
Bluetooth disk-on-key: Final proje
t for the

Advan
ed
omputer system
lass

TAU winter 2016/2017

Lev Pa
hmanov

Noam Nissan

Supervisor: Prof. Sivan Toledo

Mar
h 11, 2017

Contents

1 Introdu
tion 2

2 Implementation Overview 3

3 Components Overview 3

3.1 Mi
roSD slot . 3

3.2 CC2650 Laun
hpad . 4

3.2.1 IDE . 4

3.2.2 Sour
e des
ription . 4

3.2.3 Program ar
hite
ture . 4

3.3 Peer side(PC) - NBD . 5

3.4 Peer side(PC) - So
ket . 5

4 Challenges 5

5 Build and run instru
tions 6

6 Performan
e 7

1

1 Introdu
tion

As a proje
t in Advan
e
omputer system
lass in IoT and embedded systems

we have de
ided to
reate a proof of
on
ept of a disk on key that
ommuni
ates

over Bluetooth. The general idea is a disk on key that
an stay in your po
ket

while
onne
ting it to a di�erent PC or even your smart phone. The reason for

hoosing Bluetooth as the wireless interfa
e is the ease of pairing it with other

devi
es.

2

Proje
t guidelines addressing

1. Use hardware and operating system used in
lass - we use the TI CC2650

laun
hpad and the TI-RTOS operating system

2. Software development
hallenge and hardware interfa
ing - We plug an SD

ard reader and intera
t with it via SPI, we also implement the proto
ol

of NBD3.3 on the board.

3. Real need or Real users - A wireless mobile storage
an be very use full.

2 Implementation Overview

The system is made of two parts, the DOK side and the user side. The DOK

side is made of the TI CC2650 laun
hpad
onne
ted to a mi
roSD
ard reader

whi
h is used for the storage. The laun
hpad was programmed with both SD

ard interfa
e and Bluetooth interfa
e for our needs. For the user side we used

a Linux laptop with integrated/external Bluetooth
hip. To be able to support

any �le system desired we de
ided the
ommuni
ation between the PC and the

board will be on the blo
k devi
e layer. We use a library
alled NBD[4℄ (Network

Blo
k Devi
e) whi
h
reates a Linux blo
k devi
e that its implementation is over

the network, i.e translates blo
k reads and writes into network
ommuni
ation.

Finally we
reate another
omponent on the PC that transforms network tra�

oming from the NBD into Bluetooth tra�
 with the ti board and the program

on the board in turn takes the NBD proto
ol and transform it into reads and

write with the SD
ard.

3 Components Overview

In this part we dis
uss every
omponent of the system in terms of stru
ture and

fun
tionality.

3.1 Mi
roSD slot

We used the mi
roSD Trans�ash Breakout made by Sparkfun[1℄.

SPI The Interfa
e is
onne
ted to the laun
hpad with simple wires in the

following manner (see pi
ture above)

• CD - DIO23

• DATA OUT - DIO8

• GND - VDD

• SCK(
lo
k) - DIO10

• VCC - VCC(3.3v)

3

• DATA IN - DIO9

• CHIP SELECT - DIO24

We
ould make the SPI interfa
e faster by using 4 data wires instead of two but

we didn't had one and this was not the bottlene
k anyway.

SD We used an SD
ard that supports physi
al layer proto
ol v2.0[3℄. We

follow the proto
ol for transitioning the
ard to SPI mode. The
ode have not

been tested for older versions.

3.2 CC2650 Laun
hpad

We use the Texas Instruments CC2650 Laun
hpad[2℄ with standart
on�gura-

tion.

3.2.1 IDE

We used the Code Composer Studio v7.1, when we refer proje
t_zero_sta
k and

proje
t_zero_app we mean the sample proje
ts provided by TI inside CCS.

3.2.2 Sour
e des
ription

The board is �ashed with two CCS programs:

• BLE sta
k, namely the proje
t_zero_sta
k proje
t without modi�
ations.

• The main proje
t is based on proje
t_zero_app to whi
h we added the

following modules:

� Spp_ble_server.
 [7℄ implements serial
onne
tion server over the

SerialPortServi
e in
luded in the proje
t_zero_app[6℄. we modi�ed

the module to intera
t with NBD.

� Sd.
 module - interfa
es with the external SD
ard over SPI.

� Nbd.
 module - implements an NBD
lient on the laun
hpad

� Nbd_task.
 module - handles the message queues of in
oming/outgoing

NBD messages.

3.2.3 Program ar
hite
ture

The program is
omposed from several tasks ea
h handles asyn
hronously mes-

sages assigned to it in its message queue and in between wait on a semaphore.

Tasks pass messages to other tasks by adding them to their queue and posting

their semaphore. The tasks in the program are:

• NBD task

• Spp task

4

• GAP task

• BLE sta
k task

• Idle task

GAP Responsible of the basi
 BLE GAP
ommuni
ation, report servi
es the

board exports.

Spp task This task runs the logi
 of spp_ble_server.
 that implements

UART over BLE, it treats ble
hara
teristi
s write into UART input and
on-

verts UART output into write notify, spe
i�
ally in our
ase, input pa
kets

are queued to the NBD module whi
h interprets the input as NBD read/write

request, same for the other dire
tion.

NBD task The NBD task translates UART data into NBD messages and vi
e

versa. It intera
ts with the NBD module whi
h in turn intera
ts with the SD

module for read/write a
tions.

