
Workshop documentation

01-2020

Prof. Sivan Toledo

Students: Loren Papiashvili, Ron Belkin, Ron Lakunishok, Mark Klein

‘Distress Board’ project:

Our project implements a product consisting of the CC1350 Texas Instruments

board, in combination with the BMI160 Bosch accelerometer, with a designated

application to supply the user with a comfortable UI.

The project keeps track of the user’s well-being both reactively and proactively.

From a reactive standpoint, the board has two buttons – one on each side, once

one of these buttons are pressed, the designated app enters a distress state,

allowing the user to either react to it (cancel) or wait some time and then send a

distress signal via SMS messaging.

From a proactive point of view, the board has a fall detection feature, allowing it

to notify the app once the user has (allegedly) fallen, in order to let the app enter

a distress state and query the user if everything is alright.

Another proactive feature is the stationary/idle position time management

feature, in which the board monitors the movements of the user, to decide

whether the user is in a relatively stationary/idle position.

If this is true over a customizable (default is 30 minutes) period of time, the board

notifies the app and prompts it to enter a distress state.

Usage:

In order to use the app and provide the best user experience, we specify the

following steps:

1. Make sure the hardware is connected to a power source. (Once connected, the

board should have LED lights [one red/one green/both] light up) – Illustration:

2. Open the designated app and wait as it scans for your device.

3. Once a device was found, a message will be displayed, press it to connect to

the device. – Illustration:

4. Now, the app and the board are connected, you may use the board as

described earlier, and customize the contacts that will receive your distress signal,

the message that will be sent, and much more – through the contacts and settings

tabs. – Illustration:

Motivations:

At first glance, the project might seem redundant to some, especially in the era of

smartphones and smartwatches, however, we would like to argue that it fits in

perfectly as a nice addition to the existing IOT environment.

The project’s use cases are limited only by imagination, here we will specify the

ones the project was most designated for.

The distress button, which if pressed leads to the distress signal being sent as an

SMS, optionally including location (customizable), can be used in every scenario

where an attacker tries to threaten/harm the user carrying our project. The

device we designed is to be worn on an accessible location such as the waist, so

that it can be easily reached during a physical assault.

When designing the project, the situations we had in mind are such where the

victim cannot, or does not have enough time, to call for help using their cellphone

– such situations include sexual assault / rape, physical beating / planned ambush

/ stabbing, robbery – these usually occur unexpectedly, and the victim is very

limited in their movements, a simple, minor action as a button press on a

reachable area is the best chance the victim has in quickly getting help and

deterring the attacker.

The fall detection identification, a useful feature, especially for the elderly and for

those suffering from epileptic seizures. Counting on the people near us

(physically), if there are any, is not an adequate solution to the problem,

especially since most of the time we are not surrounded by people aware of a

certain condition we might have. These populations require someone (or

something) to intervene and call for help in their behalf.

These are the fundamental scenarios we thought about when implementing this

feature, yet many more can be found relevant. For instance, when a pedestrian is

involved in a road accident, they will inevitably fall, leading to a distress signal

being sent. This is of utmost importance when discussing hit-and-run accidents,

which unfortunately are not that uncommon (see this report for further detail).

The stationary/idle position time management – as students, we are no strangers

to feelings of depression and sadness, or long study sessions with little to none

https://aaafoundation.org/wp-content/uploads/2018/04/18-0058_Hit-and-Run-Brief_FINALv2.pdf

water/food/bathroom breaks. From what we’ve heard, this is especially true for

students taking pharmaceuticals to improve their concentration.

What these situations have in common is that we need someone to pull us out

from them, in the name of our mental and physical well-being.

However, each person has his/her own limit, therefore the number of minutes

allowed for being in a relatively stationary/idle position is customizable.

More scenarios can be thought of where this feature is useful. For example,

consider a person having some disability, or an elderly with limited motoric

capabilities, these groups can sometimes get ‘stuck’ in a position they cannot get

out of. This can happen in the bathroom, where they have trouble getting out of

the bathtub, or getting up after visiting the restroom. In such events, we would

like a person of interest, maybe a caretaker or a family member, to be notified.

