
Bluetooth disk-on-key: Final projet for the

Advaned omputer system lass

TAU winter 2016/2017

Lev Pahmanov

Noam Nissan

Supervisor: Prof. Sivan Toledo

Marh 11, 2017

Contents

1 Introdution 2

2 Implementation Overview 3

3 Components Overview 3

3.1 MiroSD slot . 3

3.2 CC2650 Launhpad . 4

3.2.1 IDE . 4

3.2.2 Soure desription . 4

3.2.3 Program arhiteture . 4

3.3 Peer side(PC) - NBD . 5

3.4 Peer side(PC) - Soket . 5

4 Challenges 5

5 Build and run instrutions 6

6 Performane 7

1

1 Introdution

As a projet in Advane omputer system lass in IoT and embedded systems

we have deided to reate a proof of onept of a disk on key that ommuniates

over Bluetooth. The general idea is a disk on key that an stay in your poket

while onneting it to a di�erent PC or even your smart phone. The reason for

hoosing Bluetooth as the wireless interfae is the ease of pairing it with other

devies.

2

Projet guidelines addressing

1. Use hardware and operating system used in lass - we use the TI CC2650

launhpad and the TI-RTOS operating system

2. Software development hallenge and hardware interfaing - We plug an SD

ard reader and interat with it via SPI, we also implement the protool

of NBD3.3 on the board.

3. Real need or Real users - A wireless mobile storage an be very use full.

2 Implementation Overview

The system is made of two parts, the DOK side and the user side. The DOK

side is made of the TI CC2650 launhpad onneted to a miroSD ard reader

whih is used for the storage. The launhpad was programmed with both SD

ard interfae and Bluetooth interfae for our needs. For the user side we used

a Linux laptop with integrated/external Bluetooth hip. To be able to support

any �le system desired we deided the ommuniation between the PC and the

board will be on the blok devie layer. We use a library alled NBD[4℄ (Network

Blok Devie) whih reates a Linux blok devie that its implementation is over

the network, i.e translates blok reads and writes into network ommuniation.

Finally we reate another omponent on the PC that transforms network tra�

oming from the NBD into Bluetooth tra� with the ti board and the program

on the board in turn takes the NBD protool and transform it into reads and

write with the SD ard.

3 Components Overview

In this part we disuss every omponent of the system in terms of struture and

funtionality.

3.1 MiroSD slot

We used the miroSD Trans�ash Breakout made by Sparkfun[1℄.

SPI The Interfae is onneted to the launhpad with simple wires in the

following manner (see piture above)

• CD - DIO23

• DATA OUT - DIO8

• GND - VDD

• SCK(lok) - DIO10

• VCC - VCC(3.3v)

3

• DATA IN - DIO9

• CHIP SELECT - DIO24

We ould make the SPI interfae faster by using 4 data wires instead of two but

we didn't had one and this was not the bottlenek anyway.

SD We used an SD ard that supports physial layer protool v2.0[3℄. We

follow the protool for transitioning the ard to SPI mode. The ode have not

been tested for older versions.

3.2 CC2650 Launhpad

We use the Texas Instruments CC2650 Launhpad[2℄ with standart on�gura-

tion.

3.2.1 IDE

We used the Code Composer Studio v7.1, when we refer projet_zero_stak and

projet_zero_app we mean the sample projets provided by TI inside CCS.

3.2.2 Soure desription

The board is �ashed with two CCS programs:

• BLE stak, namely the projet_zero_stak projet without modi�ations.

• The main projet is based on projet_zero_app to whih we added the

following modules:

� Spp_ble_server. [7℄ implements serial onnetion server over the

SerialPortServie inluded in the projet_zero_app[6℄. we modi�ed

the module to interat with NBD.

� Sd. module - interfaes with the external SD ard over SPI.

� Nbd. module - implements an NBD lient on the launhpad

� Nbd_task. module - handles the message queues of inoming/outgoing

NBD messages.

3.2.3 Program arhiteture

The program is omposed from several tasks eah handles asynhronously mes-

sages assigned to it in its message queue and in between wait on a semaphore.

Tasks pass messages to other tasks by adding them to their queue and posting

their semaphore. The tasks in the program are:

• NBD task

• Spp task

4

• GAP task

• BLE stak task

• Idle task

GAP Responsible of the basi BLE GAP ommuniation, report servies the

board exports.

Spp task This task runs the logi of spp_ble_server. that implements

UART over BLE, it treats ble harateristis write into UART input and on-

verts UART output into write notify, spei�ally in our ase, input pakets

are queued to the NBD module whih interprets the input as NBD read/write

request, same for the other diretion.

NBD task The NBD task translates UART data into NBD messages and vie

versa. It interats with the NBD module whih in turn interats with the SD

module for read/write ations.

BLE_stak task Runs the BLE bak-end.