BLE_sta
k task Runs the BLE ba
k-end.

3.3 Peer side(PC) - NBD

The NBD is an open sour
e proje
t. NBD is
omposed from a Linux kernel

module that is a part of the mainline kernel and a usermode
lient side and a

server side. The PC using the DOK is required to have the NBD module loaded

and run the
lient side daemon. The server side is implemented on the CC2650

Laun
hboard.

3.4 Peer side(PC) - So
ket

A python s
ript that
onne
ts the NBD so
ket to ble session. For the sake

of the
ompleteness of the proje
t this s
ript does the bare minimum namely

transferring data from the so
ket to the BLE and vi
e versa.

4 Challenges

• Sd
ard won't respond to CMD8 - �nd out we used an SD
ard that

answers proto
ol v1.10 while CMD8 exists from v2.0.

• Sd
ard returns unexpe
ted data from CMD8 - turns out SD
ard manu-

fa
tured by SanDisk does not behave well in SPI mode.

• Reading some data from the
ard, overriding with the di�erent data, re-

running the program and reading the old data - if you don't plug the board

o� the power sour
e between runs some data stays
a
hed.

5

• SPI intera
tion won't work from main fun
tion - it uses a semaphore that

an only be taken from a task.

• Program
rashed from a heap allo
ation failure at an early stage - after a

lot of e�ort we have managed to have a heap of 6KB that
an handle at

most 1 NBD request on the board at a time.

• Writing to an unmmaped area whi
h result in a segmentation fault a
tually

rashes later at an unrelated point - The writes are bu�ered so the program

will
rash only when the a
tual write happens and not when it exe
utes

the writing op
ode - at the beginning of the program we write to the

Auxiliary Control HW register to disable write bu�ering

• Handle SPI
ommands from the
ontext of BLE message handling is very

slow - moved it to another task (nbd_task.
).

• BLE attributes are 20 bytes size at max, we need to split the NBD mes-

sages and blo
ks of data (512 bytes) whi
h
reates a lot of overhead.

• BLE messages handeling is not in the order they were sent - add a sequen
e

number whi
h in
reases the overhead.

• Debugging
hallenges:

� If
ompiling with size optimizations debugging is more di�
ult, break-

points stop in a di�erent pla
e than requested.

� Can't swit
h between tasks in debugger.

� When program hits a breakpoint Bluetooth gets dis
onne
ted.

� Debug prints aren't shown for some reason so we don't have that.

� Board does not support more than 4 breakpoints at a time.

5 Build and run instru
tions

1. Prepare a PC with Bluetooth support running Linux with kernel 3.10 and

above, For example Ubuntu 14.04 or new version.

2. Che
kout the sour
e[8℄

3. Download the NBD module by using git submodule or download dire
tly.

If the master bran
h does not
ompile in later steps try the premade tarball

4. Conne
t the TI CC2650 with the SD
ard reader as instru
ted above.

5. Insert a mi
roSD
ard manufa
tured by any
ompany other than San-

disk, preferably a new
ard of 4GB storage or more.

6. Flash the Board with the proje
t_zero_sta
k_

2650and proje
t_zero_app_

2650laun
hxl

6

https://sourceforge.net/projects/nbd/

7. follow the NBD instru
tions to
ompile the
lient side daemon on load the

kernel module.

8. on the PC side

(a) python bt_nbd/bt_so
ket.py (as root)

(b) nbd/nbd_
lient -N
lient lo
alhost 33333 (as root)

9. on the board side:

(a) run proje
t_zero_app_

2650laun
hxl

6 Performan
e

The disk on key support Arbitrary storage amount limited by the bounds of the

SD
ard and the blo
k devi
e driver. however the speed turned up to be very

slow at a rate of 1KB/s. The main bottlene
ks are the small amount of RAM

on the laun
hpad allowing us to handle only 1 request at the time and the time

for a BLE pa
ket to go over the air.

Referen
es

[1℄ https://www.sparkfun.
om/produ
ts/544

[2℄ http://www.ti.
om/produ
t/CC2650

[3℄ http://users.e
e.utexas.edu/∼valvano/EE345M/SD_Physi
al_Layer_Spe
.pdf

[4℄ https://nbd.sour
eforge.io/

[5℄ http://www.ti.
om/lit/ug/tidu997a/tidu997a.pdf

[6℄ http://www.ti.
om/lit/ug/tidua63/tidua63.pdf

[7℄ TI BLE examples - spp_ble_server.

[8℄ Our sour
e
ode

7

https://www.sparkfun.com/products/544
http://www.ti.com/product/CC2650
http://users.ece.utexas.edu/~valvano/EE345M/SD_Physical_Layer_Spec.pdf
https://nbd.sourceforge.io/
http://www.ti.com/lit/ug/tidu997a/tidu997a.pdf
http://www.ti.com/lit/ug/tidua63/tidua63.pdf
ps://github.com/ti-simplelink/ble_examples/tree/master/src/examples/spp_ble_server/cc26xx/app
https://bitbucket.org/levp92/03684361_iot_project

	Introduction
	Implementation Overview
	Components Overview
	MicroSD slot
	CC2650 Launchpad
	IDE
	Source description
	Program architecture

	Peer side(PC) - NBD
	Peer side(PC) - Socket

	Challenges
	Build and run instructions
	Performance

