LWIP port for tirtos

Final project for
Advanced Computer
System - Prof. Sivan

Toledo

https://github.com/adamelha/lwip tirtos

By:
Adam Elhakham
201390085

https://github.com/adamelha/lwip_tirtos

About LWIP

LWIP (Light Weight IP) is an open source TCP/IP stack designed for embedded
systems. LWIP features implementations for the link layer, IP layer (over multiple
network interfaces), transport layer, and application layer. It includes implementations
for many protocols.

Check out the git repo:

https://git.savannah.gnu.org/git/Iwip/lwip-contrib.git

Note that there are two main directories:

e Lwip — which contains the Iwip core (IP layer implementation, TCP, etc..),
library APIs (tcp-ip APIs, sockets, etc..) and apps (http server, DNS service,
etc..).

e Lwip-contrib — which contain more example apps (socket examples, usage of
TCP/UDP APIs, etc..). It also contains ports for UNIX and Windows systems,
and several embedded real time operating systems.

Unfortunately, Iwip-contrib does not contain a port to the Ti-rtos operating system that
we used during the course. This is where this project comes in handy.

| created a port for Ti-rtos. This port can be used in order to use the LWIP library on
the Texas Instruments CC2650 that we used during the course:

The CC2650

P00 ygense
il

ROR U,
»E,g‘.

[
CC20In mg 4
l\;:,.c-mg.
oos O Qo012
01020 O Qhoio11
o1 G Owe
ooz O ooz o8 @, Qurnrst
o024 D ooz E eprsT®, Qoo
001D 2 01029 o ® ous@, O o0
00219 D oo i1t ® o1k @, Qo013
oot D D oo ® ® 8 0016 §, Qoo
005 2 2 oo : ® 9001017 © Quonors
o %0 %0 of ke g W

(o]

. .
RED: GRELN

®_ s @

The device uses an ARM Cortex M3 main processor and up to 48-MHZ clock speed.
For more information about the CC2650:

https://git.savannah.gnu.org/git/lwip/lwip-contrib.git

http://www.ti.com/product/CC2650/datasheet

The plain CC2650 does not support wifi or Ethernet connection. Therefore, the
purpose of this project is to enable the device to use LWIP with the SLIP protocol as
the network interface.

The SLIP protocol:

The SLIP (Serial Line Internet protocol) is a simple encapsulation of the IP
protocol. SLIP requires a serial port connection to connect to the "outside
world". SLIP is not used on PCs anymore but still used with microcontrollers
due to its small overhead. SLIP is documented in RFC 1055.

In this project | use SLIP as the network interface for the IP stack. Fortunately, LWIP
already implements a SLIP network interface.

The Project:

This project consist of two main parts:

1. The Ti-rtos port.
2. An Example UDP server app that we can use to obtain data collected by the
CC2650 using sockets.

All the code is in the git repo | created:

https://github.com/adamelha/lwip tirtos

http://www.ti.com/product/CC2650/datasheet
https://github.com/adamelha/lwip_tirtos

The Ti-rtos Port

We will now dive in to the port itself that will enable us to use the LWIP library (and
also create the example app).

All the code for the port is located in Iwip-contrib/ports/tirtos in according to the LWIP
convension.

The port files:

e Include/arch/cc.h:

This header file contains compiler defines such as format qualifiers, Endianity,
but also debug and assertion macros.

Note: | created a flag that enables a system flush of the debug buffer after
every debug print so that no debug information will be lost. This is not
recommended but | left it as an option.

* If LWIP_DEBUG_WITH_FLUSH is defined to 1, ewvery debug print will immediately be displayed in ROV.
* This is not recommended since it slows execution significantly. Although can Help debugging a bit.

* If LWIP_DEBUG_WITH_FLUSH is @, user must use System_flush() to flush debug buffer.

N I W, [=N WY I)

7 #define LWIP_DEBUG_WITH_ FLUSH B

Sm o e O O

2

e |Include/arch/sys arch.h:

This is a Header extends Iwip sys.h. This contains the interface of
synchronizing system APIs such as counting semaphores, mutexes (binary
semaphores), mailboxes (All supported in ti-rtos). As well as threads (I used
ti-rtos tasks to implement the threading interface).

