
PetFeeder
a smart pet feeding system
by Ben Solomon & Aviv Yonai

Summary
PetFeeder is a smart feeding system containing Hardware product, Azure web
services and a Mobile App. The system is designed to enable users to perform
smart pet feeding from anywhere at any time.

What is it good for?
During our stressful everyday routine we sometimes forget to
take care of our 4-legged friends who are waiting at home.
Did you ever had to cancel or postpone your plans just because you have to go
home and feed your pet? not anymore. with PetFeeder users are able to create
a regular-base feeding schedule or feed their furry friend in real time just by
pressing a button.

Main Features
1. Online system status

2. Manual feed

3. Automatic feed by timer

4. Feeding verification

5. Eating detection

How does it work?

Azure Web Services

Adafruit Feather
HUZZAH ESP8266

Mobile App

Through Azure services the hardware is able to communicate with the
PetFeeder App and Vice versa.

Hardware

Servo Motor
• Spins the cap that pours the
food when its feeding time

FlexiForce Force
Sensor
• Connected to the food platter
and sends the user the current
weight.

• Enables verifying and
monitoring the feeding process

Control LEDs

The Adafruit Feather
HUZZAH ESP8266 is an 'all-
in-one' ESP8266 WiFi
development board with built
in USB and battery charging.

Our Board:

What its made of?

3D Printed cap attached
to Servo MotorPressure Sensor

ESP8266
Board

Feeding bottle

Old drawer

Plastic box

Azure Web Services

• Users Table
• Devices Table
• Feeding Times Table
• History Log Table
• Weights Table

• GetPlateWeight
• UpdatePlateWeight
• MonitorWeight
• Negotiate: Establishes Connection with SignalR
• FeedbyTime: Time-Triggered feeding
• MessageReciever: Gets messages from
devices and calls updating-DB function

IOT Hub

Azure Functions
Azure Tables

• Connected to the Devices
and enables communication
with them

Azure Web Services

DB - Azure Tables
Device Code

(Partition Key)
User’s ID
(Row Key)

Device Code
(Row Key) Pet Name Pet Type

Device Code
(Partition Key) Feed Timer Device Code

(Partition
Key)

User’s ID
(Row Key) ActionType Timestamp

Users Table Devices Table

Feeding Times Table History Log Table

Device Code
(Partition Key) MeasurementType Weight

Weights Table

Mobile App

• Developed with Xamarin

• Using Model-View method

• Android app and iPhone app
are both available

First Login Page

Appears on the first use of the
App, or when Registering a new
Device

Every Device has its
own unique System
Code implemented in
it’s QR-Label

Main Page

• Contains the “FEED!” button
which creates a real-time
feeding instantly

• System status - indicates
whether the device is online and
functioning, or disabled.

• App Side-Menu button

IOT Hub service

Message Reader
IoTHubTrigger Function

Sending SignalR message

• Sending
HeartBit
message
every 1
second

Main Page

Negotiate
SignalR Function

Connects negotiate
http function to get

HubConnection object

Listen to SignalR
messages to update
connection status

Status is Offline if
no messages

within 10 seconds

System Status update

The Side-Menu

Enables Navigating between
the App’s different pages

The Timer Page

• Contains a list of all the
scheduled daily feed timings
that already exists

• Add Timer button

ADD Timer Button

Tap to Delete

Add Timer Page

Enter a daily-feeding Timer for
any minute of the day

The Timer Page

Device Code
(Partition Key) Feed Timer

PetFeederC100LI 06:00

PetFeederC100LI 19:00

Feeding Times Table

a Timer added in
the app is stored in
Azure DB Table

Feed by Time
Time-Triggered Azure Function

Activates Feeding in Device

The History Page

Contains a list of all the Feeding
activity that happened:

Feeding request - The FEED
Button was pressed / a Feed
Timer went on

Feeding detected - The Device’s
force sensor detects that the
food was poured to the plate
successfully

Eating detected - The Device’s
force sensor detects that the
food had been eaten

• Writes “DeviceId” to PartitionKey column
• Writes MeasurementType 0 which means
this is only “unstable” sample

• Writes the received weight

IOT Hub service

Message Reader
IoTHubTrigger Function

Write to Storage table

• Sending message
with current
“Weight” returned
by analogRead and
“DeviceId” every 1
second

The History Page

Device Code
(Partition Key) MeasurementType Weight

PetFeederC100LI 0 304

PetFeederC100LI 0 302

PetFeederC100LI 1 300

PetFeederC100LI 0 297

PetFeederC100LI 0 308

WeightsTable

First stage: Collecting data

MonitorWeight
TimerTrigger
Function

For each DeviceCode:
Reads data from WeightsTable

The History Page

Device Code
(Partition Key) MeasurementType Weight

PetFeederC100LI 0 304

PetFeederC100LI 0 302

PetFeederC100LI 1 300

PetFeederC100LI 0 297

PetFeederC100LI 0 308

WeightsTable

• Calculates new “Stable” weight from samples
• Cleans old “Unstable” weights from WeightsTable
• Decides what action occured: Eating/Feeding/Nothing
• AddToHistory(DeviceId,ActionType)

Device Code
(Partition Key)

User’s ID
(Row Key) ActionType

PetFeederC100LI 22313 FeedingDetected

PetFeederC100LI 22313 EatingDetected

HistoryLogTable

Second stage: Analyzing data

Updates WeightsTable

The History Page

MonitorWeight (Samples S)
• Triggered every 2 minutes
• X := “Old Stable Measurement” = S where MeasurementType = 1
• Y := “New Stable Measurement” = CommonOccurrence(S,&Percent)

• CommonOccurrence calculates which “unstable” weight is the most common. “unstable” weight
is the weights from the table where MeasurementType = 0. The function also fills output
percent that contains the percentage occurrence.

• Then, check if the sample meets some conditions. We check
 if (Size(S) > MIN_SAMPLES && Y.Percent > MIN_PERCENT)
 call UpdateEvent(X,Y)

• UpdateEvent(X,Y): Gets Old stable measurement “X” and New stable measurement “Y”. If
(Abs(X-Y) > CHANGE_THRESHOLD) then:

 if (Y > X)
 AddToHistory(DeviceId,”FeedingDetected”)
 else
 AddToHistory(DeviceId,”EatingDetected”)

• Remove all samples where MeasurementType = 0
• Update “WeightsTable” where MeasurementType =1 set Weight = Y

•After some data analysis we used MIN_SAMPLES=60, MIN_PERCENT=20,
CHANGE_THRESHOLD=10

Pseudo code: MonitorWeight algorithm

The Settings Page

• Update pet’s name
• Remove Device to start

over