(This is not the primary goal of the feature, and it might seem odd how our

project servers this purpose, since a person in such a situation can just click the

distress button, or not wear it at all as it might be inconvenient, yet there is the

option to put the product away while taking a bath or visiting the restroom, and it

will serve as a timer after which an SMS is sent to a preselected list of contacts)

Implementation:

To develop the board functionality, we first had to have BLE communications

available. For this purpose, we looked at the simple_peripheral example supplied

by TI (Texas Instruments, the company that produces the boards).

This example gave us the basis for BLE communications and exposed two very

convenient features for us to use.

The first feature was the characteristics. simple_peripheral comes with 4

characteristics, some of which are readable, some writable, some both, and one

notifiable characteristic – meaning that any change to it yields a notification being

sent to whoever is monitoring it.

To signal a distress state, the board changes the value of characteristic number 4,

the one that is notifiable.

These characteristics can be thought of as key, value pairs where the key is some

UUID. To learn these UUIDs and experiment with reading/writing to them we

used the BLE Scanner app (we used it on android devices). This app was the main

software verification tool we used until our app was finished. (more on the app

later)

The second feature was the periodic event function. simple_peripheral comes

with a function that occurs every number of milliseconds, this number can be

changed in the code, in our current version that number is 1000, meaning that

the function code is executed about every second.

Considering that our project is about constantly measuring the movement and

checking the well-being of the user, the periodic function was very natural for us

to use.

Another example project from TI that we used was the pinShutdown project,

which incorporated button press handling code. This project had the code we

needed as part of its main task, so we had to pick out the parts that we needed by

going through the project and studying it carefully, similar to what was done with

simple_peripheral.

[we are about to discuss some electrical/physical principles related to the

hardware, this is only our understanding of them, please excuse us if there are

some inaccuracies]

What happens is that when a button is pressed, a clock is activated for a certain

period, after this period we measure voltage at a point close to the button and if

that voltage is zero, we identify this chain of events as a button press.

Why was the clock activated? This was done as part of a principle called

‘debounce period’. Apparently, when the button is pressed, many signals are

being sent, so we want to wait for things to settle down and stabilize in order to

reliably sample a press of the button.

Once the press is identified, the function CreatePanic is called, which changes the

value of some variable. This variable is inspected in every execution of the

periodic function and if a change was noticed, the value of characteristic 4 is

changed, and hence a notification is sent to whoever is monitoring this

characteristic.

Our project also includes an accelerometer, specifically the BMI160 from Bosch.

It communicates with the board through I2C protocol. This required us to connect

the SDA and SCL pins connected to the sensor to the corresponding pins on the

board. To understand what pins are configured as SDA/SCL we looked at the

configuration of the i2ctmp project, another example from TI that illustrates basic

I2C communication with a temperature sensor.

The BMI160 comes with a driver which exposes various functions to configure,

initialize and read data from the sensor. However, to use this driver we had to

implement some functions on our own: reading/writing data to a register in the

sensor over I2C and delaying. More on these in the obstacles section.

Once we handled the I2C infrastructure, we could read acceleration data from the

sensor, this is how we identified falls and idle/stationary periods.

The green arrow represents the x axis and the yellow arrow represents the y axis.

The z axis is the one pointing ‘inwards’, or ‘through’, the sensor.

The user wears the device with the y axis pointing down, as in the image above.

(this matter was discussed shortly in the project presentation)

Notation: acceleration in axis x is 𝑥𝑎. Correspondingly, define 𝑦𝑎, 𝑧𝑎.

(acceleration is measured in
𝑚

𝑠2
)

To identify a fall, we require 𝑧𝑎 ≥ 9 || 𝑥𝑎 ≥ 9

This captures falls where the person who fell lies on their side, and the ones

where the person lies on their back/front.