Helpful defines for the user in this file:

4@ /* Maximum message buffer for mailboxes */
41 #define MAX_MAILBOX_MESSAGE_SIZE laz24

A7
42

43 /* Maximum size of a name for a thread */
44 #define MAX_THREAD NAME_SIZE lea
45

A5

* Defining this will treat every clock tick as a millisecond.
47 * This is instead of calling pigs API BIOS_getCpuFreq which is not thread safe and will require additional locking */|
47 #define DEFAULT_IMS_CLOCK_TICK

o |wipopts.h:

This is the Iwip configuration file. Several changes had to be made for the
memory pools to fit the constraints of the CC2650.

For SLIP we defined the following:

418 /*

B19 e
428 ---------- SLIP aptions --------
821 e

423 %/

423

424 #define SLIPIF_THREAD NAME
425

426 #define SLIPIF_THREAD STACKSIZE
427

425 #define SLIPIF_THREAD PRIO
429

430 #define SLIP_USE_RX_THREAD
431

432 #define USE_SLIPIF

433

Helpful debug options:

434 /*

435 o

i Debugging options

T

438 */

439

44p #define TAPIF_DEBUG
441 #define TUNIF_DEBUG
447 #define UNIXIF DEBUG
443 #define DELIF_DEBUG

445 #define TCPDUMP_DEBUG
445 #define API_LIB DEBUG
447 #define API_M5G_DEBUG
445 #define TCPIP_DEBUG
440 #define NETIF_DEBUG
450 #define SOCKETS DEBUG
451 #define DEMO_DEBUG
452 #define IP_DEBUG

454 #define RAW_DEBUG
455 #define ICMP_DEBUG
456 #define UDP_DEBUG
457 #define TCP_DEBUG

462 #define TCP_RTO_DEBUG

452 #define TCP_WND_DEBUG
453 #define TCP_FR_DEBUG

465 #define TCP_RST DEBUG
466 #define SLIP DEBUG

LWIP_DBG_OFF
LWIP_DBG_OFF
LWIP DBG_OFF
LWIP DBG_OFF
244 #define SIO FIFO DEBUG LWIP DBG_OFF
LWIP_DBG_OFF
LWIP_DBG_OFF
LWIP_DBG_OFF
LWIP_DBG_OFF
LWIP_DBG_ON
LWIP DBG_OFF
LWIP DBG_OFF
LWIP_DBG_ON
453 #define IP_REASS DEBUG LWIP_DBG_OFF
LWIP_DBG_OFF
LWIP_DBG_OFF
LWIP_DBG_ON
LWIP_DBG_OFF
458 #define TCP_INPUT DEBUG LWIP DBG_OFF
450 #define TCP_OUTPUT DEBUG LWIP DBG_ON
LWIP_DBG_OFF
461 #define TCP_CWND DEBUG LWIP_DBG_OFF
LWIP_DBG_OFF
LWIP_DBG_OFF
464 #define TCP_QLEN DEBUG LWIP_DBG_OFF
LWIP_DBG_OFF
LWIP DBG_ON

"slipif loop™
laaa

4

e sys arch.c:

This is the source file that implements all the interfaces in sys_arch.h.

e Sio.C:

This source file implements Iwip/sio.h and is required for LWIP's
implementation of the SLIP network interface.

This file implements all the SERIAL communication. Implemented using APls
from the ti-rtos ti/drivers/UART.h.

Use the following define to configure the desired baud rate for serial
communication:

#define UART_BAUD RATE 115288

This concludes the implementation of the Ti-rtos port for LWIP.

The Example App

In addition to the Ti-rtos port, also provided is an example app.

The app provides a way to make queries from a remote computer, using standard
Python UDP sockets, to the CC2650 which will get the device to check the room
temperature or its battery situation (from the Ti-rtos batmon module).

