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Abstract

In distinction to current Theory of Communication which treats amount of informa-

tion as a measure of the statistical rarity of a message, a Theory of Semantic Informa-

tion is outlined, in which the concept of information carried by a sentence within a

given language system is treated as synonymous with the content of this sentence, norma-

lized in a certain way, and the concept of amount of semantic information is explicated

by various measures of this content, all based on logical probability functions ranging

over the contents. Absolute and relative measures are distinguished, so are D-functions

suitable for contexts where deductive reasoning alone is relevant and I-functions suitable

for contexts where inductive reasoning is adequate. Of the two major types of amount

of information investigated, the one, cont, is additive with respect to sentences whose

contents are exclusive, the other, inf, with respect to sentences which are inductively

independent. The latter turns out to be formally analogous to the customary information

measure function.

Various estimate functions of amount of information are investigated leading to

generalized semantic correlates of concepts and theorems of current Communication

Theory. A concept of semantic noise is tentatively defined, so are efficiency and redun-

dancy of the conceptual framework of a language system. It is suggested that semantic

information is a concept more readily applicable to psychological and other investiga-

tions than its communicational counterpart.
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OUTLINES OF A THEORY OF SEMANTIC INFORMATION

1. The problem

The concepts of information and amount of information are distinguished.
The explication of these concepts is attempted only insofar as they apply to
(declarative) sentences or, alternatively, to propositions. Prevailing theory
of communication (or transmission of information) deliberately neglects the
semantic aspects of communication, i. e., the meaning of the messages. This
theoretical restraint is, however, not always adhered to in practice, and this
results in many misapplications. The theory outlined here is fully and openly
of a semantic character and is therefore deemed to be a better approximation
to a future theory of pragmatic information. For didactic purposes, the
present theory of semantic information may be identified with a theory of prag-
matic information for an "ideal" receiver.

It seems desirable that one should be able to say not only what information a message

or an experiment has supplied but also how much. Hence we are going to distinguish

between information (or content) and amount of information.

We shall deal with these concepts only insofar as they apply to either sentences or

propositions, where 'sentences' is short for 'declarative sentences' or 'statements',

and propositions are the nonlinguistic entities expressed by sentences. The theory we

are going to develop will presuppose a certain language system and the basic concepts

of this theory will be applied to the sentences of that system. These concepts, then,

will be semantic concepts, closely connected with certain concepts of inductive logic,

as we shall show below. Since inductive logic has been treated at length by one of us,

we shall make extensive use of the results achieved there. Relevant definitions and

theorems will, however, be repeated to such an extent as to make the present treatment

stand almost completely on its own.

The restriction of the range of application of the concepts to be explicated to

sentences (or propositions) is probably not serious, since other applications seem to be

reducible to this one. Instead of dealing with the information carried by letters, sound

waves, and the like, we may talk about the information carried by the sentence, 'The

sequence of letters (or sound waves, etc. ). .. has been transmitted'. The situation is

similar to that prevailing with regard to the concept of truth, which is used presystem-

atically as applying not only to sentences or propositions but also to many other entities

such as concepts and ideas. There, too, these latter usages seem to be reducible to

the former ones.

In recent authoritative presentations of the so-called Mathematical Theory of Com-

munication, or Theory of (Transmission of) Information, great care has been taken to

point out that this theory is not interested in the semantic aspects of communication.

*
Rudolf Carnap: Logical Foundations of Probability, University of Chicago Press,

1950; The Continuum of Inductive Methods, University of Chicago Press, 1952. These
works will be referred to hereafter as [Prob.] and [Cont.] , respectively.
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The following two quotations may be regarded as representative. Claude
E. Shannon states in The Mathematical Theory of Communication (of which
he is co-author with Warren Weaver), Univ. of Illinois Press, Urbana,
1949, p. 3: "These semantic aspects of communication are irrelevant to
the engineering problem." E. Colin Cherry in "A History of the Theory of
Information", Proc. Inst. Elec. Engrs. 98, 383, 1951, says: "It is important
to emphasize, at the start, that we are not concerned with the meaning or the
truth of messages; semantics lies outside the scope of mathematical infor-
mation theory."

It has, however, often been noticed that this asceticism is not always adhered to

in practice and that sometimes semantically important conclusions are drawn from

officially semantics-free assumptions. In addition, it seems that at least some of the

proponents of communication theory have tried to establish (or to reestablish) the

semantic connections which have been deliberately dissevered by others.

In 1948 Donald MacKay conceived a theory of information that should be broad enough

to cover both theory of communication and theory of scientific information, the latter

dealing with the formation of representations or their rearrangement in the represen-

tational space of the observer, the former dealing with the replication of representations

in the mind of the receiver, which were already present in the mind of the sender

of a message. (Cf. "Quantal Aspects of Scientific Information", Phil. Mag. 41, 289,

1950, and "The Nomenclature of Information Theory", prepared for the Symposium on

Information Theory held in London in September 1950, and printed in revised form

as Appendix I of a talk, "In Search of Basic Symbols", given before the Eighth Confer-

ence on Cybernetics held in New York in March 1951, and published in the Transactions

of this Conference, pp. 181-235.)

Jean Ville, in a talk before the 18th International Congress of Philosophy of

Science in Paris, 1949 (published in Actualites Scientifiques et Industrielles, No. 1145,

pp. 101-114, Paris, 1951), also treats information as a basically semantic concept and

develops functions and theorems which stand in close correspondence to some of the

functions and theorems with which we deal in this report. A more thorough evaluation

of these and other contributions to the foundations of information theory, as well as a

comparison between the theory presented here and the theory of communication, will

be undertaken elsewhere.

Our theory lies explicitly and wholly within semantics.

It does not deal, however, with what has been termed by Weaver in his contri-
bution to the afore-mentioned book "the semantic problem" of communication,
which, as defined by him, is "concerned with the identity, or satisfactorily
close approximation, in the interpretation of meaning by the receiver, as com-
pared with the intended meaning of the sender." We would rather prefer to
consider an investigation in which sender and receiver are explicitly involved
as belonging to pragmatics.

We shall talk about the information carried by a sentence, both by itself and relative to

some other sentence or set of sentences, but not about the information which the sender

intended to convey by transmitting a certain message nor about the information a



receiver obtained from this message. An explication of these usages is of paramount

importance, but it is our conviction that the best approach to this explication is through

an analysis of the concept of semantic information which, in addition to its being an

approximation by abstraction to the full-blooded concept of pragmatic information, may

well have its own independent values.

Anticipating later results, it will turn out, under all explications envisaged by us,

that the amount of information carried by the sentence '17 X 19 = 323' is zero and that

the amount of information of 'The three medians of the sides of a plane triangle inter-

sect in one point', relative to some set of sentences serving as a complete set of axioms

for Euclidean geometry, is likewise zero. This, however, is by no means to be under-

stood as implying that there is no good sense of 'amount of information', in which the

amount of information of these sentences will not be zero at all, and for some people,

might even be rather high. To avoid ambiguities, we shall use the adjective 'semantic'

to differentiate both the presystematic senses of 'information' in which we are inter-

ested at the moment and their systematic explicata from other senses (such as "amount

of psychological information for the person P") and their explicata. This adjective will,

however, be dropped in those cases where ambiguities are unlikely to arise.

The following comparison might be of value for pointing out one of the services

which a clarification of the semantic concept of information should render for a future

theory of pragmatic information. The theory of so-called ideal gases is of great impor-

tance in physics despite the fact that no actual gas is ideal and that many gases are very

far from being ideal. The semantic information carried by a sentence with respect to a

certain class c ntences may well be regarded as the "ideal" pragmatic information

which this sentence would carry for an "ideal" receiver whose only empirical knowledge

is formulated in exactly this class of sentences. By an "ideal" receiver we understand,

for the purposes of this illustration, a receiver with a perfect memory who "knows" all

of logic and mathematics, and together with any class of empirical sentences, all of

their logical consequences. The interpretation of semantic information with the help of

such a superhuman fictitious intellect should be taken only as an informal indication. We

shall not refer to this fiction in the technical part of this paper.

