

LWIP port for tirtos

Final project for

Advanced Computer

System – Prof. Sivan

Toledo

Git:

https://github.com/adamelha/lwip_tirtos

By:

Adam Elhakham

201390085

https://github.com/adamelha/lwip_tirtos

About LWIP

LWIP (Light Weight IP) is an open source TCP/IP stack designed for embedded

systems. LWIP features implementations for the link layer, IP layer (over multiple

network interfaces), transport layer, and application layer. It includes implementations

for many protocols.

Check out the git repo:

https://git.savannah.gnu.org/git/lwip/lwip-contrib.git

Note that there are two main directories:

 Lwip – which contains the lwip core (IP layer implementation, TCP, etc..),

library APIs (tcp-ip APIs, sockets, etc..) and apps (http server, DNS service,

etc..).

 Lwip-contrib – which contain more example apps (socket examples, usage of

TCP/UDP APIs, etc..). It also contains ports for UNIX and Windows systems,

and several embedded real time operating systems.

Unfortunately, lwip-contrib does not contain a port to the Ti-rtos operating system that

we used during the course. This is where this project comes in handy.

I created a port for Ti-rtos. This port can be used in order to use the LWIP library on

the Texas Instruments CC2650 that we used during the course:

The CC2650

The device uses an ARM Cortex M3 main processor and up to 48-MHZ clock speed.

For more information about the CC2650:

https://git.savannah.gnu.org/git/lwip/lwip-contrib.git

http://www.ti.com/product/CC2650/datasheet

The plain CC2650 does not support wifi or Ethernet connection. Therefore, the

purpose of this project is to enable the device to use LWIP with the SLIP protocol as

the network interface.

The SLIP protocol:

The SLIP (Serial Line Internet protocol) is a simple encapsulation of the IP

protocol. SLIP requires a serial port connection to connect to the "outside

world". SLIP is not used on PCs anymore but still used with microcontrollers

due to its small overhead. SLIP is documented in RFC 1055.

In this project I use SLIP as the network interface for the IP stack. Fortunately, LWIP

already implements a SLIP network interface.

The Project:

This project consist of two main parts:

1. The Ti-rtos port.

2. An Example UDP server app that we can use to obtain data collected by the

CC2650 using sockets.

All the code is in the git repo I created:

https://github.com/adamelha/lwip_tirtos

http://www.ti.com/product/CC2650/datasheet
https://github.com/adamelha/lwip_tirtos

The Ti-rtos Port

We will now dive in to the port itself that will enable us to use the LWIP library (and

also create the example app).

All the code for the port is located in lwip-contrib/ports/tirtos in according to the LWIP

convension.

The port files:

 Include/arch/cc.h:

This header file contains compiler defines such as format qualifiers, Endianity,

but also debug and assertion macros.

Note: I created a flag that enables a system flush of the debug buffer after

every debug print so that no debug information will be lost. This is not

recommended but I left it as an option.

 Include/arch/sys_arch.h:

This is a Header extends lwip sys.h. This contains the interface of

synchronizing system APIs such as counting semaphores, mutexes (binary

semaphores), mailboxes (All supported in ti-rtos). As well as threads (I used

ti-rtos tasks to implement the threading interface).

Helpful defines for the user in this file:

 lwipopts.h:

This is the lwip configuration file. Several changes had to be made for the

memory pools to fit the constraints of the CC2650.

For SLIP we defined the following:

Helpful debug options:

 sys_arch.c:

This is the source file that implements all the interfaces in sys_arch.h.

 sio.c:

This source file implements lwip/sio.h and is required for LWIP's

implementation of the SLIP network interface.

This file implements all the SERIAL communication. Implemented using APIs

from the ti-rtos ti/drivers/UART.h.

Use the following define to configure the desired baud rate for serial

communication:

This concludes the implementation of the Ti-rtos port for LWIP.

The Example App

In addition to the Ti-rtos port, also provided is an example app.

The app provides a way to make queries from a remote computer, using standard

Python UDP sockets, to the CC2650 which will get the device to check the room

temperature or its battery situation (from the Ti-rtos batmon module).

The App consists of three parts:

1. Client side – ports/tirtos/SlipPyhton/client.py

This python script is used by the remote PC. It opens a UDP socket and

sends the device 3 different commands:

o 'TEMP' – to get the room temperature of the remote CC2650.

o 'BAT' – to get the voltage supplied to the remote CC2630.

o 'NOT A COMMAND'– to demonstrate the device response from an

invalid command.

2. Server side – ports/tirtos/SlipPython/server.py

This python script is used by the PC that is connected to the CC2650 and is

the "middleman" between the CC2650 and the outside world.

It runs two separate threads:

o A thread that uses Scapy to sniff IP packets, encode them to SLIP and

write the encapsulated SLIP packets to the serial line (where the

CC2650 is connected).

o A thread that polls the serial line for SLIP IP packets from the

CC2650. When a SLIP packet is read, it decodes it and sends the IP

packet using Scapy send().

3. CC2650 App

This is an app that uses LWIP's UDP APIs and runs a UDP server with a

SLIP network interface that listens on port 1000 on the IP of the PC running

server.py.

The App files:

o lwip_udp_server.c

Contains main(). Does board initializations, initializes app task

and starts bios.

o ports/tirtos/slip_task .c & .h

 Creates the app task and calls apps start function.

o ports/tirtos/main.c

 Makes initializations of LWIP and SLIP network interface which

 uses a thread to poll the serial line for SLIP packets. When a

 Complete SLIP packet arrives, it is decoded and fed to the IP

 layer. If UDP packet to the configured IP and port arrives, a

 callback functions is called. The callback extracts the data from

 the packet, and based on this data, it decides to either

 determine the room temperature, or the battery voltage, and

 send the response, or send a BAD API response.

App Diagram:

Client.py logs:

Wireshark snippet showing the UDP ping pong between client.py and the

CC2650:

Challenges

This project provided many challenges.

 The most time consuming was configuring the project to fit a small memory

foot print and not overflow from the defined stack.

Stack overflows caused things to work part of the time and sometimes just

caused the app to hang. Especially with the serial communication.

 Another major challenge was learning how LWIP works in order to even start

building an LWIP app and debugging it. The LWIP library is a very large piece

of code and even though it is pretty well documented, it was difficult to dive

into it.

 Synchronizing between different tasks on the CC2650 was also challenging.

 The Python apps also provided difficulty especially since I couldn't get Scapy

to work properly on Windows. It is takes it very long to load.

