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Abstract 
We present a simple and affordable way of copying remote controls widely used for parking lot 

gates, garage doors and other simple systems. These simple remote controls usually use a fixed code 

(as opposed to the more secured rolling code used for car keys remote controls) and a simple On-Off 

Keying (OOK) modulation, over 433.92MHz in the ISM band. We suggest the use of the TI-Chronos 

wrist-watch platform for the emulation of the remote control, as this platform transmits in the same 

band, and can be programmed to emulate different modulations and to send user pre-defined 

signals.  

In this report we show the complete process for copying a remote control into the Chronos platform. 

This process utilizes only a standard PC and low-cost hardware (less than $75 all together), alongside 

free software, and additional software developed by us. The process starts with recording the 

original remote control RF signal. It continues with automatic analysis of the recording, extracting 

the needed parameters of the signal. Finishing the process, we set the Chronos with those 

parameters. We demonstrate the copy process using a 4-channel remote control and its receiver 

board.  
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Introduction 
Our project will show how easy and cheap it is to create not only working remote control copies, but 

cool ones as well! We will show how to utilize the TI eZ430-Chronos watch platform as a remote 

control. We will record and analyze the RF signal produced by the original remote, and then teach 

the watch to reproduce the same signal and open the gate with it instead. The hardware in our 

project costs less than $75, and that includes TI's watch itself! 

During this project we: 

1. Surveyed remote control systems for common features and characteristics. We then 

purchased a remote control and receiver kit to serve as a candidate for copying and 

reimplementation using the Chronos wrist watch.  

2. Altered the C code for the MCU on the watch platform to support general purpose RF 

signaling using the platform's transceiver. 

3. Upgraded a python script that is used to configure the watch with the signal parameters. 

4. Recorded and analyzed the structure of the RF signal generated by the original remote 

control. 

5. Developed a python script for robust automatic analysis of the signal recordings to extract 

the parameters for the watch configuration. 

6. Integrated our copying system and tested our process to achieve the desired results.  

This completes a full cycle of the remote control copying and embedding into the Chronos watch, to 

replace the original remote. Our system supports two different remote control codes in one watch 

system. 

If you wish to build your own copy lab - jump straight to appendix A to get the simple and full 

instructions. The report ahead will give a thorough explanation of the elements of the copy lab, and 

the behavior of the remote control system. 

 
 

 

 

  



System Flow Diagram 
 

 

Phase1: Copy   

 

  

 

 

 

 

 

 

Phase2:  Transmit Signal  

 

 

 

 

 

 

 

 

 

 

 

 

 

4) Python Utilities: 

a. Analyze parameters 

b. Load to Chronos watch  

3)  .wav File 
2) Record 
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TI Chronos platform review 
Texas Instruments eZ430 Chronos, is a low power MCU, sensors and RF transceiver development kit, 

that has an additional coolness factor as it is embedded in a sleek hand-wrist watch. The dev-kit 

arrives with the watch board, it's mechanical watch casing, and two USB dongles to work with it. The 

first dongle serves as an RF access point, and the second dongle is used to physically connect the 

watch board to the computer for debugging and program loading. The dev-kit's wiki is very helpful. 

 

Figure 1: The eZ430 Chronos Kit 

The board's MCU is the TI MSP430, which is an ultra-low power microcontroller SoC with the RF 

transceiver (based on TI's CC1101), for the <1GHz band, integrated in to it, along with many other 

useful interfaces. The board also introduces a 3-axis accelerometer, pressure sensor, temperature 

sensor, and a battery sensor - all of which we did not use in our project, but we did play with. To us, 

it seems that TI is using the Chronos platform and its coolness factor to introduce this MCU into the 

industry for companies to use for different products. 

There are several versions of the watch's hardware. There is an old (black) PCB and a new (white) 

PCB. We worked with black PCB watches, which gave us some trouble, as you will see in a short 

while. Furthermore, there are 3 different models for 3 different frequency ranges. These differ by 

antennae matching, and firmware. The available frequency bands are 433MHz, 868MHz and 

915MHz, which comply with different regulations worldwide. Gate and garage remote controls 

works on several sub-GHz bands. The 433.92MHz frequency is quite common and fits to the 433Mhz 

Chronos model. This also caused us some trouble, since the first 3 watches we got a hold of were 

matched to 868MHz. We identified the version of the watch, and the frequency by observation, silk 

prints on the PCB, and the schematics available in the Chronos user guide (Section 4.5). 

The access point dongle should also be 433MHz matched (it looks like the one in the following 

picture, and not the last one). Through the access point dongle, we can use or build a software on 

the PC to communicate with the watch. We just need to connect through the serial port that the 

device emulates, and send packets to the watch.  

http://www.ti.com/tool/ez430-chronos
http://processors.wiki.ti.com/index.php/EZ430-Chronos
http://www.ti.com/product/cc430f6137
http://www.ti.com/product/cc1101
http://www.ti.com/lit/ug/slau292f/slau292f.pdf


 

Figure 2: Wireless access point dongle 

TI's platform embeds a low-power network protocol called "SimpliciTI". This protocol stack is simple 

and helpful, and we used it as-is to communicate between the watch and our PC. 