Our task can now be stated much more specifically. We intend to explicate the pre-

systematic concept of information, insofar as it is applied to sentences or propositions

and inasmuch as it is abstracted from the pragmatic conditions of its use. We shall then

define, on the basis of this systematic concept of semantic information, various expli-

cata for the presystematic concept (or concepts) of amount of semantic information and

shall investigate their adequacy and applicability.

§ 2. General explanations

The language-systems relative to which the present theory of information
is developed are described as containing a finite number of individual constants
and primitive one-place predicates. The following fundamental syntactic and
semantic concepts are explained: atomic sentence, molecular sentence, basic

-3-



sentence, molecular predicate, L-true, L-false, factual, L-implies, L-equiva-
lent, L-disjunct, L-exclusive, Q-predicator, Q-property, Q-sentence, state-
description, and range. Some terms and symbols of class-theory (set-theory)
are introduced, mainly complement, sum, and product.

The language-systems relative to which our theory of information will be developed

are very simple ones, so simple indeed that the results to be obtained will be of only

restricted value with regard to language-systems complex enough to serve as possible

languages of science. The restriction, however, was partly imposed by the fact that

inductive logic - on which we shall have to rely heavily - has so far been developed to

a sufficiently elaborate degree only for languages that are not much richer than those

treated here, ([Prob.] §§ 15, 16), and partly for the sake of simplicity of presentation.

It is hoped that in spite of this the results will be immediately applicable to certain

simple situations and will be suggestive with respect to more complex ones.

Our language-systems Yr contain n different individual constants which stand forn
n different individuals (things, events, or positions) and r primitive one-place predi-

cates which designate primitive properties of the individuals. (n and iT are finite

numbers; under certain assumptions, however, it is easy to extend the results obtained

here to systems with a denumerably infinite number of individual constants.) In an

atomic sentence, for example, 'Pa' ('the individual a has the property P'), a primitive

property is asserted to hold for an individual. Other molecular sentences are formed

out of atomic sentences with the help of the following five customary connectives:

not negation

V or disjunction

and conjunction

D if... then (material) implication

if, and only if (written iff) (material) equivalence

All atomic sentences and their negations are called basic sentences. Analogously,

other molecular predicates or predicators are formed out of primitive predicates with

the help of the (typographically) same connectives (for example, 'M. P' standing for

'M and not P'). A sentence consisting of a predicator and an individual constant is called

a full sentence of this predicator. Though our systems do not contain individual vari-

ables, quantifiers, or an identity sign, their expressive power is thereby not essentially

affected. Sentences like 'there are exactly three individuals having the property P' can

still be rendered in these systems, though only in the form of a rather clumsy disjunc-

tion of conjunctions of basic sentences. Hence absolute frequencies (cardinal numbers

of classes or properties) and relative frequencies can be expressed in these systems

(but not measurable quantities like length and mass).

Any sentence is either L-true (logically true, analytic, e. g., 'PaVPa') or L-false

(logically false, self-contradictory, e. g., 'Pa. ~ Pa') or factual (logically indeterminate,

synthetic, e.g., 'PaV[M. N]b'). Logical relations between sentences i and j can be

defined:

-4-



i L-implies j =Df iDj is L-true

i is L-equivalent to j =Df i-j is L-true

i is L-disjunct with j =Df iVj is L-true

i is L-exclusive of j =Df i. j is L-false

We shall use 't' as the name of a particular L-true sentence, a "tautology", say, of

'PaV - Pa'.

A Q-predicator is a conjunction (of predicates) in which every primitive predicate

occurs either unnegated or negated (but not both) and no other predicate occurs at all.

The property designated by a Q-predicator is called a Q-property. A full sentence of a

Q-predicator is a Q-sentence. A state-description is a conjunction of n Q-sentences,

one for each individual. Thus a state-description completely describes a possible state

of the universe of discourse in question.* For any sentence j of the system, the class

of those state-descriptions in which j holds, that is, each of which L-implies j, is called

the range of j. The range of j is null if, and only if, j is L-false; in any other case,

j is L-equivalent to the disjunction of the state-descriptions in its range.

The following theorems will be of use later:

TZ-1.

a. The number of atomic sentences is P = ,rn.

b. The number of Q-predicators is K = 2.
n

c. The number of state-descriptions is z = 2 = 2n = (2) =Kn.

In our metalanguage, that is, the language in which we talk about our language-

systems Yr (in our case a certain unspecified sublanguage of ordinary English enriched

by a few additional symbols), we shall use some customary terms and symbols of the

theory of classes (or sets). The class of all those entities (of a certain type) which do

not belong to a certain class K will be called the complement (-class) of K and denoted

by '-K'. The class of those entities which belong either to a class K or to a class L

(or to both) will be called the (class-theoretical) sum of these classes and will be denoted

by 'KuL'. The class of those entities which belong to each of the classes K and L will

be called the (class-theoretical) product of these classes and denoted by 'KnL'.

Those readers who might not be familiar with abstract logical concepts and terms

will profit from the following illustration, which will be carried through this whole

monograph. Let a census be taken in a small community of only three inhabitants, and

let the census be interested only in whether the inhabitants counted are male or non-male

(female) and young or non-young (old), respectively. Let the three individuals be desig-

nated by 'a', 'b', 'c', and the properties by 'M', '-M' (or 'F'), 'Y', and '-Y' (or 'O'),

respectively. The language-system, in which the outcome of the census can be

exhaustively described is therefore a 3 - system, in our notation. 'Ma' is an atomic

This holds, strictly speaking, only if the primitive properties are logically inde-
pendent. For a discussion of the problems involved here, see R. Carnap: Meaning
Postulates, Phil. Studies 3, 65-73, 1952 and the literature mentioned there.
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sentence, 'Ma. Fb. (McDOc)' another molecular sentence, 'F. Y' a Q-predicator,

'[F. -Y]b' a Q-sentence, '[M. Y]a.[-M. Y]b.[- M.Y]c' a state-description. For later

references, the list of all 64 state-descriptions is given in Table I, in abbreviated form.

Line 10 of this table, for example, is to be interpreted as short for the state-description

'[M. Y]b. [M. Y]c. [F. Y]a'. Later (§4), however, a different interpretation of the same

table will be given.

Table I

M, Y

a, b, c

a, b
a, c
b, c
a, b
a, c
b, c
a, b
a, c
b, c

c

b
a

c

b
a

M, O

a, b, c

c

b
a

a, b
a, c
b, c
a, b
a, c
b, c
a, b
a, c
b, c

c

F, Y

a, b, c

c

b
a

c

b
a

- a,b
- a,c
- b, c
c a,b
b a,c
a b, c
- a,b
- a, c
- b, c

F,O

a, b, c

c
b
a

33.
34.
35.
36.
37.
38.
39.
40.
41.
42.
43.
44.
45.
46.
47.
48.
49.
50.
51.
52.
53.
54.
55.
56.
57.
58.
59.
60.
61.
62.
63.
64.

c
b
a

c

b
a

a, b

M, Y M, O

b
a

a
a
b
b
c

c

a
a
b
b
c

c

a
a
b
b
c

c

a
a
b
b
c

c

F,Y

c

b
a
c
b
c

a
b
a

b
c

a
c

a
b
b
c

a
c

a
b

F, 0

a, c
b, c
a, b
a, c
b, c
a, b
a, c
b, c

c

b
c

a
b
a
c

b
c

a
b
a
c

b
c

a
b
a

The reader will easily verify that the range of the sentence 'Ma. Ya. Fb. Yb',

which might profitably be rewritten in the form '[M.Y]a.[F.Y]b', contains exactly

4 state-descriptions, namely, 9, 25, 42, and 53. The range of 'Fa' contains 32

state-descriptions. The range of 'MaVYaVFbVYbVFcVOc' contains 63 state-descrip-

tions, that is, all state-descriptions except 52. A reader with some training

in propositional logic will see immediately that this last sentence is L-equivalent

to '-(Fa. Oa. Mb. Ob. Mc. Yc)', hence to the negation of state-description 52.
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11.
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13.
14.
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16.
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22.
23.
24.
25.
26.
27.
28.
29.
30.
31.
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§3. The presystematic concept of semantic information

A requirement of adequacy for any proposed explication of semantic infor-
mation - In - is stated: In(i) includes In(j) if and only if i L-implies j. From
this requirement various theorems are derived. In addition to the absolute
information carried by a sentence, the information carried by a sentence j
in excess to that carried by some other sentence i is often of importance. This
concept of relative information is defined by: In(j/i) = In(i. j) - In(i). One of the
theorems is: if t is any L-true sentence, In(j/t) = In(j). Two concepts that
fulfill the requirement but differ in some aspect are investigated but none of
them accepted as an explicatum for In.