The App consists of three parts:

1. Client side — ports/tirtos/SlipPyhton/client.py

This python script is used by the remote PC. It opens a UDP socket and
sends the device 3 different commands:
o 'TEMP' —to get the room temperature of the remote CC2650.
o 'BAT'—to get the voltage supplied to the remote CC2630.
o 'NOT A COMMAND'- to demonstrate the device response from an
invalid command.

2. Server side — ports/tirtos/SlipPython/server.py

This python script is used by the PC that is connected to the CC2650 and is
the "middleman” between the CC2650 and the outside world.

It runs two separate threads:

o Athread that uses Scapy to sniff IP packets, encode them to SLIP and
write the encapsulated SLIP packets to the serial line (where the
CC2650 is connected).

o A thread that polls the serial line for SLIP IP packets from the
CC2650. When a SLIP packet is read, it decodes it and sends the IP
packet using Scapy send().

3. CC2650 App

This is an app that uses LWIP's UDP APIs and runs a UDP server with a
SLIP network interface that listens on port 1000 on the IP of the PC running
server.py.

The App files:

o |lwip udp server.c

Contains main(). Does board initializations, initializes app task
and starts bios.

o ports/tirtos/slip task .c & .h

Creates the app task and calls apps start function.

o ports/tirtos/main.c

Makes initializations of LWIP and SLIP network interface which
uses a thread to poll the serial line for SLIP packets. When a
Complete SLIP packet arrives, it is decoded and fed to the IP
layer. If UDP packet to the configured IP and port arrives, a
callback functions is called. The callback extracts the data from
the packet, and based on this data, it decides to either
determine the room temperature, or the battery voltage, and
send the response, or send a BAD API response.

App Diagram:

Internet PC

—E Serial connection 4-

Internet connection

Client.py logs:

C:\dev>python client.py
command TEMP : Gets device room temperature in celsius
from ('192.168.1.17', 16000): Device Response: 29
command BAT : Gets device battery in volts

from ('192.168.1.17"', 10000): Device Response: 3.3203
command NOT A COMMAND : This API does not exist
from ('192.168.1.17"', 10680): Device Response: API Error!

C:\dev>C:\dev

Wireshark snippet showing the UDP ping pong between client.py and the
CC2650:

Len=2 l@aaa-51995 44 uop 192.168.1.17 192.168.1.48 2. aaaapa
Len=2@8 51995=1@888 62 une 192.168.1.48 192.168.1.17 1.389846
Len=2 1@@888-51995 44 unp 192.163.1.17 192.163.1.48 1.348588
Len=22 51995-=1@aa8 64 uop 192.168.1.48 192.168.1.17 1.4495132
Len=13 leeea+51995 55 une 192.168.1.17 192.168.1.48 1.585376
Len=11 51995-=1@a8a 53 unp 192.163.1.48 192.163.1.17 1.631112

Frame 1: 44 bytes on wire (352 bits), 44 bytes captured (352 bits) on interface @
(Ethernet II, Src: Raspberr 9a:2e:6b (b8:27:eb:9a:2e:6b), Dst: IntelCor 35:43:f5 (6@:6c:66:35:43:f5
Internet Protocol Version 4, Src: 192.168.1.48, Dst: 192.168.1.17
User Datagram Protocol, Src Port: 51995, Dst Port: 18868 Vv
Source Port: 31995
Destination Port: leeee
Length: 1@
[Checksum: @x35df [unverified
[Checksum Status: Unverified]
[Stream index: @]
(Data (2 bytes

Challenges

This project provided many challenges.

The most time consuming was configuring the project to fit a small memory
foot print and not overflow from the defined stack.

Stack overflows caused things to work part of the time and sometimes just
caused the app to hang. Especially with the serial communication.

Another major challenge was learning how LWIP works in order to even start
building an LWIP app and debugging it. The LWIP library is a very large piece
of code and even though it is pretty well documented, it was difficult to dive
into it.

Synchronizing between different tasks on the CC2650 was also challenging.

The Python apps also provided difficulty especially since | couldn't get Scapy
to work properly on Windows. It is takes it very long to load.