Firmware and software 

The watch's development kit user guide recommends the installation of the Code Composer Studio 

IDE, which is also an IT product, and is based on the open source IDE Eclipse. The development kit 

arrives with the full open source code for two projects - A sports watch and data logger. The project 

on which our software is based on is the sports watch project. Using the IDE you can change the 

code, compile it, and upload it to the watch platform. When the watch is connected through the 

debug dongle, it is also possible to debug the code, line-by-line, in the IDE while it runs on the 

platform itself. 

ChronIC review and our adjustments 
ChronIC is a software package, written by Adam Laurie, that enables the TI Chronos watch to send 

arbitrary RF data and signals with different modulations.  As we will show later in the report, the 

signal we want to transmit is OOK-modulated, and the ChronIC project supports it. In our project 

we've used this software, implemented several changes into it, and fixed several bugs. 

The main difference between the original sports watch project, and ChronIC project are: 

1. ChronIC has deprecated the use of several features in the original sports watch, among 

which are measurement of temperature, altitude, acceleration, speed and heartrate, 

sending acceleration information to PC control center, controlling computer with chronos' 

buttons, 

2. ChronIC disabled the use of TI's BlueRobin radio protocol stack, used for low power 

communication between devices (such as heart rate monitor). 

3. ChronIC adds UP/DOWN buttons functionality to transmit the configured RF signal when 

time/date are showing on the screen. 

4. ChronIC adds functionality to the RF Sync operation, allowing us to configure the RF signal 

that will be transmitted from the watch, from the computer via the access point. 

5. ChronIC adds the actual transmitting functionality (most of it is in \logic\chronic.c) by 

configuration of SFRs. 

 

http://processors.wiki.ti.com/index.php/SimpliciTI
http://www.ti.com/tool/ccstudio
http://www.ti.com/tool/ccstudio
https://github.com/ApertureLabsLtd/ChronIC
http://adamsblog.aperturelabs.com/


There are two main problems with the ChronIC version that we've found online. The first problem 

was that it did not match the hardware version of our watch. As we mentioned earlier, we are 

working with the black-PCB version of the watch, and it seems as though the ChronIC code version 

we have is not in compliance with the new version of hardware. To fix this, we had to manually and 

effectively merge the ChronIC code with a newer version of the original sports watch project. We 

had to keep the right changes that ChronIC did to the code, and add the changes in infrastructure 

that TI introduced between the two versions of the original code. There weren't a lot of changes that 

were needed, but in a large code base, this task isn't trivial: it took us several tries until we got it 

right. This merge mainly includes new low level drivers to account for newer hardware, new 

initialization processes, as well as different RF settings between the two board types.  

The second problem we've encountered was that the code contained some bugs. We've fixed some 

of the bugs we found, but we guess that we can find some more. It seems that the original coder had 

some trouble with the watchdog functionality of the watch, so he disabled it. We've turned it back 

on, and fixed the main bug that was in conflict with the watchdog functionality. That stopped most 

of the watch's freezes we've encountered. The problem with these freezes is that you have to open 

the watch and remove the battery in order to reset it to work again, and this is annoying. The main 

bug we've fixed was a problem encountered while trying to configure the code to be sent when the 

user presses the UP/DOWN buttons. The problematic variable is called Button_Up(Down)_Data in 

the code. The problem was that when resetting the watch, if you did not send a long enough code, 

the data would not be set, and then when trying to transmit the data, the watch would freeze. Since 

the watchdog was off, it would mean the watch won't work until we take out the battery, and put it 

back in. We fixed it by adding a missing initialization to the data just before the code tries to 

configure the buttons' data. 

The list of changes we've made: 

1. \include\project.h - Enabled the watchdog configuration. 

2. \logic\rfsimpliciti.c - Added the missing initialization in case the sent code is short enough to 

be sent in one chunk. The change appears in both setting the UP button as well as in setting 

the DOWN button. 

3. \logic\test.c - removed two unused variables left in the code. 

Our final code for the project is in:  

1. Chronos Final - The final working code after the bug fixes. 

For future projects and research to be done on this code base we also give the other 3 other code 

bases here: 

2. Sports Watch - The original sports watch project (that supports the black PCB version). 

3. ChronIC - The original ChronIC project. 

4. ChronIC_SportsWatch_Merge - The code merge between the above two projects. 

We recommend working with Beyond Compare tool to easily find the differences between the four 

projects. 

  

https://drive.google.com/folderview?id=0B5B5pHYtwkeHZ1JEUEhYYzVLcms&usp=sharing
https://drive.google.com/folderview?id=0B5B5pHYtwkeHM2ZDcXh5M3djVTA&usp=sharing
http://www.scootersoftware.com/


Remote control and gate controller overview 
In order to help develop our copy lab, we needed a remote control and receiver system. We started 

our learning process online, and searched for general information and common parameters of these 

systems. The main issue we were worried about is the compatibility of the eZ430 Chronos watch for 

this mission. We needed to understand at what frequencies these systems work in. 