3.3 Peer side(PC) - NBD

The NBD is an open soure projet. NBD is omposed from a Linux kernel

module that is a part of the mainline kernel and a usermode lient side and a

server side. The PC using the DOK is required to have the NBD module loaded

and run the lient side daemon. The server side is implemented on the CC2650

Launhboard.

3.4 Peer side(PC) - Soket

A python sript that onnets the NBD soket to ble session. For the sake

of the ompleteness of the projet this sript does the bare minimum namely

transferring data from the soket to the BLE and vie versa.

4 Challenges

• Sd ard won't respond to CMD8 - �nd out we used an SD ard that

answers protool v1.10 while CMD8 exists from v2.0.

• Sd ard returns unexpeted data from CMD8 - turns out SD ard manu-

fatured by SanDisk does not behave well in SPI mode.

• Reading some data from the ard, overriding with the di�erent data, re-

running the program and reading the old data - if you don't plug the board

o� the power soure between runs some data stays ahed.

5

• SPI interation won't work from main funtion - it uses a semaphore that

an only be taken from a task.

• Program rashed from a heap alloation failure at an early stage - after a

lot of e�ort we have managed to have a heap of 6KB that an handle at

most 1 NBD request on the board at a time.

• Writing to an unmmaped area whih result in a segmentation fault atually

rashes later at an unrelated point - The writes are bu�ered so the program

will rash only when the atual write happens and not when it exeutes

the writing opode - at the beginning of the program we write to the

Auxiliary Control HW register to disable write bu�ering

• Handle SPI ommands from the ontext of BLE message handling is very

slow - moved it to another task (nbd_task.).

• BLE attributes are 20 bytes size at max, we need to split the NBD mes-

sages and bloks of data (512 bytes) whih reates a lot of overhead.

• BLE messages handeling is not in the order they were sent - add a sequene

number whih inreases the overhead.

• Debugging hallenges:

� If ompiling with size optimizations debugging is more di�ult, break-

points stop in a di�erent plae than requested.

� Can't swith between tasks in debugger.

� When program hits a breakpoint Bluetooth gets disonneted.

� Debug prints aren't shown for some reason so we don't have that.

� Board does not support more than 4 breakpoints at a time.

5 Build and run instrutions

1. Prepare a PC with Bluetooth support running Linux with kernel 3.10 and

above, For example Ubuntu 14.04 or new version.

2. Chekout the soure[8℄

3. Download the NBD module by using git submodule or download diretly.

If the master branh does not ompile in later steps try the premade tarball

4. Connet the TI CC2650 with the SD ard reader as instruted above.

5. Insert a miroSD ard manufatured by any ompany other than San-

disk, preferably a new ard of 4GB storage or more.

6. Flash the Board with the projet_zero_stak_2650and projet_zero_app_2650launhxl

6

https://sourceforge.net/projects/nbd/

7. follow the NBD instrutions to ompile the lient side daemon on load the

kernel module.

8. on the PC side

(a) python bt_nbd/bt_soket.py (as root)

(b) nbd/nbd_lient -N lient loalhost 33333 (as root)

9. on the board side:

(a) run projet_zero_app_2650launhxl

6 Performane

The disk on key support Arbitrary storage amount limited by the bounds of the

SD ard and the blok devie driver. however the speed turned up to be very

slow at a rate of 1KB/s. The main bottleneks are the small amount of RAM

on the launhpad allowing us to handle only 1 request at the time and the time

for a BLE paket to go over the air.

Referenes

[1℄ https://www.sparkfun.om/produts/544

[2℄ http://www.ti.om/produt/CC2650

[3℄ http://users.ee.utexas.edu/∼valvano/EE345M/SD_Physial_Layer_Spe.pdf

[4℄ https://nbd.soureforge.io/

[5℄ http://www.ti.om/lit/ug/tidu997a/tidu997a.pdf

[6℄ http://www.ti.om/lit/ug/tidua63/tidua63.pdf

[7℄ TI BLE examples - spp_ble_server.

[8℄ Our soure ode

7

https://www.sparkfun.com/products/544
http://www.ti.com/product/CC2650
http://users.ece.utexas.edu/~valvano/EE345M/SD_Physical_Layer_Spec.pdf
https://nbd.sourceforge.io/
http://www.ti.com/lit/ug/tidu997a/tidu997a.pdf
http://www.ti.com/lit/ug/tidua63/tidua63.pdf
ps://github.com/ti-simplelink/ble_examples/tree/master/src/examples/spp_ble_server/cc26xx/app
https://bitbucket.org/levp92/03684361_iot_project

	Introduction
	Implementation Overview
	Components Overview
	MicroSD slot
	CC2650 Launchpad
	IDE
	Source description
	Program architecture

	Peer side(PC) - NBD
	Peer side(PC) - Socket

	Challenges
	Build and run instructions
	Performance