To disperse, at least partially, the haziness which envelops the inevitably vague

discussions of the adequacy of the explication to be offered later for the concept of sem-

antic information, let us state a requirement which will serve as a necessary condition

for this adequacy.

Whenever i L-implies j, i asserts all that is asserted by j, and possibly more.

In other words, the information carried by i includes the information carried by j as

a (perhaps improper) part. Using 'In(...)' as an abbreviation for the presystematic

concept 'the information carried by . . . ', we can now state the requirement in the follow-

ing way:

R3-1. In(i) includes In(j) iff i L-implies j.

By this requirement we have committed ourselves to treat information as a set or

class of something. This stands in good agreement with common ways of expression,

as for example, "The information supplied by this statement is more inclusive than (or

is identical with, or overlaps) that supplied by the other statement."

We shall now state some theorems which hold for 'In' and, therefore, also for that

concept which we shall offer, in the following section, as the explicatum for 'In'. These

theorems follow from Ri* and well-known theorems of the theory of classes.

T3-1. In(i) = In(j) iff i is L-equivalent to j.

If a class K of classes contains a class which is included in every member of K,

this class will be called "the minimum class (of K)". If K contains a class which

includes every member of K, this class will be called "the maximum class (of K)". The

minimum class and the maximum class may coincide with the null-class and the

universal-class (of the corresponding type), respectively, but need not do so.

Since an L-true sentence is L-implied by every sentence, and an L-false sentence

L-implies every sentence, we have:

T3-2. In(i) = the minimum class of K (where K is now the class of the In-classes

of sentences) iff i is L-true.

T3-3. In(i) = the maximum class of K iff i is L-false.

It might perhaps, at first, seem strange that a self-contradictory sentence, hence

*For the sake of brevity, theorems, definitions, or requirements, when found in
the same section in which they are first stated, will be referred to only by the corre-
sponding letter 'T', 'D', or 'R' and by their second numbers. Here, for instance, we
have 'R1' instead of the longer 'R3-1'.
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one which no ideal receiver would accept, is regarded as carrying with it the most

inclusive information. It should, however, be emphasized that semantic information is

here not meant as implying truth. A false sentence which happens to say much is thereby

highly informative in our sense. Whether the information it carries is true or false,

scientifically valuable or not, and so forth, does not concern us. A self-contradictory

sentence asserts too much; it is too informative to be true.

T3-4. In(i) properly includes In(j) iff i L-implies j but j does not L-imply i.

T3-5. In(i) properly includes the minimum class and is properly included in the

maximum class iff i is factual.

T3-6. In(i) includes In(iVj) and is included in In(i. j).

When we use the term 'information' in ordinary language, we often refer to the infor-

mation carried by a sentence absolutely, so to speak. At least as often, however, we

intend to refer to the information carried by a sentence in excess of that carried by

some other sentence (or class of sentences). If not otherwise stated or implicitly under-

stood through the context, this other sentence will often be that in which the total

knowledge available to the receiver of the information, before he receives the new

information, is stated. In contradistinction to the concept of absolute information

treated so far, we shall now define, still on the presystematic level, the concept of

relative (or additional or excess) information of j with respect to i as the class-

theoretical difference of In(i. j) and In(i), that is, the class-theoretical product of In(i. j)

with the complement of In(i); in symbols:

D3- 1. In(j/i) =Df In(i. j) - In(i) (=In(i. j)r - In(i)).

In(j/i) is again a class. Its members belong to the same type as the members of

In(i). The following theorems follow immediately from D1, R1, and the previous theo-

rems.

Complete formal proofs will be given only when an indication of the theorems,
definitions, and requirements from which a theorem follows will not enable
most readers to grasp the proof by inspection. In very simple cases (as in
the first 8 theorems), these hints will be omitted.

T3-7. In(j/i) includes the minimum class and is included in the maximum class.

T3-8. If i is L-equivalent to j, then In(k/i) = In(k/j) and In(i/l) = In(j/1).

T3-9. If i L-implies j, then In(j/i) = the minimum class.

Proof: In this case, i. j is L-equivalent to i. The theorem follows from T1 and
D1. 

T3-10. If j is L-true, then In(j/i) = the minimum class.

T3-11. In(j/i) properly includes the minimum class iff i does not L-imply j.

Proof: In this case, In(i. j) properly includes In(i).

T3-12.

a. If i is an L-true sentence, In(j/i) = In(j).

Proof: In this case, j. i is L-equivalent to j and In(i) = the minimum class.

b. In(j/t) = In(j).

-8-
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Thus the relative information of j with respect to t equals the absolute information

of j. Therefore it would be possible to begin with the relative information as primitive

and define the absolute information as the value of the relative information with respect

to t. However, it seems more convenient to begin with the simple concept of the abso-

lute information, because it has only one argument and the relative information can be

defined on the basis of it. This is the procedure we have chosen here.

So far, we have committed ourselves to treat the information carried by a sentence

as a class of something and have stated one requirement which every adequate explica-

tum will have to meet. This, of course, leaves many possibilities open. With respect

to the information carried by an L-true sentence, we were able to state only that it is

a minimum and is contained in the information carried by any sentence. It might

perhaps seem plausible to require, in addition, that the information carried by an L-true

sentence should be empty; hence, the null-class of the appropriate type. But this feeling

is due to the fact that we do not always distinguish carefully between information and

amount of information. What we really have in mind is rather that the amount of seman-

tic information carried by an L-true sentence should be zero. But this can be achieved

by a suitable explicatum even if the information carried by such a sentence is not the

null- class.

On the other hand, there also exists no good reason so far why the information of

an L-true sentence should not be the null-class. The best procedure is, therefore, to

leave this decision open.

There are indeed two plausible explicata for In(i), which differ in exactly this point:

according to the one, the information carried by an L-true sentence will be the null-

class; according to the other, it will not. Let us denote the first concept by 'Infl and

the second by 'Inf2'. Their definitions are as follows:

D3-2. Infl(i) =Df the class of all sentences (inY) which are L-implied by i and not

L-true.

D3-3. Inf2 (i) =Df the class of all sentences (inSY) which are L-implied by i.

We shall not dwell here on an elaborate comparison of the relative merits and faults

of these two definitions: first, because such a comparison has already been carried out

by one of us in a closely related context , second, because we shall adopt neither of

these definitions for future work but a third one to be explained in the following section.

§4. Content-elements and content

A content-element is defined as the negation of a state-description, and the
content of i - Cont(i) - as the class of the content-elements L-implied by i.
Cont is taken as the explicatum for In. Cont(j/i) is defined and various theo-
rems derived.

In §2, we defined the range of a sentence i, R(i), as the class of all state-descriptions

*
See R. Carnap: Introduction to Semantics, Harvard University Press, 1942, §23,

and [Prob.] , p. 406.
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Z in which i holds or which, in other words, L-imply i. The sentence i says that the

state of the universe (treated in Y) is one of the possible states which are described by

the Z in R(i). Alternatively formulated, i says that the universe is not in one of those

states which are described by the Z in VZ - R(i), where VZ is the class of all Z. Just

as i is L-implied by every Z in R(i), so it L-implies the negation of every Z in

V Z - R(i). We call these negations the content-elements E of i and their class the

content of i, in symbols Cont(i). In general, we call the negations of the Z in a given

system the E of this system. (See [Prob] §73.)

In our 3' there are, of course, 64 content-elements, namely, the negations of its

64 state-descriptions. These content-elements appear in Table I, when interpreted in

a different way from that given before. We can now read line 10, for example, as

'[MVY]bV[MVY]cV[FVY]a', a content-element which is L-equivalent to the negation of

state-description 37, as the reader will verify for himself.

The content of the sentence 'Ma. Ya. Fb. Yb' contains 60 content-elements, namely,

the negations of all state-descriptions except 9, 25, 42, and 53.