There is a huge variety of systems and manufacturers for electrical gates controlled by remote 

controls and even more for the remote controls themselves. Typical remote control gate systems 

contain a receiver that controls an electrical motor through a mechanical relay that switches on and 

off the current to the motor. The remote control unit is a cheap low-power transmitter operating in 

a sub-GHz ISM frequency band and mostly uses a simple On-Off Keying modulation to transmit some 

repeated codes. Some known and common frequencies include the 433.92MHz, 310-315MHz and 

403.55Mhz (the 868.3 MHz1, and 916Mhz related frequencies were mentioned for rolling code 

remote controls).  

There are two main types of encoding: Fixed Code, and a more modern Rolling Code as summarized 

here.2 In this project we decided to focus on the simpler Fixed Code remotes only, in contrast to 

Rolling Code remotes that are much more secure and cannot simply be copied. Rolling code is used 

for systems such as remote car-keys or garage gates where the usage is one remote control vs. one 

receiver. However, for typical public gate that interacts with many remotes, rolling code scheme is 

not suitable and hence fixed code is still being used. 

This answers the above first issue: we can use the 433MHz model of the Chronos watch to open 

common remote-controlled gates, since the frequencies align, and the OOK modulation is supported 

by the ChronIC software.  

The problem remains is that because this remote control system is so simple to implement and no 

strict standard exists for the coding scheme, every manufacturer can have a different coding 

scheme. Thus, our solution must be robust.  

Fixed code encoders typically use between 8 to 12 bits to set the code to be transmitted. This allows 

different systems to be set one next to another without affecting each other. The system usually 

comes with default values set in both the remote control and the receiver. Changing the fixed code 

in both the remote control and the receiver, involves changing the state of a dip switch, or 

equivalent soldering pads.  

With 12 bits we have 212 = 4096 different codes, which provides good chances that two near systems 

will not use the same code, and avoid collisions. If there is a 3-state choice for each switch, as 

happens to be in our remote control system, with 8 switch-code, there are 38 =6561 options, that is 

more than enough for the mentioned reasons.  

As we mentioned earlier, we need our solution to be robust, but we started with one example - we 

purchased a remote control and receiver kit, and analyzed its structure to understand its coding 

                                                           
1
 http://en.wikipedia.org/wiki/Universal_remote_control_duplicator 

2
 There is a 3

rd
 type mentioned in the reference called Learning code, which is just a type used by encoders 

which can learn and duplicate another fixed code remote, and not a different encoding scheme.  

http://en.wikipedia.org/wiki/ISM_band
http://blog.solidremote.com/post/identify-rf-remote-control.aspx
http://en.wikipedia.org/wiki/Universal_remote_control_duplicator
http://en.wikipedia.org/wiki/Universal_remote_control_duplicator


scheme. We purchased3 at the cost of 200NIS a proprietary kit that includes a remote control 

transmitter and a matching receiver. It is a 4-channels system, with 433.92MHz carrier frequency 

(17cm antenna) and fixed code operation, which includes:  

1. One 4-channel remote control transmitter unit having 4 buttons, one for every channel. 

2. A 4-channels board having matching receiver unit and 4 electrical relays controlled by each 

channel. There's a red LED for each channel to indicate when the relevant channel relay is 

activated – this was very helpful during our testing. This board needs a 12VDC input to work. 

Although the lack of official documentation the board is easy to understand, and works well. 

 

 

 

 

 

By looking at the silk print on the boards and understanding the electronic design, we found that the 

transmitter unit uses a PT-2260 encoder and the receiver uses the matching PT-2272 decoder. Note 

that as we later analyzed the code from the RF signal recording, we didn't really need to reverse 

engineer the boards. However, as a preliminary stage we did look into it in order to understand what 

we should expect to see. 

The encoder/decoder pair should be set to the same code for the system to work. As it has 4-

channels it probably transmits 4 different codes. In this fixed code encoder/decoder pair a tri-state 

8-switch code can be set by soldering (see images), having 3 possible states (as in the datasheets) for 

each of the legs: 0 (to GND), 1 (to V) and a middle state. As will be explained in the Signal Analysis 

part, we changed the configuration of these switches, to understand how they affect the signal. 

 

Figure 4: Detailed View on the recievers' decoder and remote controls' encoder 

                                                           
3
 We bought it at "beltzer electronic" shop in 17 har-tzion st. TA. We originally meant to buy this 1-channel 

receiver/transmitter kit, but didn’t because it was verified in the store as using a rolling code (opposed to 
earlier checks). Instead, we decided to buy the above describe 4-channels system which works great although 
came with very poor (one page) documentation. We had some luck with that, since we finally utilized more 
than one code to use in the watch. 

Figure 3: The receiver/transmiter Kit we used 

http://pdf1.alldatasheet.com/datasheet-pdf/view/35120/PTC/PT2260.html
http://www.spelektroniikka.fi/kuvat/PT2272.pdf
http://www.belshop.co.il/Product.aspx?pid=15


Signal Analysis  
Signal description 

In order to allow the copying of the remote control signal, we need to analyze it's parameters, and 

how it works. This analysis would allow us to understand how these signals generally works, and 

build a tool for robust automatic analysis of these signals. 

In order to record the signal we used a professional Software Radio RF transceiver called USRP N200 

Ettus Research located in Prof. Sivan Toledo's lab. The carrier frequency was set to 433.92MHz with 

sample rate of 1MSamples/s. the samples are saved with the I and Q data interleaved where each 

sample is a 16 bit integer. For convenience, we chose the record length to be 10 sec. (which was 

more than enough). 

