
Exercise in Embedded Computing: I2C

Sivan Toledo, Tel-Aviv University

November 14, 2009

The purpose of this exercise is develop a driver for the I2C peripheral. The goal is

to write a program that reads the temperature from the LM75 temperature sensor

about once per second and prints it to a serial connection (UART0).

1. Download the UART driver uart0.
, the print formatter print.
, and the test

program test-uart.
 from exer
ises/uart and build and test the code. To see

the output, add the flag -term to the program target in the makefile (that is,

run lp
21isp with this flag).

2. Implement a master-mode I2C driver i2
.
. The driver should be interrupt

driven. Its interface should include the following functions.void i2
Init();
This function should initialize the peripheral. It should set the bit frequecy

to the value given by the constant I2C_BIT_RATE which must be defined beforei2
.
 is included in the application program. To set the bit frequency, the

function needs to know the frequency of the clock that feeds the I2C clock

generator; this frequency is given by the constant CLOCKS_PCLK.int32_t i2
MasterTransa
t(uint8_t slave_address,uint8_t* 
ommand,int32_t 
ommand_len,uint8_t* response,int32_t response_len);
This function writes the command to a slave with a given slave address and

reads a response from it. If the command has zero length, the function only

reads from the slave. If the length of the response buffer is zero, the function

does not read from the slave at all. The function returns the number of bytes

that it read from the slave (if the slave responds with a NACK before sending

the expected number of bytes, the master should stop the transaction). If the

transaction fails (for example, if the slave does not acknoledge its address),

the function returns a negative number that indicates the nature of the fail-

ure.

Even though the driver is interrupt driven, this function is blocking. It starts

the I2C transaction and then waits in a while loop for the ISR to signal that

1



the transaction is complete or was aborted due to an error (e.g., the master

lost arbitration, or the slave does not respond to its address, etc.). It should

detect excessive waiting and return with an error code that indicates a time-

out. Timeouts can occur if the bus is not ready to begin the transaction and

if the clock is stretched for two long. The maximum time for a transaction

should be one second, to allow for even very slow slaves.

3. Test the driver by trying to read two bytes from the LM75, whose address

is 0x90. That is, the address byte should contain 0x90 when we write to the

slave (not the case for this part of the exercise) and 0x91 when we read from

it. (The documentation of I2C slaves sometimes specifies addresses this way

and sometimes as a 7-bit number which is stored in the 7 most significant bits

of the first byte sent by the master.) The LM75 can support clock rates of up

to 400 kHz. Here is an example of what the relevant parts of the code should

look like:#define CLOCKS_PCLK 3000000#define I2C_BIT_RATE 400000#in
lude "i2
.
"...return_
ode = i2
MasterTransa
t(0x90,0,0,response,2);
4. The program should print the temperature in degrees Celsius. Read the data

sheet of the LM75 in order to interpret the format of the two bytes that it

returns.

5. How many LM75’s can serve as slaves on one I2C bus?

6. What happens if you clock the LM75 too fast? Up to what actual bit rate can

you does it work?

7. Additional ideas:

(a) Display the temperature on the LCD.

(b) The I2C bus on the LPC2148 Education Board gives you access to another

chip, a CAT1025, which contains 256 bytes of non-volatile memory. It

also runs at up to 400 kHz. Write a driver for the CAT1025; it should use

the I2C driver to access the chip but provide higher-level functions.

(c) Design and implement a non-blocking interface for the I2C driver, so thati2
MasterTransa
t does not wait for the transaction to end. Instead, it

should merely start the transaction and return. When the transaction

ends, the ISR should call a completion handler. Convert your program to

use this driver.

2