The following theorem, T4-1, can be deduced from the theorems concerning state-

descriptions and L-concepts in [Prob.] §§18A, 18D, 19, 20, 21B.

T4- 1. For every E i the following holds:

a. Ei isfactual([Prob] T20-5b, T20-6).

b. If Ej is distinct from Ei , then E i and Ej are L-disjunct.

Proof: -E.. ~E. is L-false ([Prob.] T20-8a). Therefore the negation of this con-
junction is L-true. 0 But this negation is L-equivalent to E.VE..

c. The conjunction of all Ei is L-false.

Proof: Let d be the disjunction of the negations of the Ei, hence L-equivalent
to the disjunction of all Z. Therefore d is L-true ([Prob.] T21-8b); hence ~d is
L-false. But Nd is L-equivalent to the conjunction of all E i .

d. If Ei L-implies j, then j is either L-true or L-equivalent to Ei; in other words,

Ei is a weakest factual sentence.

Just as a state-description says the most that can be said in the given universe of

discourse, short of self-contradiction, so a content-element says the least, beyond a

tautology. 'a is male and young, b is female and young, and c is female and old' is a

strongest factual sentence in the census; its negation 'a is female or old (or both), or

b is male or old, or c is male or young' (where 'or' is always to be understood in its

nonexclusive sense) a weakest one.

T4-2.

a. Cont(i) = the null-class of E, A E, iff i is L-true.

b. Cont(i) = the class of all E, VE, iff i is L-false.

c. Cont(i) = neither AE nor VE iff i is factual.

d. Cont(i) includes Cont(j) iff i L-implies j.

e. Cont(i) = Cont(j) iff i is L-equivalent to j.

f. Cont(i) and Cont(j) are exclusive (i. e., have no members in common) iff i and

j are L-disjunct ([Prob.] T20-lc, d).

-10-
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The contents of 'Ma' and of 'FaVMb' are exclusive since 'MaVFaVMb' is L-true.

The reader can verify from Table I, in its second interpretation, that these contents

have indeed no members in common.

T4-3.

a. Cont(i) = -Cont(i) (short for 'VE - Cont(i)', [Prob.] T18-le).

b. Cont(iVj) = Cont(i)nCont(j).

Proof: Let R(... ) be the class of the negations of the members of R(...). Then
Cont(iVj) = R(-'(iVj)) = R(~i.~-j) = (-i)ER(-j) = Cont(i)rCont(j).

c. Cont(i.j) = Cont(i)uCont(j).

Proof: Cont(i. j) = -Cont(-(i. j)) = -Cont(-iV-j) = -(Cont(~i)crCont(-j)) =
-(-Cont(i) r-Cont(j)) = Cont(i)uCont(j).

To verify T3b, c take, for instance, i as 'MaVFbV[MVY]c' and j as 'FaVMb'.

T2d shows that Cont fulfills requirement R3-1. We decide to take Cont as our

explicatum for In. The explication of the information carried by a sentence j, as

the class of the negations of all those Z which are excluded by j, is intuitively plausi-

ble and in accordance with the old philosophical principle, "omnis determinatio est

negatio." Our main reason, however, for giving it preference over the two explicata

mentioned in the previous section, Infl and Inf 2 , lies in the fact that an explication of

amount of information will turn out to be rather simple if based on Cont, in accordance

with the fourth requirement for a good explication stated in [Prob.] p. 7.

Let us notice that according to T2a, Cont shares with Infl the property that their

value for an L-true sentence as argument is the null-class.

We now have to define the relative content of j with respect to i. What has to be

done is, of course, simply to replace 'In' in D3-1 by 'Cont'.

D4-1. Cont(j/i) =Df Cont(i. j) - Cont(i).

Clearly, T3-12a, b hold for Cont if 'In' is replaced in them by 'Cont'. Let us state

explicitly only the correlate of T3-12b, that is,

T4-4. Cont(j/t) = Cont(j).

The remarks following T3-12b hold also mutatis mutandis for absolute and relative

content.

§5. The presystematic concept of amount of information

Requirements of adequacy for the explication of amount of semantic
information - in - are stated, and theorems for in derived. No formal require-
ment of additivity is accepted since the conditions under which additivity is to
hold cannot be given unambiguously, so far. in(j/i), the amount of information
of j relative to i, is defined and theorems derived.

Our next task is to find an explicatum, or perhaps various explicata, for the pre-

systematic concept of amount of information. This will again be preceded by the state-

ment of some requirements, the fulfillment of which will be a necessary condition for

the adequacy of the explicata to be proposed.

We shall use 'in' as the symbol for the presystematic concept of amount of

- 11
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information and distinguish between the absolute amount of information of a sentence i,

in(i), and the relative amount of information of the sentence j with respect to i, in(j/i).

The relative amount is clearly definable on the basis of the absolute amount:

D5-1. in(j/i) =Df in(i. j) - in(i)

(where the '-' sign is this time the symbol for numerical difference and not, as in D3-1

or D4-1, for class-difference). Therefore it is sufficient to state only the requirements

with respect to the absolute amount. It seems plausible to require that the amount of

information of i should be not less than the amount of information of j, if the content

of i includes the content of j; that the amount of information of an L-true sentence

should be zero; and, for finite systems, that the amount of information of a factual

sentence should be greater than zero. (The qualification 'for finite systems' might

perhaps look superfluous. It can, however, be shown that with regard to the explicata

envisaged by us, this requirement would not be fulfilled in an infinite system. ) More

formally:

R5-1. in(i) >, in(j) if (but not only if) Cont(i) includes Cont(j).

R5-2. in(j) = 0 if Cont(j) = AE.

R5-3. in(j) > 0 if Cont(j) properly includes AE.

Instead of R3 we might also have required the following somewhat stronger condi-

tion from which R3 follows immediately:

R5-4. in(i) > in(j) if Cont(i) properly includes Cont(j).

We could also have stated these requirements directly in terms of 'L-implies'

and 'L-true', without recourse to Cont. For the benefit of those who, for some

reason, are not satisfied with our explication of 'information' and who therefore might

try to explicate 'amount of information' on the basis of some other explicatum for 'infor-

mation' or perhaps even without reference to any such explicatum (a perfectly reason-

able and achievable goal), the following version is given:

R5-1*. in(i) in(j) if (but not only if) i L-implies j.

R5-2. in(j) = 0 if j is L-true.

R5-3*. in(j) > 0 if j is not L-true.

The following theorems follow from R1 through R3 and the previously stated proper-

ties of Cont.

T5-1. If Cont(i) = Cont(j), then in(i) = in(j).

T5-2. If i is L-false, then in(i) has the maximum in-value.

Proof: An L-false sentence L-implies every sentence.

T5-3. 0 < in(i) < the maximum in-value iff i is factual.

T5-4. in(iVj) < in(i) in(i. j).

The requirements R1 through R3 are clearly rather weak, and one might look for

further requirements. One that recommends itself immediately would be that of additiv-

ity, that is, to have in(i. j) = in(i) + in(j) if i and j are independent of each other in a

certain sense. However, we shall not make this one of our formal requirements because

the sense of the independence involved is not clear at this moment. We shall find later
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that each of our explicata is indeed additive but not all of them in the same sense,

because the conditions of independence are not the same in the various cases.

The additivity holds, of course, only under certain conditions, whatever those condi-

tions may be in exact terms. It is clear that, in general, in(i. j) in(i) + in(j). It is

further clear that there will be cases where in(i. j) < in(i) + in(j). This will be the case,

for example, whenever i L-implies j and j is not L-true, because under these circum-

stances i is L-equivalent to i. j, so that in(i. j) = in(i), whereas in(j) > 0, and hence

in(i) < in(i) + in(j). So far, we can state only a lower limit for in(i. j), viz:

T5-5. in(i. j) >,max[in(i), in(j)].

Does there exist a general upper limit for in(i. j) that is not trivial? No theorem to

this effect can be deduced from the requirements of this section. They do not exclude,

for instance, the possibility that sometimes in(i. j) > in(i) + in(j). This possibility might

perhaps look so implausible that one would like to exclude it by the explicit additional

requirement in(i. j) ,< in(i) + in(j). However, it seems better not to require this. We

shall see later that the second of our explicata (inf) violates this condition, and we shall

then make this violation plausible. If someone insists that the requirement just stated

has to be fulfilled, then he can accept only the first of our explicata (cont). For this

concept the requirement is indeed fulfilled (T6-4m).