In order to analyze the signals and view the differences between the channels codes, we have 

recorded each of the 4-channels. Recording was done by starting the USRP operation, then 

continuously pressing the button of a specific channel for a about a second or two (to avoid 

bouncing errors), then release it before the USRP recording ends. To validate that the signal was 

transmitted, the receiver board was on, and the LEDs were our indication. 

For convenience we named the different channels as they appear on the remote control unit, Left 

Up (LU), Left Down (LD), Right Up (RU) and Right Down (RD). From this point on, we refer them as 

with their abbreviation.   

At this stage the saved recorded signals were manually observed and analyzed through MATLAB 

environment using simple scripts and by some manual measurements.           

Our recordings showed that the signal generated by the remote control was sometimes noisy and 

not so stable, and its amplitude varied. Even though, the receiver decoded the signal correctly, and 

this is due to the simple modulation scheme – which in turn allows very simple and low-cost 

implementation of the electronics in the system. 

 

Detailed description  

When the transmitter is active (button is pressed) the signal shows repeated bursts or packets. Each 

packet is a sequence shaped according to the current code and channel. Examining finer time 

resolution revealed the code structure of one duration from the transmitted signal, that as expected 

consists from a sequence of OOK signals representing the code content. This is demonstrated using 

the LU signal: 

  

https://www.ettus.com/product/details/UN200-KIT
https://www.ettus.com/product/details/UN200-KIT


 

 

 

 

 

 

 

 

 

 

 Here are all the other signals for the default code, zoomed-in on a single packet: 
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We also measured the lengths of the different pulses. The parameters are summarized in the table 

below: 

parameter value 

Short 'on' duration 0.36ms 

Long 'on' duration 1.076ms 

Full OOK symbol suration 1.44ms 

The timing values measured are based on averaging few (manual) measurements. In graphic view: 

 
According to the measured signals so far, we can conclude that: 

1. The signal is a repetition of a constant packet, which in turn consists of a sequence of OOK 

symbols. 

2. There are two types of pulses in the signal: one with short "on" period, and one with a long "on" 

period. Both have the same total length, but differ in the length of the "on" and "off" parts. The 

short pulse lasting 1/4 of the total period, while the long pulse lasts for 3/4 of the total period.  
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3. We can code using a 0' symbol to represent the short pulse, and a 1' symbol to represent the 

long pulse. If we do that, then we can translate the 4 channels to: 

 

 CODE 

RU 01 01 01 01 01 01 01 01 00 00 00 11 0 

LU 01 01 01 01 01 01 01 01 00 00 11 00 0 

RD 01 01 01 01 01 01 01 01 00 11 00 00 0 

LD 01 01 01 01 01 01 01 01 11 00 00 00 0 

 

4. The channels are separated one from another by the 8 symbols that are close to the end of the 

signal. The last symbol is, as mentioned before, always 0'. That means we can interpret the 

above table to be: 

 

 CODE Channel F (always constant.) 

RU 01 01 01 01 01 01 01 01 00 00 00 11 0 

LU 01 01 01 01 01 01 01 01 00 00 11 00 0 

RD 01 01 01 01 01 01 01 01 00 11 00 00 0 

LD 01 01 01 01 01 01 01 01 11 00 00 00 0 

 

5. To understand how the code part works, we manually connected one of the encoder legs to 

different, optional contacts, causing the corresponding bit (2 symbols combination) to change 

e.g. from 01' to 11' (in OOK symbol): 

bit0 connected to GND --> 00' bit0 not connected (default) --> 01' bit0 connected to Vcc --> 11' 

 
  

 

Now we can conclude that every 2 symbols correlate to the state of one tri-state "bit". The first 

16 symbols are the code from the encoder. They are set by the input from the encoder legs. 

Each code bit is in fact a tri-state bit that can take one of the values, based on where the 

encoder leg is connected to: 

a. 01 – Default. 

b. 00 – connect to GND line.  

c. 11 – Encoder's Vcc. 

 

6. The full frame length of the code is 12 "bits" or 24 a sequence of symbols + one last symbol that 

is always 0' which we referred to as a "Fin" sign.  

A different representation of the signal we will use later on, is an explicit representation of the "on" 

and "off" periods. That is – a short 1/4 length pulse would be coded as 1000, while a long 3/4 length 
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pulse will be coded as 1110. This representation will allow us to build our robust automatic analysis 

tool. This tool only assumes that there is a defined pulse length, or baud rate, and that in each time 

interval, the transmitter is either on, or off. 

Now we can conclude that what need to be analyzed are the lengths of the pulses, and that the 

amplitude is in fact much less important. Moreover the timing itself does not need to be exact as 

well due to low-cost transmitter and receiver in the system. As we found later, minor changes from 

the exact parameters still managed to open the gate. 

We also measured the time between two bursts and the full length of the transmission caught in the 

recording: 

Delay between two bursts (The end 
of burst to the start of the next one) 

~11ms 

Full packet duration ~36ms 

which correlates with our observation that about 21 packets are transmitted in one second. 