If the person switches between lying on their side and lying on their back/front –

another notification is not sent, this is a feature rather than a bug.

However, once a person gets back up (𝑦𝑎 ≥ 8), a notification will be sent if he

falls again.

An idle state was defined as:

𝑙𝑦𝑖𝑛𝑔 𝑑𝑜𝑤𝑛 𝑜𝑛 𝑏𝑎𝑐𝑘||𝑙𝑦𝑖𝑛𝑔 𝑑𝑜𝑤𝑛 𝑜𝑛 𝑠𝑖𝑑𝑒||𝑠𝑖𝑡𝑡𝑖𝑛𝑔 𝑎𝑡 𝑎𝑛 𝑎𝑛𝑔𝑙𝑒||𝑠𝑖𝑡𝑡𝑖𝑛𝑔 𝑢𝑝 𝑠𝑡𝑟𝑎𝑖𝑔ℎ𝑡

Where:

𝑙𝑦𝑖𝑛𝑔 𝑑𝑜𝑤𝑛 𝑜𝑛 𝑏𝑎𝑐𝑘 is 𝑧𝑎 ≥ 9 && 𝑥𝑎 ≤ 1

𝑙𝑦𝑖𝑛𝑔 𝑑𝑜𝑤𝑛 𝑜𝑛 𝑠𝑖𝑑𝑒 is 𝑥𝑎 ≥ 9 && 𝑧𝑎 ≤ 1

𝑠𝑖𝑡𝑡𝑖𝑛𝑔 𝑎𝑡 𝑎𝑛 𝑎𝑛𝑔𝑙𝑒 is 𝑦𝑎 ≤ 8 && 𝑧𝑎 ≥ 2

𝑠𝑖𝑡𝑡𝑖𝑛𝑔 𝑢𝑝 𝑠𝑡𝑟𝑎𝑖𝑔ℎ𝑡 is 𝑦𝑎 ≥ 9 && 𝑧𝑎 ≤ 1

We check whether we are in an idle state each time the periodic function is

executed (meaning each second, in the current version of our code), if so, we

increase a counter, otherwise, we assign zero to the counter.

If the counter becomes greater or equal to the number of allowed idle minutes

times 60 (the number of allowed idle seconds essentially), we call CreatePanic.

In addition, each period we check whether the value of characteristic 1 has

changed, to see if the user updated the allowed num of idle minutes in the app.

Let’s talk about the app implementation.

The app was built using React Native, an open source framework developed by

Facebook, which allows you to build native Android and iOS apps using (mostly)

Javascript code, with a single codebase that is derived from the React library that

already exists for web browsers.

React Native comes with a lot of useful built-in modules (mainly UI related ones).

However, those are really basic, and in order to customize the functionality, we

had to rely a lot on external libraries to do so. Luckily, the React Native ecosystem

is rich in those resources, and we could easily find custom modules that suited

our goals almost perfectly.

The main one would be a library called react-native-ble-plx, which is a set of tools

that enables you to manipulate the native BLE capabilities of your phone with a

fairly simple set of APIs and abstractions.

Using this library, we have created a BLE service, which is, in essence, a class that

represents the module and abstracts it even further, simplifying the operations

we have to perform to deal with BLE. We exported functions such as one that

scans for our board (we used its name to identify it for simplicity, but we could

have used any other property such as UUID), that monitors the aforementioned

characteristics and fires distress events on demand.

Storing the contacts and settings selected by the user was rather simple too, using

the built in AsyncStorage module of React Native, as well as a library called react-

native-contacts that allows you to access your phone’s contacts list and get them

in JSON format.

