
Exercise in Embedded Computing: Contiki

Basics

Sivan Toledo, Tel-Aviv University

November 26, 2009

This exercise covers the basic facilities of Contiki, an operating system for embed-

ded systems. The exercise refers to to the installation of Contiki and the compiler

on our servers, but you can also download a virtual machine image1 that allows

you to experiment with Contiki on your own computer.

1. Plug the tmote sky board (which is called simply sky in the Contiki code and

documentation) to a USB port. Copy the directory/users/
ourses/embedded/exer
ises/
ontiki-basi
s and its contents to your

home directory. In this directory give the command make exer
ise.upload.

The command should build a binary containing the code in exer
ise.
 and

the operating system itself and upload it to the board. The sources of the

operating system, along with many useful example programs, are stored in/users/
ourses/embedded/
ontiki-2.3. The makefile that you copied into

your own directory points to this location. The documentation for Contiki

is at http://www.si
s.se/
ontiki (click on “documentation”).

2. Run the command make login. It connects to the board through a USB se-

rial port. Press the reset button on the board. You should see a Contiki

startup message, followed by “Hello!”, which is a string that our program

prints. Press control-C to exit from the terminal emulation program.

3. Copy the source file exer
ise.
 to solution.
, and modify Makefile so that it

builds from it, rather than from exer
ise.
. Add your name to the welcome

message, build the binary and upload, and test it.

4. The main loop in the program waits for events but does not do anything.

Modify it so that it prints a message every 4 seconds. You will need to use

an event timer (under “Modules->Contiki system->Event timers” in the docu-

mentation). Time is specified using the constant CLOCK_SECOND. You will need

the macro PROCESS_WAIT_EVENT_UNTIL to wait for the timer expiration (or for

any other specific event). Test the code.

5. Add another process that blinks the green LED once per second, and add

it to the list of automatically started processes. You will need to include

1Download from http://www.si
s.se/
ontiki/instant-
ontiki.html.

1



"dev/leds.h"; the relevant functions are leds_on, leds_off, leds_toggle, and

the argument should be LEDS_GREEN.

6. Add a third process that blinks the red LED 10 times per second, but start it

only 4 seconds after first two (that is, after the hello process finishes its first

wait). See “Modules->Contiki System->Contiki processes” for the API to start

a process from another process.

7. Add a process that prints a message every time the user button on the board is

pressed. See examples/sky/test-button.
 for a useful example. The message

that is printed must indicate the number of times the button was pressed so

far.

8. Processes can post events to each other. Modify the process that prints a wel-

come messages every 4 seconds so that it allocates a new event type and posts

it to a new process every time it prints a message. There are several types

of events in contiki, to denote message arrival, timer expiration, and so on;

they are represented by integers. We need a new event type (a new number

to represent our events), which we allocate using pro
ess_allo
_event. This

needs to be done once. We post events to the new process using pro
ess_post.

The new process should print a message every time it receives an event of the

new type.

9. Contiki supports both event timers, which we have already used, and real-

time timers. A real-time timer does not post an event when it expires, but

invokes a function (from within the hardware timer’s interrupt service rou-

tine). This provides better control over scheduling than an event timer. Use

one of your existing processes to schedule a real-time task for a second later.

The task should toggle the blue LED and re-schedule itself for a second later.

This should cause blinking of the blue LED.

10. Optional: The Contiki build system allows you to override operating system

sources simply by copying them into your working directory and modifying

them. The build process will use the modified local versions. There is no

need to modify the makefile. Copy the file 
pu/msp430/wat
hdog.
 into your

working directory. The file contain functions that start, stop, and pacify the

watchdog timer (a timer whose role is to reset the processor unless the pro-

gram pacifies it periodically). Modify the code so that Contiki does not use the

watchdog timer at all. You still need to stop it in the initialization function.

This might be useful because on the MSP430 you can also use the watchdog

timer to generate periodic interrupts.

2