This concludes the structural analysis of the signal. We now understand how our remote control 

system works, and we can reproduce this signal using the Chronos watch. The problem is still that 

expensive lab equipment was used, and that our solutions is not robust enough for other possible 

remote control coding schemes. In the following chapters we describe how we made our process 

more robust, and less expensive.  



Recording the RF signal With SDR Software and low-cost Hardware  
In this chapter we show how we can eliminate the usage of expensive and stationary lab equipment 

to complete the copying cycle. We were guided by Prof. Toledo to do this with the popular HDSDR 

and a low-cost RTLSDR device. specifically we used this model which costs about 10$-15$ on eBay. 

Many other models can do the same job.   

Software Defined Radio (SDR) is an ongoing and emerging trend. With it, we are able to implement 

in software on a PC or embedded systems what would need to be implemented otherwise by 

hardware. The way this usually works is by utilizing the PC's sound card as an ADC, with an antenna 

attached to a front-end unit to receive/transmit the RF signal, while the software in the CPU does 

the rest of the signal processing.  

RTL-SDR4 is the name for low-cost devices originally meant for DVB-T. They are based on RTL2832 

demodulator that typically arrives as a USB dongle, attached to an antenna. It was discovered that 

they can be used as a cheap SDR since they transfer the raw I/Q samples. They output 8-bit I/Q 

samples with max (theoretically) sample-rate of 3.2MSamples/s. The frequency range depends on 

the tuner and the sampling rate.  

We used a model with RTL2832+R820 Tuner which is sufficient for our needs, enabling frequency 

range of 24MHz to 1766MHZ with up to 2.7MHz bandwidth.   

HDSDR software (current: V2.70): is a free, easy-to-use, impressive and very popular SDR software 

enabling software radio listening, visualizations, Rx/Tx, signal measurements, recording and many 

other functions for manipulating the received\transmitted signal. Moreover, this program can be 

used with a variety of SDR devices through the EexIO interface.  

The HDSDR software and other necessary tools, as well as a practical "how to" guide can be found 

here. A good and comprehensive installation guide can be found here. Higher permissions are 

required for the installation process. In appendix B we bring in detail the settings and workflow with 

HDSDR. 

 

Figure 5: Left - HDSDR main window , Right - the RTLSDR we used 

To conclude this section, we need to show that the low-cost substitute we suggest reproduce the 

same results as the USRP equipment gave. The records from the HDSDR as we configured it are raw 

RF samples, 8 bit I/Q in 800kHz BW around center frequency.  

                                                           
4
 based on definition from http://www.rtlsdr.com/about-rtl-sdr/  

http://www.hdsdr.de/
http://www.ebay.com/itm/RTL-SDR-Radio-USB-Kit-USB-DVB-T-RTL-SDR-Receiver-RTL2832U-R820T-Tuner-K89/111228243269?_trksid=p2047675.c100009.m1982&_trkparms=aid%3D222007%26algo%3DSIC.MBE%26ao%3D1%26asc%3D23309%26meid%3D7306096619660307145%26pid%3D100009%26prg%25
http://en.wikipedia.org/wiki/Software-defined_radio
http://www.rtlsdr.com/about-rtl-sdr/
https://sites.google.com/site/g4zfqradio/installing-and-using-hdsdr
http://hdsdr.de/RTLSDR_with_HDSDR.pdf
http://www.rtlsdr.com/about-rtl-sdr/


The signals we recorded using RTLRSDR+HDSDR show excellent match to those we recorded with the 

USRP lab equipment. The SNR ration that is produced by the RTLSDR setup is worse than the SNR of 

the USRP setup, but it is still good enough to analyze our OOK signal. Hence, the parameters from 

analyzing those signals are reliable enough, and so we can use the RTLSDR with the HDSDR software 

for recording the remote control RF signals which we wish to duplicate by emulating it with the 

Chronos watch.  

RD channel using RTLSDR+HDSDR  RD channel from USRP  

  
Table 1: Comparison between the 2 recording methods. RD channel from using USRP (Right) and Using RTLSDR+HDSDR 
(Left). Both share the same timing parameters. 

Automatic analysis and parameters extraction 
After manually recording the signal for the first time, and analyzing its structure and parts, we need 

to extract some parameters to load into the watch. As we saw, the signal is an OOK modulated 

signal, with specific positions of the on and off sections. We can tell what is the implemented code 

out of the signal, and on which channel are we broadcasting, but it doesn't really matter - what 

matters is just the specific remote control transmitted pulse shape. 

The parameters we are looking for are the symbol rate, or the smallest pulse length, the delay time 

between two packets, how many times to repeat the code, and the pulse shape itself. We represent 

the pulse shape using a binary code in the following way: 

  
1110b -->0xE 1000b --> 0x8 

Note that we do not assume those are the only possible pulse shapes, we can also support for 

example 1010, 0101 etc. 

We have the wave file from the recording as an input. We developed a python script that robustly 

extract the parameters out of the recording. It can be found here. It's called analyze_signal.py. 

Following is an explanation of the script's mechanics. 