The following theorems correspond to T3-7 through T3-12.

T5-7. The maximum in-value > in(j/i) ~ 0.

T5-8. If i is L-equivalent to j, then in(k/i) = in(k/j) and in(i/i) = in(j/i).

T5-9. If i L-implies j, then in(j/i) = 0.

T5-10. If j is L-true, then in(j/i) = 0.

T5-11. in(j/i) > 0 iff i does not L-imply j.

T5-12.

a. If i is an L-true sentence, in(j/i) = in(j).

b. in(j/t) = in(j).

§ 6. The first explicatum: Content-measure (cont)

One way of fulfilling the requirements stated in the previous section is out-
lined. It consists, essentially, in defining a measure-function over the content-
elements, fulfilling certain-conditions, and then taking as the measure of the
content of a sentence the sum of the measures ascribed to the elements of its
content. Since measure-functions over state-descriptions - m-functions - have
been treated by one of the authors at length before, a shorter way of introducing
content-measures - cont - is chosen, simply by equating cont(i) with mp(-i),
where 'mp' stands for proper m-function, i. e., m-function fulfilling certain
conditions. Many theorems for cont(i) are derived, among them theorems for
the content-measures of basic sentences, for disjunctions and conjunctions of
such, for Q-sentences, and for sentences in disjunctive and conjunctive normal
form. cont(j/i) is defined, and aniong others, the important theorem
cont(j/i) = cont(iDj) is derived.

We could have defined an adequate explicatum for the amount of information carried

by a sentence with the help of measure-functions ranging over the contents of the
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sentences of Y° and fulfilling the conditions laid down in the previous section. Since

there exist, however, close relations between contents and ranges (§4), we shall make

use of the fact that the definitions of various measure-functions over ranges have already

been treated at length in [Prob.] and define the functions in which we are now interested

simply on the basis of those measure-functions.

It seems profitable to start with a kind of measure-function ranging over state-

descriptions and other sentences which has not been discussed explicitly in [Prob.] or

[Cont.], namely, with proper m-functions, to be denoted by 'mp'.

We define:

D6-1. m is a proper m-function (inY) =Df m fulfills the following nine conditions:

a. For every Z i , m(Zi) > 0.

b. The sum of the m-values of all Z = 1.

c. For any L-false sentence j, m(j) = 0.

d. For any non-L-false sentence j, m(j) = the sum of the m-values for the Z in

R(j).

e. If Zj is formed from Z i by replacing the individual constants of Z i by those cor-

related to them by any permutation of the individual constants, then m(Zj) = m(Zi).

(Less strictly but more suggestively: all individuals are treated on a par.)

f. If Zj is formed from Z i by replacing the primitive predicates of Z i by those cor-

related to them by any permutation of the primitive predicates, then m(Zj) = m(Zi) (i. e.,

all primitive properties are treated on a par).

g. If Zj is formed from Zi by replacing any of the primitive predicates of Z i by

their negations (omitting double negation signs), then m(Zj) = m(Zi) (i. e., each primi-

tive property is treated on a par with its complement).

The last three conditions could have been stated in a somewhat weaker form,
but no attempt was made to reduce redundancy by sacrificing psychological
clarity.

h. If i and j have no primitive predicates in common, then m(i. j) = m(i) x m(j).

i. m(i) is not influenced by the number of individuals of Y not mentioned in i. (This

condition will be used only in the derivation of formula (6) in §10.)

An m-function fulfilling conditions (a) through (d) is called regular ([Prob.] p. 295).

If it fulfills, in addition, condition (e), it is called symmetrical ([Prob.] p. 485). All

theorems that hold for regular m-functions hold a fortiori for any proper m-function.

mp is believed to be an adequate explicatum for one of the senses in which 'proba-

bility' is used, namely that which might be termed 'absolute logical probability', that

is, logical probability on no evidence (or tautological evidence or irrelevant evidence).

Similarly, cp, to be defined in D7-3, is believed to be an adequate explicatum of

relative logical probability.

Any two sentences (not only state-descriptions) that stand in the relation stated in

Dle are called isomorphic.

The following theorem holds for all regular m-functions ([Prob.] §§55A, 57A),

-14-
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hence also for all proper m-functions:

T6-1.

a. 0< m(i)< 1.

b. m(i) = 1 iff i is L-true.

c. m(i) = iff i is L-false.

d. 0 < m(i) < 1 iff i is factual.

e. If i L-implies j, then m(i).< m(j).

f. If i is L-equivalent to j, then m(i) = m(j).

g. m(i. j) m(i) < m(iVj).

h. m(iVj) = m(i) + m(j) - m(i. j).

i. m(iVj) = m(i) + m(j) iff i. j is L-false (i. e., iff i and j are L-exclusive).

j. m(i. j) = m(i) + m(j) - m(iVj).

k. m(i. j) = m(i) + m(j) - 1 iff iVj is L-true (i. e., iff i and j are L-disjunct).

1. m(~i) = 1 - m(i).

m. m(i.j).< m(i) + m(j).

The measure-function in which we are interested and which we shall call from now

on content-measure and denote by 'cont' is defined by

D6-2. cont(i) =Df mp(~i).
From this definition it immediately follows that the cont-value of any E equals the

mp-value of the corresponding Z.

T6-2. For every Z i, if E i isZ i , cont(Ei) = mp(Zi).

D2 and T1 entail

T6-3.

a. cont(i) = 1 - mp(i).

b. mp(i) = 1 - cont(i).

c. cont(_i) = mp(i).

The following theorem follows from T1 and T3b:

T6-4.

a. 1 cont(i) > 0.

b. cont(i) = 0 iff i is L-true.

c. cont(i) = 1 iff i is L-false.

d. 1 > cont(i)> 0 iff i is factual.

e. If i L-implies j, then cont(i) cont(j).

f. If i is L-equivalent to j, then cont(i) = cont(j).

g. cont(i. j) cont(i) cont(iVj).

h. cont(iVj) = cont(i) + cont(j) - cont(i. j).

i. cont(iVj) = cont(i) + cont(j) - 1 iff i and j are L-exclusive.

j. cont(i. j) = cont(i) + cont(j) - cont(iVj).

k. cont(i. j) = cont(i) + cont(j) iff i and j are L-disjunct.

1. cont(-i) = 1 - cont(i).

m. cont(i. j)< cont(i) + cont(j).
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T4e, b, and c-d show that cont fulfills the requirements of adequacy R5-1, R5-2*,

and R5-3*, respectively.

The condition under which additivity is stated in T4k to hold for cont appears quite

plausible at first glance. If i and j are L-disjunct, then the contents of i and j are

exclusive (T4-2f). Nothing in that which is asserted by i is simultaneously asserted by

j; in other words, there is no factual sentence which is L-implied both by i and by j.

However, we shall later (§ 7) make certain considerations which will raise some doubts

with respect to this special condition of additivity.

The relative content-measure of j with respect to i is meant as the increase of the

value of cont by adding j to i. Hence, in conformance with D5-1:

D6-3. cont(j/i) =Df cont(i. j) - cont(i).

T6-5.

a. cont(j/i) = cont(j) - cont(iVj) (D3, T4j).

b. = cont(j) iff i and j are L-disjunct ((a), T4b).

T6-6. cont(j/i) = cont(iDj).

Proof: j is L-equivalent to (iVj).(NiVj). The components of this con-
junction are L-disjunct. Therefore cont(j) = cont(iVj) + cont(~iVj) (T4k).
Hence, with T5a, cont(j/i) = cont(~iVj). But N iVj is L-equivalent to ij.

The last theorem is especially interesting. It shows that the relative content-

measure of j with respect to i is the same as the absolute content-measure of the

(material) implication ij. If an "ideal" receiver possesses the knowledge i and then

acquires the knowledge j, his possession of information is only increased in the same

amount as if iDj were added instead of j. This is, indeed, highly plausible since j is

a logical consequence of the sentences i and ij, and an "ideal" receiver, by definition,

is able to draw such consequences instantaneously.

