
Exercise in Embedded Computing: Timing

Services and Introduction to PWM

Sivan Toledo, Tel-Aviv University

October 22, 2009

The purpose of this exercise is develop two general-purpose timing abstractions

and to use them in experiments. The experiments focus on pulse-width modula-

tion (PWM), which is a technique that we will use here to control the intensity of

LEDs. Many microcontrollers contain hardware PWM modules, but here we will

implement PWM in software.

1. Implement a periodic software-invocation interface. The function systi
kInit()
should configure a timer/counter to invoke an ISR every millisecond. The

ISR should call systi
k_periodi
_task(). Implement the module in a filesysti
k.
. The file will be included into a program using a #in
lude prepro-

cessor directive. The main program will define systi
k_periodi
_task(). For

example, the following code keeps track of time and toggles an LED about 4

times per second.uint32_t mse
s = 0;void systi
k_periodi
_task(void) {mse
s++;if ((mse
s & 0xff) == 0) { /* 8 low-order bits are zero, *//* happens every 256ms */... /* toggle an LED */}}
Note that we have avoided division and avoided computing remainders, both

of which could be slow. In large programs that require modularity, systi
k_periodi
_task
can call periodic tasks of other modules, say the switch debounce module.

2. Implement LED blinking using the systi
k module. The LED should toggle

about every second; either 1000 or 1024 ms is fine.

3. A good way to implement short delays in the microsecond range is with a

loop. This strategy does waste processor cycles (and power), but if the delay

is short and not too frequent, the overall waste is small. Implement a func-

tion busywait(uint32_t mi
rose
onds) that waits in a loop and returns after

a given number of microseconds. An initialization function busywaitInit()
1



should calibrate the number of iterations per µs (or the number of µs per it-

eration on slow processors). The calibration constant should be stored in a

variable. Assume that busywaitInit will be called before interrupts are en-

abled. Test the busywait module with a program that uses it to blink an LED

once per second.

4. If you turn an LED on and off rapidely (say faster than 100 Hz), the human

eye perceives the light as steady but dimmed, not as blinking. Dimming a

light source this way is called pulse-width modulation. Other actuators, like

motors, can also be controlled this way. Implement a program that allows

the user to dim one of the strong LEDs on the board using PWM. Use the

LCD backlight or the RGB LED rather than the weaker red indicator LEDs.

The user should be able to increase the light intensity by pushing the joystick

switch to the right and decrease it by pushing the joystick to the left. There

should be 9 levels of intensity (off, 12.5% of the time on, 25% of the time on,

37.5% of the time on, up to always on).

5. Now change the levels of intensity to a logarithmic scale: off, 1/256 of the

time, 2/256, 4/256, 8/256, and so on. Does this scale look more natural than

the linear scale or less natural?

6. The PWM frequency is a design parameter. What do you think are the nega-

tive aspects of a very high PWM frequency? What are the negative aspects of

a slow PWM frequency?

7. The intensity of an incandescent bulb can also be controlled with PWM. Does

the bulb stop emitting light during the off period of the PWM cycle?

8. Additional ideas:

(a) Generalize the systi
k module so that systi
k_periodi
_task is called

only every SYSTICK_QUANTUM milliseconds, not every millisecond. The

module can assume that SYSTICK_QUANTUM is an integer.

(b) Suppose that some other module m is a client of systi
k and that it re-

quires a SYSTICK_QUANTUM that divides M_QUANTUM. How can the module

test at compile time that the constraint holds? Assume that the sources

of both modules are included into a main program, and that systi
k is

included first.

(c) Write a program that changes the color of the RGB LED every time a

button is pressed (cycle between 6 colors) using PWM. Can you control

the color and the intensity separately?

2


