
Advanced Computer Systems – 7102

Submit: Adar Zeitak and Yuval Lewi

Date: 29/03/17

Detecting whistles using the cc2650
Table of Contents
Introduction .. 1

The Program .. 1

Program outline .. 1

Sampling using a microphone ... 2

Developing the whistle-detection algorithm .. 2

Setting the alarm ... 3

Results ... 4

The board .. 4

Duty cycle .. 4

Attachments .. 4

Introduction
Our goal at this project is to use the cc2650 Launchpad, a microphone and a buzzer to detect

whistles and alarm accordingly. An application is to use the cc2650 as a key chain. Once a

person loses his keys, he can whistle and the alarm will guide him to the right direction.

The Program

Program outline
The first stage is the sound recording. For this part, the microphone sampled data at a rate of

22100 Hz for 512 samples. After that, we used in-place FFT to understand weather the sound is

a whistle or not. To lower the power consumption, the CPU then goes to IDLE for 800 ms, and

then back to the first stage. If at any point the CPU detects whistling it starts a fast sampling –

meaning without delay. After 10 straight whistles are detected1, it alerts the user by activating a

buzzer for 5 seconds. For a successful detection, a person needs to whistle for one second.

This is the worst case, it could change based on the last time the CPU went to idle mode.

The program is built out of a main Task that waits until the ADC callback will wake it up (using a

semaphore). Then it runs the logic, setting the alarm if needed, waits and calls for a microphone

sampling.

1
 Actually it checks for 10 out of 12 for better performance

Sampling using a microphone
We used a microphone(ADMP401) to detect sound. This microphone uses an

amplifier.

The samples move from the ADC to the RAM directly – meaning the CPU was on

standby so we could save battery usage. The samples are saved in an array of the voltage got from

the microphone. We save those numbers as integers and feed them to the Fourier transform. The

microphone uses three legs – 3.3v, ground and DIO23 to transfer data.

Developing the whistle-detection algorithm
A Fourier transform converts a signal from its original domain (often time or space) to a

representation in the frequency domain and vice versa
2
. In this project, we computed the Fourier

transform of the sampled audio signal and used heuristics to determine whether somebody whistles

at the moment. To compute the Fourier transform, we adapted the Fast Fourier Transform (FFT)

algorithm to run on the CC2650.

As a first step, we wrote python program to plot the FFT output and experiment with various

detection heuristics (The program itself was added at the end as an attachment). This allowed us to

develop and debug our detection algorithm easily before implementing it in C. As we played with the

program, we saw that the spectrum of whistles has a unique structure. Looking at the FFT output as

a graph of the magnitude of each frequency, we discovered two distinctive properties of whistle

sounds (see Figures 1, 2):

1. Most of the energy was concentrated in frequencies between 1000 and 3000 Hz.

2. The whistle spectrum had a single peak, while other sounds tend to have a few separate

peaks (harmonies).

Based on these properties, we devised the following algorithm to detect whistle sounds:

2
 Wikipedia Fast Fourier Transform - https://en.wikipedia.org/wiki/Fast_Fourier_transform

Figure 2 - FFT of a non-whistle sample

Figure 1 - FFT of a whistle sample

1. Compute the magnitude of each frequency, by squaring each element in the FFT output.

2. avg = average magnitude.

3. whistle_avg = average magnitude in the “whistle range” (1000-3000 Hz).

4. If whistle_avg < 2*avg, return False.

5. Compute filtered_spectrum, by zeroing any element whose value is lower than 1/16 the

maximal value.

6. filt_sum = Sum of filtered_spectrum.

7. Divide filtered_spectrum to stretches of nonzero elements and sum each.

8. If the sum of the stretch containing the maximal value is lower than 0.9*filt_sum, return

False.

9. Return True.

The algorithm tests property (1) in step (4) and property (2) in step (8). The computation of

filtered_spectrum is required to cope with background noises. During testing we discovered that

background noises create many weak peaks in the spectrum, making any sample violate the single-

peak property. After adding the noise filtering and testing the algorithm against common non-whistle

sounds we decided that it is robust enough and proceeded to implement it.

Converting our Python code to C code that will run on the CC2650 involved a few challenges. First,

the CC2650 has very little RAM available, so storing both the sample buffer and the FFT result was

impossible. As a solution, we used the FFT in-place variant, requiring no additional memory beyond

the input buffer and leaving the result in the same buffer.

A second challenge was performing the floating-point arithmetic required for FFT. The CC2650 has

a Cortex-M3 processor, which lacks a floating-point unit, so all floating-point computations are done

using much slower software routines. As using the soft-float routines was problematic for us, we

adapted our FFT code to use fixed-point numbers instead, and compute sines through table lookups.

This resulted in faster code without depending on hardware support for floats.