From T6 we also see that if i I-implies j, cont(j/i) = 0. We know this already

since it holds for all our explicata for the relative amount of information in virtue

of T5-9.

The following inequality, an immediate consequence of T5a, is of interest:

T6-7. cont(j/i) < cont(j).

We can express cont(j/i) directly in terms of mp in various ways:

T6-8.

a. cont(j/i) = mp(i) - mp(i. j) (D3, T3a).

b. = mp(i.~j) (T6, ij is L-equivalent to~(i.-j), T3a).

c. = mp(iVj) - mp(j) (D3, T5a).

Two sentences, i and j, that fulfill the condition, mp(i. j) = mp(i) x mp(j), are

called inductively independent (or initially irrelevant, in the terminology of [Prob.] -

p. 356) with respect to that mp. We get

T6-9. If i and j have no primitive predicate in common, then

mp(iVj) = mp(i) + mp(j) - mp(i) x mp(j) (Tlh, Dlh).
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T6-10.

a. For any basic sentence B, mp(B) = 1/2.

Proof: BV-B is L-true. Therefore, by Tlb, mp(BVB) = 1. Hence the asser-
tion with Dig.

b. For any conjunction, C n , of n basic sentences with n distinct primitive predi-

cates, mp(Cn) = (1 / 2 )n (Dlh, (a)).

c. If i and i' are isomorphic, then mp(i) = mp(i') (Die).

We now get

T6-11. If i and j have no primitive predicate in common, then

a. cont(-(i. j)) = cont(-i) x cont(-j) (Dlh, T3c).

b. cont(iVj) = cont(i) x cont(j).

Proof: iVj is L-equivalent to (i. ~j). i and -j have no primitive predicate
in common since i and j do not. Hence the assertion from (a).

c. cont(i. j) = cont(i) + cont(j) - cont(i) X cont(j) (T4j, (b)).

In our 3, cont('MaVYb') = cont('MaVYa') = 1/4 and cont('Ma. Yb') = 3/4.

T6-12. Let D be a disjunction of n (>,2) sentences with no primitive predicate
n

occurring in more than one of these sentences. Then cont(Dn) = the product of the cont-

values of the n components (Tllb).

T6-13.

a. For any basic sentence B, cont(B) = 1/2 (T3a, T10a).

b. For any disjunction, Dn , of n basic sentences with n distinct primitive predi-

cates, cont(Dn) = (1 / 2 )n (T3a, T12, (a)).

c. For any conjunction, C n , of n basic sentences with n distinct primitive predi-

cates, cont(Cn) = 1 (1/2) n (T3a, TlOb, (a)).

d. For any Q-sentence i, cont(i) = 1 - (1/2) *' ((c)) = 1 - 1/K (TZ-lb) = (K-1)/K.

cont('[M.~- Y]a') = 3/4 (since 1r = 2, K = 4 (T2-lb)).

e. Let i have the form C1VC2V .. V C m, where each C is a conjunction of n basic

sentences with n distinct primitive predicates, the same n atomic sentences occurring

in all conjunctions. (Under these circumstances, i has disjunctive normal form. See

[Prob.] p. 94 or any textbook on Symbolic Logic.) Then

cont(i) = 1 m
2 n

Proof: Any two distinct conjunctions are L-exclusive. Therefore, from T4i,
cont(i) = cont(Cl) + cont(C2 ) + ... + cont(Cm ) - (m-I). Hence the conclusion with (c).

3 1
cont('(Ma. Yb)V(-Ma. Yb)V(Ma.~Yb)') = 1 - = 4'

Notice that this disjunction is L-equivalent to 'MaVYb', that is, a disjunction ful-
filling (b).

f. Let i have the form D 1. D 2 . DM where each D is a disjunction of n basic

sentences with n distinct primitive predicates, the same n atomic sentences occurring
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in all disjunctions. (Under these circumstances, i has conjunctive normal form. See

[Prob.] p. 95.) Then

cont(i) = .
2 n

Proof: Any two distinct disjunctions are L-disjunct. Therefore, from T4k,
cont(i) = cont(D1) + cont(D2 ) + ... + cont(Dm). Hence the assertion with (b).

3 3
cont('(MaVYb). ( MaVYb). (MaV -Yb)') = = 4-.

Notice that this conjunction is L-equivalent to 'Ma. Yb', that is, a conjunction ful-
filling (c).

T6-14. If i and i' are isomorphic and j and j' are isomorphic on the basis of the

same permutation of the individual constants, then cont(j'/i') = cont(j/i) (T8b, T10a).

T6-15.

a. For any two basic sentences, Bi and Bj, with different primitive predicates,

cont(Bj/Bi) = 1/4 (T13c, T10a) = 1/2 cont(Bi)(T13a).

1
cont('Ya'/'Ma') = 4.

b. Let B 1, B 2, ... , Bn be basic sentences with n distinct primitive predicates.

Let Cm be the conjunction of the first m of them. Then, for every m (m=2, ... , n-l),

cont( Bm+ /C m ) = 1

Proof: C .Bn+l Cm+1 Hence

cont(Bm+l/Cm) = cont(Cm+l) - cont(Cm) = 1 m+l )+1mmm = - 2m+l y - -) (Tl3c) =

T6-16. Let i and j be molecular sentences with no primitive predicate in common.

Then cont(j/i) = cont(j) - cont(i) x cont(j) (Tllc) = cont(j) x (1 - cont(i)) = cont(j) x

cont(i) (T41) = cont(j) x mp(i) (T3c).

§ 7. The second explicatum: Measure of information (inf)

One of the theorems derived in the previous section states that if i and j are
basic sentences with different primitive predicates, then cont(j/i) = 1/2 cont(i).
Since basic sentences with different primitive predicates are inductively inde-
pendent, this result makes cont look inadequate as an explicatum for in. It turns
out that no explicatum fulfilling all our intuitive requirements for an amount-of-
information function is possible, indicating a certain inconsistency between these
requirements. cont fulfills a partial set of these requirements, and a different,
though overlapping, partial set is fulfilled by another function, called measure
of information, denoted by 'inf', and defined as

1
inf(i) = Log l-cont(i)'
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It is shown that

1
inf(h, e) = Log cp(h, e)

where cp(h, e) is the degree of confirmation of the hypothesis h on the evidence e,
defined as

mp(e. h)

mp(e)

The last-but-one theorem of the preceding section (T6-15) may not appear entirely

plausible. According to this theorem, if an "ideal" receiver with no previous knowledge

receives a sequence of n basic sentences with n different primitive predicates, the

amount of information he gets from the first sentence is 1/2, from the second only 1/4,

from the third 1/8, from each only half as much as from the preceding one. And this

will be the case despite the fact that these basic sentences are independent from each

other not only deductively but also inductively. One has the feeling that under such con-

ditions the amount of information carried by each sentence should not depend upon its

being preceded by another of its kind.

An inconsistency in our intuitions, at which we already hinted above (§6), becomes

now even more prominent. The feeling to which we referred in the preceding paragraph

may be expressed also as a requirement that additivity should hold for the amount of

information carried by the conjunction of two sentences if these sentences are induc-

tively independent. We saw, however, that additivity holds for cont only if these

sentences are L-disjunct and have no content in common. Now, it is clear that two basic

sentences, B 1 and B2 , with different primitive predicates, have content in common: the

factual sentence B 1VB 2 , for instance, is L-implied by each. Nevertheless, this condi-

tion of additivity looked plausible in its context.

It seems best to solve this conflict of intuitions by assuming that there is not one

explicandum "amount of semantic information" but at least two, for one of which cont is

indeed a suitable explicatum, whereas the explicatum for the other still has to be found.

Let us now state the additional requirement in a formal way:

R7-1. If i and j are inductively independent, then in(i.j) = in(i) + in(j).

From Ri and D5-1 follows immediately:

T7-1. If B. and B. are two basic sentences with distinct primitive predicates, then
1 j

in(Bj/Bi) = in(Bj).

Let us also decide, for the sake of normalization, to assign to each basic sentence

an in-value of 1.

R7-2. For any basic sentence B, in(B) = 1.