The first thing to do is to turn the wave sample into a string representing the OOK modulation of the 

pulse. The sample itself is very slow (1MSamples/s) in comparison with the carrier frequency of 

433.92MHz, but it doesn't really matter, because we are looking for energy when the transmitter is 

on, and for quiet otherwise. In the script we read the data in the file, and choose one of the 

channels. The two channels are the I and Q of the RF signal. They are simply phase shifted from one 

3.625 3.63 3.635 3.64 3.645 3.65 3.655 3.66

x 10
6

-4

-3

-2

-1

0

1

2

3

4

x 10
-3

3.39 3.395 3.4 3.405 3.41 3.415 3.42 3.425

x 10
6

-800

-600

-400

-200

0

200

400

600

800

1000

channel
R
D

1 0 0 0 1 1 1 0 

https://drive.google.com/folderview?id=0B5B5pHYtwkeHbVBDRWFCZTFpaHM&usp=sharing
http://en.wikipedia.org/wiki/Modulation


another, so choosing any one of them will do the work. We notice that the data in the wave file is 

stored as a 2's complement value, and our sample was 16bit (2Bytes) for each one. 

First, we calculate the DC value of the sample, since it is not mandatory that the sampling system 

would be calibrated to zero. Next, we divide the sample into time windows in which we will calculate 

the energy of the signal. The window size will determine the precision of our results. We chose to 

work with windows of 10us. Every window has 10 samples, and we know from our manual analysis, 

that the pulse widths are in the order of hundreds of microseconds, so we feel good with this 

precision. Calculating the energy is simple: we square each sample, and sum the results in each 

window. Now we choose the average of the energy in the sample as a threshold value, where 

windows above this value would be considered as ON in the OOK modulation scheme, and windows 

below the energy threshold would be considered as OFF. We create a string with 1's for ON, and 0's 

for OFF, and return it. 

The next stage is to extract the packet's parameters from the OOK string we've created. This part is 

trickier and involves more heuristics - in order to achieve a robust calculation of the parameters. This 

challenge is hard since noise during the recording tampers with our calculations and the pulse shape 

in our OOK string has errors in it.  

The first thing we do, is fix single points of error - if one window in series of 0's had a burst of noise-

energy and became a 1, we change it to 0, and vice versa. Next, we change the description of the 

recording from the OOK string, to 2 vectors of lengths - the lengths of 0's in the OOK string, and the 

lengths of 1's. Next, we cut these vectors from one long recording into a series of packets - each 

packet is represented by its own vectors of 1's and 0's lengths. The cut is implemented by cutting out 

the long 0's sections which represent the time before and after the button-press during the 

recording, and the short stops (delays) between packets.  

This process also gives us the DELAY parameter needed for the watch's configuration, and the 

amount of pulses we saw in the recording. We suggest the REPEAT parameter to be so, that the 

entire RF pulse the watch will transmit would be 1 second long. We achieve this by calculating how 

long a single packet is, along with the DELAY between two packets, and divide one second in that 

time. 

Now, the main trick that helps us make the entire process so robust - we choose the "best" packet 

out of all the packets in the recording. Because the recording usually has about 50 packets, or more, 

there is a very good chance that at least one of the packets will be error-free. We chose the best 

packet using the assumption that if no errors occur, we will have the minimal amount of different 

lengths in the 1's and 0's lengths vector of the packet - because if an error occurs, it splits a long 

pulse to two smaller ones, probably with different lengths, thus both the interference, and the two 

smaller pulses add new lengths to this packet, rendering it worse. In all of our recordings, with 

different parameters of gain and distance, we always managed to chose a perfectly clean packet. 

From the best packet we calculate the smallest pulse width using some averaging on both the 

smallest ON pulse, and the smallest OFF pulse. This gives us the PULSE parameter that is used to set 

the baud-rate on the watch. Using the length of the smallest pulse, we translate the 1's and 0's 

lengths into binary code. For example, if the length of the smallest pulse is 36us, and the lengths are: 

36 1's, 108 0's, 35 1's, 109 0's... (the numbers are not exact), it is easily translated into 10001000 

http://home.roadrunner.com/~jgglatt/tech/wave.htm


code. We pad the code with 0's at its end to be a complete byte-code length (multiplication of 8), 

and reduce the DELAY parameter by subtracting the padding length, multiplied with the PULSE 

parameter. That is it - we have everything. 

Our script outputs the parameters to the screen, and also to an output .txt file that we use to 

automatically configure the Chronos watch. We've added the output file we got from some of our 

records ("gilido_params.txt"). Pay attention that it has two codes for both the UP button and the 

DOWN button. Each wave file analysis will output one code, with an UP prefix. You can edit the 

parameters file and add another code - as we did - to set the DOWN button as well. 

Take note that we assume 3 parameters to be known: The frequency is set to 433.92MHz, the 

modulation of the signal is OOK, and there is no Manchester coding of the signal. We still output 

them to the file, so the configuration tool will use them. 

Parameter loading and system testing 
The ChronIC package that we used for the watch's firmware, comes with a python helper script, that 

connects to the serial port to which the RF SimpliciTI access point is connected, and sends data to 

the watch when it is in Sync mode, containing the configuration parameters we need to set for the 

RF pulse to be as we want it. The main script is chronic.py. There's also a command line tool script 

which is chronic-cli.py. We used it during our testing, but we wanted to help automate the process, 

so we wrote a script that takes the configuration file, uses chronic.py, and configures the watch with 

the parameters from the file. It's called configure_chronos.py, and it is quite self explanatory.  