Most of the UI was made by us, with a few small exceptions where we used

premade UI elements from external sources and react-navigation to make the

bottom tabs

Obstacles:

Board

● At first, we didn’t have any clue as to what we should do and how to begin

working with the board, even defining objectives was difficult

- We found simple_peripheral online, but it was Professor Sivan Toledo’s

guidance that helped us understand how to begin working. He introduced

us to the BLE scanner app and explained how to work with Code Composer

Studio, we also received an explanation for the difference between

simple_peripheral_app and simple_peripheral_stack

● When trying to write a handler for a button press, we had to understand

exactly what parts from pinShutdown were relevant, this required that we

investigate unfamiliar topics like the ‘debounce period’ concept

- We searched online for help regarding the hardware and software aspects

that we had to consider in order to fully understand the pinShutdown

example and were first introduced to the TI forums where we found

answers to some of the questions we had

● When we were done with the button press functionality (the board and app

development are independent once we reached the convention that a

distress state is identified by a change to characteristic 4), we approached

Sivan to get an accelerometer. Sivan gave us an accelerometer and

soldered it to a panel with the pins we needed for I2C communications.

Beginning to work with the accelerometer was difficult – we didn’t even know

how to connect it to the board.

- Following Sivan’s suggestion, we searched for the configuration of SDA/SCL

pins and understood how to physically connect the sensor to the board.

● We had to remind ourselves of the way I2C works, understand how TI’s I2C

API functions, and how to read/write to registers in the sensor.

- We watched a couple of videos about I2C on youtube and made sure the

same principles apply for the sensor by visiting its datasheet. We looked up

TI’s I2C API for some basic examples on how to read/write over I2C.

However, the API interface does not support reading/writing to a specific

register, so we turned back to the datasheet to find out that the first byte

of the I2C transaction after the slave address and R/W bit (we learned how

to configure these from the driver documentation) is the register address.

App

● At first, we did not know how to make our phone interact with the board.

We were certain that the Blutetooth capabilities could be used, but looking

at React Native’s base documentation yielded little to no results. So we

turned to npmjs.com to look for an external resource. Soon enough, we

found react-native-ble-plx, we started reviewing its documentation and the

abstractions it provided were crystal clear and simple to operate.

● Afterwards, we needed some reliable way to send SMS. Again, we turned to

npm to see whether we can find something that does that, but all the

libraries we found required user interaction to deliver the messages, which

completely defeated our goals. We looked for alternative solutions to tackle

the problem. React Native provides the capability to write modules in the

native language of the phone’s OS (in our case, Java for Android). After

some research, we found that Android has a module that directly sent SMS,

so we used it and found out how to integrate that module in our Javascript

code, ending up with a native Java module built by us, which allows us to

send SMS messages without interaction from the user

● Location details were a bit of a thinker. Although React Native has a module

that extracts location data from your phone, it merely provides you the

coordinates, but no way to represent them in a message (raw coordinates

are not human readable). Google Maps came to our aid, with a simple API

that can receive those coordinates and locate them on the world map. So

we send the url of the API with the coordinates we get from React Native.

Resources:

Board

● First, we would like to thank Professor Sivan Toledo for agreeing to meet

with us, explain based on his previous knowledge, and overall maintaining

his patience as he guided us through beginning each major step in the

project.

● We would also like to note the TI forums, where we found answers to many

of our questions and code examples or principle explanations that helped

us a great deal.

● TI’s example projects were essential to understanding what features are

available and how they’re used

● BMI160 datasheet and driver documentation – the datasheet explains fairly

well what features and capabilities the sensor supports, it also has a lot of

information about communicating with the sensor over I2C, the driver is

written in an organized manner and each struct/function are documented

in an easily understandable way

App

● React Native - Facebook’s framework for Native apps written in JS

● react-native-ble-plx - A toolset for handling BLE operations for React Native

● react-native-contacts - A library to extract contact data from your phone

● react-native-push-notification - A library we used to make local distress

notifications

● react-navigation - A library we used to build the bottom tabs of the app,

navigating between different screens

https://facebook.github.io/react-native/
https://polidea.github.io/react-native-ble-plx/#introduction
https://github.com/rt2zz/react-native-contacts
https://github.com/zo0r/react-native-push-notification
https://reactnavigation.org/