We have now

T7-2. For a conjunction of n basic sentences, C n, with n distinct primitive predi-

cates, in(Cn) = n (R1, R2).

T6-13c stated that cont(Cn) = 1 - (1 / 2 )n, hence
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2n 1
1 - cont(Cn)

hence

1
n = Log l-cont(Cn)

(where 'Log' is short for 'logarithm on the base 2'). This, combined with T2 yields

T7-3. For a conjunction of n basic sentences, C n , with n distinct primitive predi-

cates,

in(Cn) = Log l-cont(Cn)

T3 gives us the lead for defining the second explicatum for "amount of information".

This new function will be called measure of information and denoted by 'inf'. Extending

the relationship stated in T3 to hold for all sentences, we define

D7-1. For any sentence i,

1
inf(i) = Log l-cont(i)'

D1 may be usefully transformed into

T7-4.
1

a. inf(i) = -Log(1-cont(i)) = -Log cont(-i) = Log cont( i) 

b. inf(~i) = -Log cont(i).

c. cont(~i) = 2 -inf(i)

d. cont(i) = 1 - 2
i nf(i)

T7-5.

a. inf(i) = Log m L(i) (D1, T6-3)

b. = -Log mp(i).

The form of T5a is analogous to the customary definition of amount of information

in communication theory. In the place of the concept of probability in the statistical

sense (relative frequency) used in that definition, we have here the logical (inductive)

probability mp. For a detailed discussion of the relation between these two concepts,

see [Prob.] §§3, 10.

T7-6. mp(i) = 2
- i n f(i)

A host of other theorems for inf can easily be derived. We shall mention only a few

of them.

T7-7. inf(i) = Log l- (i) = -Log(l-mp(i)).

T7-8.

a. 0 < inf(i) < oo (T6-4a).
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b. inf(i) = 0 iff i is L-true (T6-4b).

c. inf(i) = oo iff i is L-false (T6-4c).

d. inf(i) is positive finite iff i is factual (T6-4d).

e. If i L-implies j, then inf(i) > inf(j) (T6-4e).

f. If i is L-equivalent to j, then inf(i) = inf(j) (T6-4f).

g. inf(i. j) > inf(i) >: inf(iVj) (T6-4g).

h. inf(i. j) = -Log cont(iV-j) (T4a)

= -Log(cont(~i) + cont(~j) - cont(-i.~j)) (T6-4h)

= -Log 2 --inf(i) + 2 -inf(j) _ 2 -inf(iVj) (T4c).

i. If i and j are L-disjunct, then inf(i. j) = -Log(2 inf(i) + 2 -inf(j) _ 1) ((h), (b)).

j. inf(iVj) = -Log cont(i. j) (T4a) = -Log(l - in f ( i- j )) (T4d).

k. If i and j are L-exclusive (hence i and j L-disjunct), then

inf(iVj) = -Log (cont(~i) + cont(~j)) ((j), T4k) = -Log(2- i n f (i) + 2 -inf(j)) (T4d).

1. inf(~i) = inf(i) - Log(2inf(i) -1) (T4b, d).

Whereas the correspondence between T8a through g and T6-4a through g is

straightforward, T8h through I are much more complicated and much less convenient

for computation than their corresponding theorems T6-4h through .

As against the complicated formula T8i, we have, however,

T7-9. Additivity. inf(i. j) = inf(i) + inf(j) iff i and j are inductively independent.

Proof: inf(i. j) = -Log mp(i. j) (T5b)

= -Log(mp(i) x mp(j)) (by hypothesis)

= -Log(2 in f(i) X 2 -inf(j)) (T6)

= Log 2 inf(i) + Log 2inf(j) = inf(i) + inf(j).

To T6-13 corresponds

T7-10.

a. For any basic sentence B, inf(B) = 1.

b. For any disjunction, D n , of n basic sentences with n distinct primitive predi-

cates,
2n

inf(D = Log = n - Log(2n - 1).inf(Dn) = Log1-(1/2) n

c. For any conjunction, C n , of n basic sentences with n distinct primitive predi-

cates, inf(Cn) = n.

d. For any Q-sentence i, inf(i) = i.

e. Let i have disjunctive normal form: C1 V C 2V...VCm . Let every C be a con-

junction of n basic sentences with n distinct primitive predicates, the same n atomic

sentences occurring in all conjunctions. Then inf(i) = n - Log m.

inf('(Ma. Yb)V(Ma. Yb)V(Ma.-Yb)') = 2 - Log 3 (=0.412).

f. Let i have conjunctive normal form: D 1 . D2 . .. . Let every D be am
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disjunction of n basic sentences with n distinct primitive predicates, the same n

atomic sentences occurring in all disjunctions. Then inf(i) = n - Log(2n - m).

inf('(MaVYb).(~MaVYb).(MaVYb)') = 2 - Log(22 - 3) = 2.

T8e, b, and d show that inf fulfills R5-l through R5-3 . T9 corresponds to R1,

and TlOa to R2. Thereby it is shown that inf fulfills all our requirements for the second

explicatum for amount of information.

The following table gives approximative inf-values for D 2 (TlOb) through D 10:

Table II

n inf(Dn )

2 0.412

3 0.192

4 0.093

5 O. 046

6 0. 023

7 0.0113

8 0. 0056

9 0.0028

10 0.0014

We define now the relative measure of information in the already familiar way:

D7-2. inf(j/i) =Df inf(i. j) - inf(i).

T7-11.

a. For any two basic sentences, B i and Bj, with distinct primitive predicates,

inf(Bj/Bi) = 1 (D2, TlOc, a) = inf(Bi) (TlOa).

inf('Ma'/'Yb') = inf('Ma'/'Ya') = 1.

b. Let B 1, B 2 , ... , Bn be basic sentences with n distinct primitive predicates.

Let C m be the conjunction of the first m of them. Then, for every m (m=2, .. , n-l),

inf(Bm+/Cm) = 1 (D2, TlOc, (a)).

T7-12.

a. inf(j/i) = inf(j) iff i and j are inductively independent (D2, T9).

b. If i and j have no primitive predicates in common, inf(j/i) = inf(j) (T6-9a, (a)).

In [Prob.] § 55, the concept of degree of confirmation of an hypothesis h on the evi-

dence e, on the basis of a given range measure m, is defined as follows:

c(h, e) = m(eh)
m (e) -

e L-implies h if, and only if, the range of e is wholly contained in the range of h. If,

however, only a part of R(e) is contained in R(h), then none of the customary relations

of deductive logic holds between e and h. If, say, that part of R(e) which is contained

in R(h) is three fourths of R(e), as measured by m, if, in other words,
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m(e. h) 3
m(e) 4'

then we shall say that the hypothesis h is confirmed by the evidence e to the degree

3/4 and write this relation, which is fundamental for inductive logic, as 'c(h, e) = 3/4'.

c is meant as an explicatum for (relative) inductive probability.

Figure 1 might be of some help for a visualization of the difference between

L-implication and degree of confirmation as dependent upon the relations between the

ranges of the hypothesis and the evidence.

For an mp-function, we have more specifically

mp(e h)
D7-3. cp(h,e) m= (e)

T7-13. If inf and cp are based on the same mp, then

inf(h/e) = Log cp(h e) = -Log cp(h, e).

Proof: inf(h/e) = inf(e.h) - inf(e) = Log mp(e) - Log mp(e. h)

mp(e) 1
= Log mp(e. h) = Log cp(h, e)

This theorem shows the strong connection that exists between the relative measure

of information of a new message h with respect to the knowledge e and the degree of

confirmation of an hypothesis h on the evidence e, in other words, the relative inductive

probability of an hypothesis h on the evidence e. The characterization of h as message

and e as knowledge, on the one hand, or as hypothesis and evidence, on the other, has

didactical value only; h and e are, strictly speaking, simply any sentences of the given

system. T13 shows that inf(h/e) is the greater the more improbable h is on the evi-

dence e. That the relative amount of information carried by a sentence should increase

Fig. 1
Deductive Logic Inductive Logic

'e L-implies h' means that 'c(h, e) = 3/4' means that three-fourths
the range of e is entirely con- of the range of e is contained in that of h.
tained in that of h.
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with its degree of improbability seems plausible. This holds also for cont, if e remains

fixed, as shown by the following theorem.