The usage is: "python configure_chronos.py <parameters_filename>". 

After loading the parameters of our analyzed signal to the watch, we tested it with the receiver 

board, and it worked. We can compare the recording of the RF signal transmitted by the watch to 

the original signal recorded from the remote control. This is demonstrated by the RD channel's signal 

transmitted by the chronos watch:  

Chronos signal: The full recording One packet of the RD channel 

  
It is clear that the signal is practically identical to the original signal, thus the emulation of the 

recorded signal with the Chronos watch was done successfully. 

Finally, Here is a video that shows the watch operating the receiver relays.  
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Summary, and Possible Future Work  
In this project we presented a simple and complete flow for copying the signal of a remote 

controlled gate system, using the TI Chronos platform designed as a watch. We showed that the 

needed tools are low-cost and easy-to-use. We explored and analyzed remote control signals, 

measured them with different equipment, developed automatic analysis tools to extract the needed 

parameters, and utilized code for configuration of the chronos watch with the signal to transmit. By 

the end of the process, the watch could transmit a requested code by demand. Finally, we 

demonstrated the use of this procedure against a live transmitter-receiver system that emulates a 

remote controlled gate.  

We believe that our project can be continued in several ways: 

 Adding capability for storing more codes on the watch. 

 Adding a GUI to simplify the whole copying process. 

 Under some legal consideration, our system might be used for receive analyze and store 

codes of gate remote controls from a distance, although it may require a more advanced RF 

front end, and additional work on the robustness of the analysis script.  

 Developing the recording and analysis parts of the project to be embedded into the watch 

platform itself. 
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Appendix A: Complete instructions for building up a copy lab 
 

Hardware needed: 

1. A standard PC running windows. 

2. TI ez430 Chronos watch kit, along with its RF access point and, and reprogramming dongle. It 

costs 58$ (as of May 2014) directly from the TI e-store, or 99$ from amazon. 

3. RTL-SDR USB Radio kit. We specifically used RTL2832+R820. It can be bought for about $10-

$15 at eBay. 

4. The remote control that you wish to copy.  

Software needed: 

1. TI Chronos Control Center. It installs the drivers for the access point as well. Installing the 

3rd party drivers on windows8 might be problematic. If so, follow these instructions to 

proceed. 

2. TI Code Composer Studio V5. Use this IDE in order to compile and upload the code to the 

watch platform. Watch this for good initial tips for working with the IDE. You can otherwise 

use the control center to update the code on the watch without connecting it directly to the 

computer. This is a slower process and much more costly as per the watch's battery life. 

3. The code of our Chronos project. You can find it here. 

4. Aiding python scripts. You can find them here. In there you will find: 

a. configure_chronos.py – our configuration tool that connects to the watch through 

its RF access point. 

b. chronic.py – library needed for communication with the Chronos watch. 

c. analyze_signal.py - our analysis tool that will analyze the original RF signal, and 

output the needed configuration for the watch. 

d. gilido_params.txt - this is the parameters file output for our remote control. You 

don't need it, but it can be used as reference. 

5. Be sure to be running python2.7. You also need to download the pyserial python library. We 

recommend using pip tool that finds, downloads and installs the correct version of python 

libraries. 

6. The HDSDR software and other necessary tools, as well as a practical "how to" guide can be 

found here. A good and comprehensive installation guide can be found here. Higher 

permissions are required for the installation process. 

7. You can visually analyze the wave file outputs using the open-source audacity platform 

which we recommend. It's not needed in order to complete the task, but it's nice and it 

helped us in debug. If you have access to MATLAB environment, it can be easily done 

through it as well.  

 

Instructions: 

1. Record the original remote control signal: 

a. Plug the RTLSDR device to a USB port on your computer (Note: do not use USB3 ports).  

b. Start HDSDR. Set and verify the settings according to the instructions in Appendix B: 

General Settings. 

https://estore.ti.com/eZ430-Chronos-433-Chronos-Wireless-development-tool-in-a-watch-P1734.aspx
http://www.ebay.com/itm/RTL-SDR-Radio-USB-Kit-USB-DVB-T-RTL-SDR-Receiver-RTL2832U-R820T-Tuner-K89/111228243269?_trksid=p2047675.c100009.m1982&_trkparms=aid%3D222007%26algo%3DSIC.MBE%26ao%3D1%26asc%3D23309%26meid%3D7306096619660307145%26p
http://processors.wiki.ti.com/index.php/EZ430-Chronos#Control_Center_for_Windows_.28Install_this_first.29
https://www.youtube.com/watch?v=Nx7uJe6kqec
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http://hdsdr.de/RTLSDR_with_HDSDR.pdf
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c. Record the remote control's signal. follow the instructions in Appendix B: Recording with 

HDSDR. 

d. Make sure that the recording holds the entire transmission of the signal: start the 

recording before the signal starts, and end it after you finish transmitting. For reliable 

results it's recommended to press the remote continuously for 2-4 seconds, with only a 

single press per recording. 

