Bluetooth disk-on-key: Final project for the
Advanced computer system class
TAU winter 2016/2017

Lev Pachmanov
Noam Nissan
Supervisor: Prof. Sivan Toledo

March 11, 2017

Contents

:3 4 Peerside(PC) - Socketl

l4_Challenged

[6 Performancd

1 Introduction

As a project in Advance computer system class in IoT and embedded systems
we have decided to create a proof of concept of a disk on key that communicates
over Bluetooth. The general idea is a disk on key that can stay in your pocket
while connecting it to a different PC or even your smart phone. The reason for
choosing Bluetooth as the wireless interface is the ease of pairing it with other
devices.

3

/N

U PR
CC2650 Laungh»

i\
'

XDS110
1 IPover

. ¢ et
Pul

BIN2

e .4

01629 2|
. D103 o Al ¥
DI0v |, ' 3 L GaDI016
DI0!
0

[GND

Red: 3 5 Green:
D!OGl‘l g 0107

Mount for: §
QC-ANTENNA-DK

Project guidelines addressing

1. Use hardware and operating system used in class - we use the TT CC2650
launchpad and the TI-RTOS operating system

2. Software development challenge and hardware interfacing - We plug an SD
card reader and interact with it via SPI, we also implement the protocol
of NBDB.3 on the board.

3. Real need or Real users - A wireless mobile storage can be very use full.

2 Implementation Overview

The system is made of two parts, the DOK side and the user side. The DOK
side is made of the TI CC2650 launchpad connected to a microSD card reader
which is used for the storage. The launchpad was programmed with both SD
card interface and Bluetooth interface for our needs. For the user side we used
a Linux laptop with integrated /external Bluetooth chip. To be able to support
any file system desired we decided the communication between the PC and the
board will be on the block device layer. We use a library called NBD[4] (Network
Block Device) which creates a Linux block device that its implementation is over
the network, i.e translates block reads and writes into network communication.
Finally we create another component on the PC that transforms network traffic
coming from the NBD into Bluetooth traffic with the ti board and the program
on the board in turn takes the NBD protocol and transform it into reads and
write with the SD card.

3 Components Overview

In this part we discuss every component of the system in terms of structure and
functionality.

3.1 MicroSD slot

We used the microSD Transflash Breakout made by SparkfunlI].

SPI The Interface is connected to the launchpad with simple wires in the
following manner (see picture above)

CD - DIO23
DATA OUT - DIOS8

GND - VDD

SCK(clock) - DIO10
VCC - VCC(3.3v)

e DATA IN - DIO9
e CHIP SELECT - DIO24

We could make the SPI interface faster by using 4 data wires instead of two but
we didn’t had one and this was not the bottleneck anyway.

SD We used an SD card that supports physical layer protocol v2.0[3]. We
follow the protocol for transitioning the card to SPI mode. The code have not
been tested for older versions.

3.2 CC2650 Launchpad
We use the Texas Instruments CC2650 Launchpad|2] with standart configura-
tion.
3.2.1 IDE
We used the Code Composer Studio v7.1, when we refer project zero stack and
project zero_app we mean the sample projects provided by TI inside CCS.
3.2.2 Source description
The board is flashed with two CCS programs:

e BLE stack, namely the project zero_stack project without modifications.

e The main project is based on project zero app to which we added the
following modules:

— Spp_ble_server.c [7] implements serial connection server over the
SerialPortService included in the project zero app[6]. we modified
the module to interact with NBD.

Sd.c module - interfaces with the external SD card over SPI.
— Nbd.c module - implements an NBD client on the launchpad

— Nbd_task.c module - handles the message queues of incoming/outgoing
NBD messages.
3.2.3 Program architecture

The program is composed from several tasks each handles asynchronously mes-
sages assigned to it in its message queue and in between wait on a semaphore.
Tasks pass messages to other tasks by adding them to their queue and posting
their semaphore. The tasks in the program are:

e NBD task

e Spp task

e GAP task
e BLE stack task
e Idle task

GAP Responsible of the basic BLE GAP communication, report services the
board exports.

Spp task This task runs the logic of spp ble server.c that implements
UART over BLE, it treats ble characteristics write into UART input and con-
verts UART output into write notify, specifically in our case, input packets
are queued to the NBD module which interprets the input as NBD read/write
request, same for the other direction.

NBD task The NBD task translates UART data into NBD messages and vice
versa. It interacts with the NBD module which in turn interacts with the SD
module for read/write actions.

BLE stack task Runs the BLE back-end.

