






Your Internet of Things



Think of a gardener who wants to build on his own a device that
measures moisture in his garden. Instead of having to learn how to
write a code for Arduino devices, how to prepare all of the
components and how to get past the technological barrier, WE do it all
simply for him – all he has to do is to define simple commands in
natural language, plug pre-prepared devices, and, voila – the system is
ready to use.

YIoT is a product that makes it possible for the
general public to build IoT projects on their own,
even without previous knowledge.

What is it all about?



No coding!



Architecture



Web App

User Web 
Portal

Node.JS Blocky API Device Setup
Create and 

Modify 
Actions



The UI is written in JavaScript, HTML and CSS. We use an open source
API for creating actions. The actions blocks functionality is
implemented with the Blockly API. The Blockly interface allows the
users to write code without any knowledge in programming. In
particular, the WebApp allows the user to configure settings for the
Arduino such as the port numbers of the devices.

The backend is written in node JS. Its main purpose is to parse the
actions that the user creates from XML representation into JSON
objects, and to use the SQL server for querying data for the user.

The WebApp is used for creating, changing and
configuring actions on the Arduino devices. It is divided
into two parts: the UI and the backend.

Web App



Arduino Device

Arduino
Feather 
Huzzah 

ESP8266

C/C++ Modular code



Arduino Device

A major part of the YIoT system is the Arduino devices.
These devices constitute the physical piece of the project
– either sensors or actuators, they are connected to the
internet with WiFi using the Adafruit Feather Huzzah
ESP8266 module.

The interaction with the devices is based on C/C++ programming
languages. After we define actions in the WebApp, they are translated
into abstract syntax trees (AST) and we run them repeatedly as they
receive/send information from/to the devices.



Mobile App

Android 
Companion 

App
Native Java

Interact with 
device

Displays 
Sensor Data

Receive 
Notifications 
from Device



Written in Native Java, the mobile app is presenting telemetry data
from the Arduino sensors in a numeric or a graph view. Data for special
sensors is presented with the appropriate structure – for example, an
RGB sensor data will be presented simply by the sampled color.

The mobile app also gives the ability to control the Arduino actuators,
such as a LED device.

The application is communicating with the backend through the Azure
functions.

Mobile App

The main purpose of the mobile application is to allow
the user to interact with devices, by displaying the
sensors’ data and receiving notifications from the
devices.



Cloud

Azure 
Cloud 

Backend
IoT Hub

Notification 
Hub

Function 
App

SQL DB



Cloud

• IoT Hub: A service which allows us to establish bidirectional
communication with the IoT devices.

• Notification Hub: a mobile push notification engine for quickly
sending notifications the Android devices, using Google’s GCM.

• Function Apps: a serverless compute service that enables us to run
code on-demand. These functions constitutes the project’s logic.

• SQL Database: The storage of out project’s data, e.g. the user’s
actions defined on the WebApp.

Eventually, every sub-system is connected to the
heart of the project – the cloud. The cloud services are
provided with Micosoft Azure, and include:



Action Pipeline

User Created Blocks …

<value name="IF0">

<block type="logic_compare_RGB" 

id="C/;9QOfk5f1#|9cI-x9t">

<field name="OP">EQ</field>

<value name="A">

<block type="RGB Sensor" 

id="71*E?5`2yTPCr8nHt~q," />

</value>

…

XML Representation

…

"IF0": {

"TYPE": "RGB_compare",

"OP": "EQ",

"OBJS_TO_COMPARE": {

“LHS": {

"SENSOR_NAME": "RGB Sensor",

"PORT": 99,

"IS_SENSOR": true

…..

Json Representation
AST



Action Pipeline

One of the most unique properties of our project, is the ability to “insta-
compile” code on the Arduino device via the cloud. This is done with
our unique pipeline:

1. The user enters a list of actions into the WebApp by setting blocks in
a logical order – this is the code that we will “compile” on the device.

2. Each action is translated in by the API into XML representation,
afterwards we translate it into JSON objects.

3. The JSON objects are transmitted to the device and translated into
Abstract Syntax Trees (AST) in C++ by the device itself.

4. The AST objects are being run repeatedly, each time receiving
updated data from the sensors and triggering the actuators
accordingly.



Thanks!

Yuval 
Weiss

Dan 
Tavori

Michael Khaitov


