B when you

develop your code. The LCD unit shown on sheet 4/4 of the schematics of the

Education Board represents not just the display, but a printed-circuit board that

contains the dipslay, the controller, and the LED backlight.

The LCD controller contains 80 bytes of RAM that are mapped to the display. Each

byte is mapped to one character on the diplay. In a 2-line display, like the one we

have, the top line starts at address 0x40. There is also a little bit of additional

RAM to define custom characters. The controller has a bus interface that the mi-

crocontroller uses to write to this RAM, to read from it, and to send commands

(instructions) to the controller. The LCD controller has an internal address pointer

that that MCU can set using a bus command. When the MCU writes or reads a

byte, this pointer is incremented automatically. The following diagram shows the

structure of the diplay and names the bus signals.

 x  Character LCD

R
S

R
/!W

E D
0

D
1

D
2

D
3

D
4

D
5

D
6

D
7

HD LCD

controller or

clone

many signals

Backlight

The RS and R/!W signals determine the nature of each bus transaction, according

1

to the following table:
RS R/!W

1 0 the MCU writes to the controller’s RAM

1 1 the MCU reads from the controller’s RAM

0 0 the MCU sends an instruction to the controller

0 1 the MCU reads a busy flag (bit 7) and the address pointer (bits 0–6)

When the MCU sends data (or an instruction) to the LCD controller, the E signal

tells the controller when to sample the data on the bus. From the timing diagram

below we can infer that the data is sampled on the falling edge of the E signal.

This means that a E signal must go down only after the signals on the data bus are

stable, and then should remain stable for some time after the falling edge of E (the

data sheet tells you for now long).

The bus can be used as an 8-bit bus or as a 4-bit bus. The 4-bit interface is slower,

which is not important, and uses fewer MCU pins, which is often important. When

we use the 4-bit interface, communication between the MCU and the LCD con-

troller is still byte-based, but each byte is sent in two bus cycles, with the most-

significant bits (MSB) sent first. The LCD controller always starts in the 8-bit

mode. To tell it to switch to the 4-bit mode, the MCU sends the “function-set” com-

mand, whose 4 most-significant bits set the bus width. This command is sent in

one bus cycle, because the LCD controller is is 8-bit mode. If the MCU only drives

4 bits, the lower 4 bits of the “function-set” command that the LCD controller gets

can be anything, so the MCU must send it again, this time in two bus cycles.

Other instructions clear the display, set the internal address pointer, choose fonts

(not much choice), cause the display to blink, show or hide a cursor, and shift the

display.

To drive the LCD controller, you need to understand the behavior of the bus. Here

is the timing diagram for writing to the LCD controller.

RS

R/W

EN

DB0 to DB7

VIH1
VIL1

VIH1
VIL1

tAS tAH

VIL1 VIL1

tAHPWEH

tEf

VIH1
VIL1

VIH1
VIL1

tEr
tDSW tH

VIH1
VIL1

VIH1
VIL1

tcycE

VIL1

Valid data

Your code needs to drive these signals and to obey the timing constraints that

the data sheet specify. This mainly means the program must not drive the LCD

controller too fast.

2

In addition to timing constraints on bus transactions, certain operations take a

long time (more than a millisecond) to complete. The program must either wait

more than the maximum time the operation takes, or it can periodically poll the

controller’s busy flag to find out when it finishes performing an instruction.

The driver that you will write will have a minimum of three functions: lcdInit(),

lcdPrintChar(uint8 t c), and lcdGoto(), which changes the internal address pointer.

You can add additional functions to turn the display on and off, to clear it, and so

on.

The same alphanumeric LCD can be used with almost any microcontroller, so we

will keep the driver completely independent of the MCU. To achieve this indepen-

dence, implement the driver in a separate C file char-lcd.c that you will #include

into the main program. Do not use separate compilation. The driver will control

the bus by calling macros or functions that the main program will define before the

inclusion of char-lcd.c. The test program should look like this:

...

#define lcd backlight on() ...

#define lcd en rs out() ... /* set the direction to output */

#define lcd rw out() ...

#define lcd data8 out() ...

#define lcd data8 in() ... /* set the direction to input */

#define lcd data4 out() ...

#define lcd data4 in() ...

#define lcd data8 set(c) ...

#define lcd data4 set(c) ...

#define lcd rs set() (IO1SET = BIT24)

#define lcd rs clear() (IO1CLR = BIT24)

#define lcd en set() ...

#define lcd en clear() ...

#define lcd rw set() ...

#define lcd rw clear() ...

#include "char-lcd.c"

int main() { ... }

1. Start with a partial implementation of lcdInit that only turns on the back-

light. Without a working backlight, you won’t be able to see text on the dis-

play.

2. Your LCD driver needs a way to make sure that it satisfies lower-bounds on

bus timing. Implement in the main program a function busywait(uint32 t

microseconds)that will wait a given number of microseconds or longer. We

will calibrate it in a future exercise, but right now just make sure it waits at

least as long as the argument tells it to. You can achieve this by assuming

that the processor runs at 60 MHz or less and that each instruction takes at

least one clock cycle to complete. Don’t worry if the wait is significantly longer

than the argument.

3

3. Read the datasheet of the LCD controller and implement the rest of the driver

using the 8-bit bus interface. Make sure your code waits for the LCD to reset;

this is easy to overlook, because when you download code repeately to the

board to test it, the LCD remains on all the time, so you won’t notice if your

code tries to communicate with the LCD controller too soon after power up.

4. Modify the driver to use the 4-bit bus interface. You should not use any of the

data8 macros or functions; you should assume that there are no MCU pins

connected to D0 to D3.

5. Additional ideas:

(a) Implement driver functions to support blinking and a cursor.

(b) Implement a driver function that accepts a string and displays it; use

’\n’ to separate the two lines (so that one string argument can span the

two lines).

(c) Enhance the function from part (b) to display strings that are longer than

16 characters, by slowly shifting the display to the left after an initial

delay, to reveal the part of the text beyond 16 characters.

(d) Implement a function that reads back data from the LCD controller. Be-

cause the controller has only 80 bytes, it’s RAM is not terribly useful,

but reading from it is a good exercise in controlling a bi-directional bus.

Consult the timing diagram of read transactions in the controller’s data

sheet.

(e) Implement custom graphic characters.

4