3.3 Peer side(PC) - NBD

The NBD is an open source project. NBD is composed from a Linux kernel
module that is a part of the mainline kernel and a usermode client side and a
server side. The PC using the DOK is required to have the NBD module loaded
and run the client side daemon. The server side is implemented on the CC2650
Launchboard.

3.4 Peer side(PC) - Socket

A python script that connects the NBD socket to ble session. For the sake
of the completeness of the project this script does the bare minimum namely
transferring data from the socket to the BLE and vice versa.

4 Challenges

e Sd card won’t respond to CMDS8 - find out we used an SD card that
answers protocol v1.10 while CMD8 exists from v2.0.

e Sd card returns unexpected data from CMDS8 - turns out SD card manu-
factured by SanDisk does not behave well in SPI mode.

e Reading some data from the card, overriding with the different data, re-
running the program and reading the old data - if you don’t plug the board
off the power source between runs some data stays cached.

SPI interaction won’t work from main function - it uses a semaphore that
can only be taken from a task.

Program crashed from a heap allocation failure at an early stage - after a
lot of effort we have managed to have a heap of 6KB that can handle at
most 1 NBD request on the board at a time.

Writing to an unmmaped area which result in a segmentation fault actually
crashes later at an unrelated point - The writes are buffered so the program
will crash only when the actual write happens and not when it executes
the writing opcode - at the beginning of the program we write to the
Auxiliary Control HW register to disable write buffering

Handle SPI commands from the context of BLE message handling is very
slow - moved it to another task (nbd _task.c).

BLE attributes are 20 bytes size at max, we need to split the NBD mes-
sages and blocks of data (512 bytes) which creates a lot of overhead.

BLE messages handeling is not in the order they were sent - add a sequence
number which increases the overhead.

Debugging challenges:

— If compiling with size optimizations debugging is more difficult, break-
points stop in a different place than requested.

Can’t switch between tasks in debugger.
— When program hits a breakpoint Bluetooth gets disconnected.
— Debug prints aren’t shown for some reason so we don’t have that.

— Board does not support more than 4 breakpoints at a time.

Build and run instructions

. Prepare a PC with Bluetooth support running Linux with kernel 3.10 and
above, For example Ubuntu 14.04 or new version.

. Checkout the source[§]

. Download the NBD module by using git submodule or download directly.
If the master branch does not compile in later steps try the premade tarball

. Connect the TI CC2650 with the SD card reader as instructed above.

. Insert a microSD card manufactured by any company other than San-
disk, preferably a new card of 4GB storage or more.

. Flash the Board with the project zero stack cc2650and project zero app cc2650launchxl]

https://sourceforge.net/projects/nbd/

7. follow the NBD instructions to compile the client side daemon on load the
kernel module.

8. on the PC side

(a) python bt _nbd/bt_socket.py (as root)
(b) nbd/nbd _client -N client localhost 33333 (as root)

9. on the board side:

(a) run project zero app_cc2650launchxl

6 Performance

The disk on key support Arbitrary storage amount limited by the bounds of the
SD card and the block device driver. however the speed turned up to be very
slow at a rate of 1KB/s. The main bottlenecks are the small amount of RAM
on the launchpad allowing us to handle only 1 request at the time and the time
for a BLE packet to go over the air.

References

[1] https://www.sparkfun.com/products/544

[2] http://www.ti.com/product/CC2650

[3] http://users.ece.utexas.edu/~valvano/EE345M/SD _Physical _Layer_Spec.pdf
[4] |https://nbd.sourceforge.io/

[5] http://www.ti.com/lit/ug/tidu997a/tidu9d97a.pdt

[6] http://www.ti.com/lit/ug/tidua63/tidua63.pdf

[7] [TT BLE examples - spp ble server.c

[8] [Our source code

https://www.sparkfun.com/products/544
http://www.ti.com/product/CC2650
http://users.ece.utexas.edu/~valvano/EE345M/SD_Physical_Layer_Spec.pdf
https://nbd.sourceforge.io/
http://www.ti.com/lit/ug/tidu997a/tidu997a.pdf
http://www.ti.com/lit/ug/tidua63/tidua63.pdf
ps://github.com/ti-simplelink/ble_examples/tree/master/src/examples/spp_ble_server/cc26xx/app
https://bitbucket.org/levp92/03684361_iot_project

	Introduction
	Implementation Overview
	Components Overview
	MicroSD slot
	CC2650 Launchpad
	IDE
	Source description
	Program architecture

	Peer side(PC) - NBD
	Peer side(PC) - Socket

	Challenges
	Build and run instructions
	Performance