Setting the alarm
To alert the user, we used TMB-05. It was connected to pin DIO6, which is also connected to

the red LED on the board. When the program detects a whistle, it sets the pin to 3.3v for 5

seconds to turn on both the buzzer and the LED.

Results

The board

Duty cycle
We let the program run for 2 minutes while still printing. At this time the program detected three

whistles. This result got a duty cycle of 5%. After about 10 minutes the duty cycle of 3%.

Attachments
The python code we used to find our heuristics for whistling detection.

The code uses numpy, pygame and pyaudio as external packages.

1. import pyaudio
2. import wave
3. import numpy
4. import pygame
5. import struct
6.
7. # given a frequency in Hz, compute which cell of the fft result
8. # will contain it
9. def freq_bin(freq):
10. chunk_duration = float(CHUNK) / RATE
11. cycles_per_chunk = freq * chunk_duration
12. return int(cycles_per_chunk)
13.

GND

DIO23

3.3v

DIO6

GND

14. # given an array with "islands" of consecutive nonzero values
15. # separated by spans of consecutive zeroes, compute the fraction
16. # of the mass contained in the island at <pos>
17. def piece_fraction(spector, pos):
18. window_start = pos
19. window_end = pos
20. while window_start > 0 and spector[window_start] > 0.00001:
21. window_start -= 1
22. while window_end < len(spector)-1 and spector[window_end] > 0.000001:
23. window_end += 1
24. if sum(spector) < 0.000001:
25. return 0
26. return sum(spector[window_start:window_end]) / sum(spector)
27.
28. # filter (make zero) everything lower than 1/16 the maximal value
29. def filter_weaks(spector):
30. percent = max(spector)/16
31. return [x if x > percent else 0 for x in spector]
32.
33. def avg(values):
34. return sum(values) / float(len(values))
35.
36. def is_whistle(spector):
37. avg_min = freq_bin(200)
38. avg_max = freq_bin(10000)
39. whistle_min = freq_bin(1000)
40. whistle_max = freq_bin(3000)
41. avg_area = map(lambda x:x**2,abs(spector[avg_min:avg_max]))
42. whistle_area = map(lambda x:x**2,abs(spector[whistle_min:whistle_max]))
43. filt_avg_area = filter_weaks(avg_area)
44. peak = numpy.argmax(filt_avg_area)
45. paramA = avg(whistle_area) > 2*avg(avg_area)
46. paramB = piece_fraction(filt_avg_area, peak) > 0.9
47. return (paramA and paramB, piece_fraction(filt_avg_area, peak), avg(whistle_area) /

 avg(avg_area))
48.
49. # how many of the least-significant bits of each sample to remove.
50. # used to simulate low-resolution samples
51. LOST_BITS = 7
52. CHUNK = 512 # FFT block size
53. RATE = 22100
54.
55. CHANNELS = 1
56. FORMAT = pyaudio.paInt16
57.
58. SCREEN_SIZE = (512, 512)
59.
60. screen = pygame.display.set_mode(SCREEN_SIZE)
61.
62. p = pyaudio.PyAudio()
63.
64. stream = p.open(format=FORMAT,
65. channels=CHANNELS,
66. rate=RATE,
67.
68. input=True,
69. frames_per_buffer=CHUNK)
70.
71. # a mask of all-ones except for LOST_BITS least significant bits
72. bitmask = ((-1) >> LOST_BITS) << LOST_BITS
73.

74. try:
75. run = True
76. pause_frames = 0
77. while True:
78. pause_frames = max(0, pause_frames - 1)
79. for event in pygame.event.get():
80. if event.type == pygame.QUIT:
81. run = False
82. if not run:
83. break
84. data = stream.read(CHUNK)
85. data = struct.unpack('<%dh'%(CHUNK), data)
86. data = [x & bitmask for x in data]
87.
88. spector = numpy.fft.rfft(data)/2
89. whistle_detected,p1,p2 = is_whistle(spector)
90. if whistle_detected:
91. print " YES %.2f %.2f"%(p1,p2)
92. else:
93. print "NO %.2f %.2f"%(p1,p2)
94. if pause_frames > 0:
95. continue
96. if whistle_detected:
97. pause_frames = 40
98. color = (255,255,0)
99. else:
100. color = (255,0,0)
101. screen.fill((0,0,0))
102. for i in xrange(0,len(spector),4):
103. pygame.draw.line(screen, color, (i,SCREEN_SIZE[1]), (i, SCREEN_SIZE[

1]-int(abs(spector[i])/65536. * SCREEN_SIZE[1])))
104. for i in xrange(0, 15000, 1000):
105. x = freq_bin(i)
106. pygame.draw.line(screen, (0,0,255), (x,SCREEN_SIZE[1]), (x, 0))
107. pygame.display.flip()
108. finally:
109. pygame.quit()
110. stream.stop_stream()
111. stream.close()
112. p.terminate()

