

Google
g how to build an iot smart garden

The $3
$300 Lettuce: Building a Smart Gard
en—1

cloud ¢
avannAaquHGu

Q

hitps:
Feb2i gtep 4: Programmlng Our F’I'Ol@c Ste p 3
Compil
e

uha

Nuld[] \“

#d“rl] ,

Build a
smart gar-
with
these 3 DI #aer,,. _ATIC 1p
h ADDp o~ 7 Ogle
Fihﬂwn

https://oper-
‘\)'eﬁ 7/3/arduino-g
d garden to the
" oyStem Hamt ava S C rI |3 t

X owritea GraphOL endpoin

ork and Node js 8.10 {ambda. Th -)
o) el
Mpile ab Sta”dard/:,
rmatav

se were all things - € and yp,
oad
power price «- sketch

int. gerverless isa

framew

needed right nOW> but the
third party weather and

ore value at that po

to pm
KR1
really ewye, 000

and you should

QL will provide m
other providers!) ,

work with Lambda

way 1o
aven'tyet.
___—wan_warden Wat...

definitely try itif youh
...ns wunaing, smart cities a - — wwuu pased Internet
nd smart. healt of Things (IoT
hcare as well) smart garde
as . n ... homes

(it also supports

C’/O/)&

4>

Your Internet of Things

What is it all about?

A‘?A‘. YloT is a product that makes it possible for the

general public to build loT projects on their own,
even without previous knowledge.

Think of a gardener who wants to build on his own a device that
measures moisture in his garden. Instead of having to learn how to
write a code for Arduino devices, how to prepare all of the
components and how to get past the technological barrier, WE do it all
simply for him — all he has to do is to define simple commands in
natural language, plug pre-prepared devices, and, voila — the system is
ready to use.

No coding!

if (tes.available()) {
static uint t prev_ms 11131is¢() ;
TCS34725:; color
REGE sen RGEB olor.g, color.b);

RGB Sensor (EJE# Color

Sehd gleinile=1ilels8" Hello World!

el woratn, Light CIKB
Light
;‘

else Light
Light CED

} el=ze
}
} el=ze {

Serial.println("Error: TCS unavailable");

Architecture

o) if RGB Sensor (E3# Color

do SR Rliile= il 8 Hello World!
Light {158
‘g)

else | Light il
—

User Web
Portal

Blocky API

Device Setup

Create and
Modify
Actions

Web App

The WebApp is used for creating, changing and
configuring actions on the Arduino devices. It is divided

into two parts: the Ul and the backend.

The Ul is written in JavaScript, HTML and CSS. We use an open source
APl for creating actions. The actions blocks functionality is
implemented with the Blockly API. The Blockly interface allows the
users to write code without any knowledge in programming. In
particular, the WebApp allows the user to configure settings for the
Arduino such as the port numbers of the devices.

The backend is written in node JS. Its main purpose is to parse the
actions that the user creates from XML representation into JSON
objects, and to use the SQL server for querying data for the user.

Arduino Device

ESP8266

&
e,
O
O
S
o
=
e,
O
>

Arduino Device

A major part of the YloT system is the Arduino devices.
These devices constitute the physical piece of the project
— either sensors or actuators, they are connected to the

internet with WIiFi using the Adafruit Feather Huzzah
ESP8266 module.

The interaction with the devices is based on C/C++ programming
languages. After we define actions in the WebApp, they are translated
into abstract syntax trees (AST) and we run them repeatedly as they
receive/send information from/to the devices.

Mobile App

Android
Companion Native Java

App

Interact with Displays it
device Sensor Data v

Receive

Notifications
from Device

Mobile App

The main purpose of the mobile application is to allow
the user to interact with devices, by displaying the
sensors’ data and receiving notifications from the
devices.

Written in Native Java, the mobile app is presenting telemetry data
from the Arduino sensors in a numeric or a graph view. Data for special
sensors is presented with the appropriate structure — for example, an
RGB sensor data will be presented simply by the sampled color.

The mobile app also gives the ability to control the Arduino actuators,
such as a LED device.

The application is communicating with the backend through the Azure
functions.

Cloud

Azure
Cloud loT Hub
Backend

Notification Function

Hub App

SQL DB

5
@ﬁ\

Cloud

Eventually, every sub-system is connected to the
/A heart of the project — the cloud. The cloud services are
provided with Micosoft Azure, and include:

e loT Hub: A service which allows us to establish bidirectional
communication with the loT devices.

* Notification Hub: a mobile push notification engine for quickly
sending notifications the Android devices, using Google’s GCM.

* Function Apps: a serverless compute service that enables us to run
code on-demand. These functions constitutes the project’s logic.

 SQL Database: The storage of out project’s data, e.g. the user’s
actions defined on the WebApp.

Action Pipeline

XML Representation

User Created Blocks

<value name="IF0">

(2] if ' - <block type="logic_compare_RGB"
- | | RGB Sensor | (Gl Color [id="C/:9QOfk5f1#|9cl-x9t">

R - ollo World! ‘ <field name="OP">EQ</field>

<value name="A">
Light lon v

<block type="RGB Sensor"
id="71*E?5 2yTPCr8nHt~q," />
else Light off + </value>

Json Representation

"IFO": {
"TYPE": "RGB_compare",
- "OP": "EQ",
c:»ﬁzre "OBJS_TO_COMPARE": {
‘LHS™: {
"SENSOR_NAME": "RGB Sensor",
RGB "PORT": 99,

Sensor "IS_ SENSOR": true

Action Pipeline

One of the most unique properties of our project, is the ability to “insta-
compile” code on the Arduino device via the cloud. This is done with
our unique pipeline:

1. The user enters a list of actions into the WebApp by setting blocks in
a logical order — this is the code that we will “compile” on the device.

2. Each action is translated in by the APl into XML representation,
afterwards we translate it into JSON objects.

3. The JSON objects are transmitted to the device and translated into
Abstract Syntax Trees (AST) in C++ by the device itself.

4. The AST objects are being run repeatedly, each time receiving
updated data from the sensors and triggering the actuators
accordingly.

Thanks!

Michael Khaitov
Weiss Tavori

JavaScript 38.8% ®C++ 37.1% ® Java 14.9% ®C#55% ® HTML 2.8% ®C0.7% Other 0.2%
' ________________________| | ||