2. Analyze the recorded signal 

a. In the command shell, run the analysis python script on the wave file: 

"python analyze_signal.py <input wave filename>"  

b. The results will be printed to the screen, and also - an output file will be created with 

the needed data for the configuration script: "params.txt". 

3. Prepare the Chronos watch: 

a. Connect the Chronos watch module using the debug dongle to your PC. 

b. Open our Chronos project with Code Composer Studio. Compile the project and 

upload it to your watch. 

4. Configure the Chronos watch with the parameters of the signal: 

a. Plug in the RF access point dongle. In the computer's device manager check what 

COM-Port the USB access point was assigned, and verify that this is the same port 

that is configured in the configuration script "configure_chronos.py". 

b. Put your Chronos watch in "Sync" mode.  While the watch is waiting for sync, run 

the configuration script with the configuration file: 

"python configure_chronos.py params.txt" 

c. Pay attention to the computer screen and watch screen while the configuration is 

underway. For every parameter successfully loaded to the watch, it will appear on 

the watch's screen. You can re-run the configuration script several times if you're 

unsure - it does no harm.  

5. That's it. You will see a blinking triangle pointing upwards next to the time on the watch.  

6. Go to the watch main screen.  To transmit the remote control signal press the UP (or DOWN)  

button. 

 

 

Remarks: 

1. This entire scheme assumes several basic facts about the original transceiver system: the 

carrier frequency is 433.92MHz, the signal modulation is On-Off-Keying (OOK), and the signal 

is not Manchester coded. These are pretty standard for common remote control gate 

openers.  

2. If you want to set 2 codes in your watch, analyze another signal, and in the configuration file, 

copy the "UP" line, change the word "UP" to "DOWN", and copy the other code instead. 

Note that both signals should have the same parameters, except for the code.  

3. Except for code memory, the watch's memory is completely volatile. Thus, if you must reset 

your watch, you will have to reconfigure it. 

 

 

  

http://en.wikipedia.org/wiki/Carrier_frequency
http://en.wikipedia.org/wiki/Modulation
http://en.wikipedia.org/wiki/On-off_keying
http://en.wikipedia.org/wiki/Manchester_code


Appendix B: HDSDR Operating Instructions 
General Settings:  

1. First, we should set the device control parameters through the ExtIO interface. press the ExtIO 

button. then on the opened form:  

a. Verify the device hint is set to 'RTL'. if not, change it to 'RTL'.  

b. set sample rate to '1Mbps' and the offset is '0'.  

c. set the 'Gain/Attenuation' to maximum level by pressing 'Max' or by scrolling the arrow 

to the right end.  

Note: According to our tests we recommend to set the gain to maximum, in order to get 

the signal as strong as it can be compared to the existing noise. The signal measured 

with Mid gain option could be used but the noise is clearly detectable. With Min gain 

option the signal suffers from the noise blend with the true signal.   

2. In HDSDR main window we should set: 

a. LO A (center freq.) to 433.92Mhz. Pay attention that there are 2 optional LO. make sure 

the other one is set far enough from our region (as thumb role: more than +/-2Mhz 

around our center frequency). You could choose to set LO B instead. 

b. Tune enables in-depth inspection of part of the whole collected spectra. we use the time 

signal , and with 1Mbps we collect a region of 1MHz around our center frequency, 

guaranties we collected the signal we need.  

c. As sanity check, verify you see a large peak signal rising when pressing your RC, and that 

the frequency is not so far from the center. to do so: 

i. press 'Start' button. Now the measured signal will be presented. 

ii. check LO and Tune value did not accidently changed and it is as you set it. is not 

– correct its value to the center.  

iii. press the remote to transmit the signal. 

iv. Press Stop (mark in light green) to end the test. 

 

   

3. Note it is usually needed to reject the power spike caused by the internal VFO (at center 

frequency) of some soundcards (including ours). Look here for more details. This can damage the 

true signal we want to capture. In order to minimize this effect we use the built in solution as 

recommended on the online instructions:  

a. Press Options -> Input Channel Calibration and on the top of the window set the            

RX DC Removal to "Auto". 

It can be seen that the constant power appeared in the spectrum over time in the place 

of the LO was significantly decreased (and the time signal is, consequently, much 

reliable). 

 

Recording with HDSDR  

The recording process is a very simple procedure. We use the default setting as in the instructions. 

First (needed once), verify and set the settings:  

https://sites.google.com/site/g4zfqradio/hdsdr-iq-balance
https://sites.google.com/site/g4zfqradio/installing-and-using-hdsdr


1. On main window, press options ->  recording setting/scheduler 

2. Set the folder where you wish to save the files. The file names are automatically set by the 

program.  The files are saved as wave format (.wav). 

3. check that the following boxes are checked:  

a. Recording Mode: RF ;  Recording Format: Winrad ; Sample Type: Auto (means: PCM16) 

4. Press OK 

 

In order to start record: 

1. Press 'Start' button. Now the measured signal will be presented. 

2. To start recording: press the button marked with red circle.  

3. Stop recording by pressing the stop button (marked with rectangle). 

4. To stop Signal measured and presented by HDSDR, Press Stop (mark in light green).  

 

  



Appendix C: The remote control and receiver kit 
 

 