T7-14. If cont and cp are based on the same mp, then

cont(h/e) = mp(e) x (1 - cp(h, e)) = mp(e) x cp(,h, e).

Proof: cont(h/e) = mp(e) - mp(e.h) (T6-8a)

mp(e) - mp(e. h)
= mp(e)x mp(e)

= mp(e) x (1 - cp(h, e)) (D3).

Notice, however, that for variable e it need not be the case that the smaller cp(h, e) is,

the larger cont(h/e) will be, because of the factor mp(e). (See end of §10, below.)

§8. Comparison between cont and inf

The cont and inf measures are compared in greater detail. Both exhibit
properties which look intuitively plausible and others which look intuitively
implausible. The formally most striking comparison is given by the following
pair of theorems:

cont(h/e) = mp(e) - mp(e.h),

inf(h/e) = Log mp(e) - Log mp(e. h).

We are now ready for a comparison between the two explicata for amount of infor-

mation. Let us begin with stating some corresponding theorems one beside the other

for better confrontation.

T6-4k. cont(i. j) = cont(i) + cont(j) iff i

and j are L-disjunct.

T6-4m. cont(i. j) cont(i) + cont(j).

T6-13a. For any basic sentence B,

cont(B) = 1/2.

T6-13c. For any conjunction, Cn , of n

basic sentences with n distinct primi-

tive predicates, cont(Cn) = 1 - (1/2)n .

T6-15a. For any two basic sentences,

Bi and Bj, with distinct primitive predi-

cates, cont(Bj/Bi) = 1/4 = 1/2 cont(Bi).

T6-15b. LetB B1 , ... , Bn be basic

sentences with n distinct primitive

predicates. Let Cm be the conjunction

of the first m of them. Then, for every

m (m = 2, ... , n - 1),

cont(Bm+l/Cm) m+l 

T6-6h. cont(j/i) = cont(j) iff i and j

are L-disjunct.

T6-7. cont(j/i) cont(j).

T6-41. cont(~i) = 1 - cont(i).

T7-9. inf(i.j) = inf(i) + inf(j) iff i and j

are inductively independent.

T7-10a. For any basic sentence B,

inf(B) = 1.

T7-10c. For any conjunction, Cn, of n

basic sentences with n distinct primitive

predicates, inf(Cn) = n.

T7-11a. For any two basic sentences,

Bi and Bj, with distinct primitive predi-

cates, inf(Bj/Bi) = 1 = inf(Bi).

T7-llb. Let B1, B2 ... , Bn be basic

sentences with n distinct primitive predi-

cates. Let Cm be the conjunction of the

first m of them. Then, for every m

(m = 2 ., n - 1), inf(Bm+ l/Cm) = 1.

T7-12a. inf(j/i) = inf(j) iff i and j are

inductively independent.

T7-81. inf(.i) = inf(i) - Log(2 i n f (i) - 1).

-24-

.1



We see that the conditions of additivity for cont and inf are entirely different. This

divergence is not surprising at all. On the contrary, dissatisfaction with the condition

of additivity stated for cont in T6-4k was one of the reasons for our search for another

explicatum of amount of information. It is of some psychological interest to notice that

common sense would probably prefer T7-9 to T6-4k, whereas inf has no property com-

parable to that exhibited by cont in T6-4m, a theorem that looks highly intuitive.

The counter-intuitiveness of the lack of a counterpart to T6-4m might be reduced by

the following example. Consider a system with 6 primitive predicates, P 1 to P 6
6

hence with 2 = 64 Q-properties. All proper m-functions have equal values for the

64 Q-sentences with the same individual constant, hence the value 1/64 for each.

Let i be 'P a'. P1 is the disjunction of the first 32 Q's. Hence mp(i) = 1/2. Therefore

inf(i) = -Log (1/2) = 1. Let M be a disjunction of 32 Q's, that is, of Q1 and the last 31

Q's. Let j be 'Ma'. Then m(j) = 1/2 and inf(j) = 1. i. j is L-equivalent to 'Qla'; hence,

it is a very strong sentence. m(i. j) = 1/64. inf(i. j) = -Log (1/64) = 6. This is three

times as much as the sum of the inf-values of the two components. This result becomes

plausible if we realize that i says merely that a has one of certain 32 Q's, but that by

the addition of j, which by itself also says no more than that a has one of 32 Q's, our

information about the situation is at once made completely specific; that is, it is speci-

fied as saying that a has one particular Q.

Continuing the comparison, we may dismiss the difference between T6-13a and

T7-10a as inessential, the number 1 in T7-10a being only a matter of normaliza-

tion. However, the differences between T6-13c and T7-10c, T6-15a and T7-11a, and

T6-15b and T7-1llb are decisive. Whereas the cont-value of a basic sentence relative

to a conjunction of basic sentences with different primitive predicates is always less

than its absolute cont-value and decreases, moreover, with the number of co -Its

in the conjunction, the inf-value of a basic sentence relative to such a con-j,ction is

equal to its absolute inf-value and is therefore also independent of the number of com-

ponents in this conjunction.

The relation between cont and inf --- d in the perhaps simplest and most

striking fashion by the following pair oi - las which appear in the proofs of T7-13

and T7-14:

inf(h/e) = Log mp(e) - Log mp(e. h) (1)

cont(h/e) = mp(e) - mp(e. h). (2)

For the tautological evidence t, we get

inf(h/t) = inf(h) = -Log mp(h) (3)

and

cont(h/t) = cont(h) = 1 - mp(h), (4)

formulas that are nothing else than variants of T7-5b and T6-3a but look now much more
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akin, especially if we write (3) as

inf(h/t) = inf(h) = Log 1 - Log mp(h). (3')

Let us illustrate the relation between cont and inf also in the following numerical

example.

Let B 1, B, . . . be basic sentences with distinct primitive predicates. Let C 1
-~~~C 

IeB.B .. n

be B 1 , C 2 be B 1

following values

. B 2 , ...

for these

Cn be B 1 B 2 . o - Bn

C, according to T6-13c

.... Then cont and inf have the

and T7-10c:

Table III

Ci

C1

C 2

C 3

C4

C
n

cont(C i )

1/2

3/4

7/8

15/16

(n- )/n

inf(C i)

1

2

3

4

n

§9. D-functions and I-functions

Not all mp-functions can be regarded as equally adequate explicata of ini-
tial inductive probability. It seems that only those which fulfill the additional
requirement of instantial relevance - mi-functions - are adequate for ordinary
scientific purposes, whereas that mp-function which exhibits instantial irrele-
vance - mD - has properties which make it suitable for situations where
inductive reasoning is of minor importance. Computations with mD and the
in-functions based upon it, are relatively easy due to the fact that mD assigns
equal values to all state-descriptions. One consequence is, for instance, that
a sufficient condition for mD(i. j) = mD(i) X mD(j) is already that i and j should
have no atomic sentences in common, whereas only the much stronger condi-
tion that i and j should have no primitive predicates in common is sufficient
for the corresponding theorem concerning mI .

Not every mp can serve as a basis for an inductive method that is in agreement

with customary scientific procedures (cf. [Cont.] §2). There is at least one additional

requirement for the adequacy of an m-function to serve as an explicatum for (absolute,

initial) inductive probability. This is

R9-1. Requirement of instantial relevance. Let 'M' be a factual, molecular predi-

cate. Let e be any non-L-false molecular sentence. Let i and h be full sentences of

'M' with two distinct individual constants which do not occur in e. Then
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m(e. i. h m(e. h)
me.i me) '

(This can be formulated more simply in terms of 'c' as

c(h, e. i) > c(h, e). )

The requirement says, in effect, that one instance of a property is positively rele-

vant to (the prediction of) another instance of the same property. This seems a basic

feature of all inductive reasoning concerning the prediction of a future event.

We therefore define inductive m-function (in the narrower sense), to be denoted by

'm ' as

D9-1. m is an inductive m-function =Df m is an mp and fulfills R1.

Among the proper m-functions which do not fulfill R1, there is one which fulfills,

so to speak, a requirement of instantial irrelevance. For this m-function, to be denoted

by 'mD' ('D' for 'deductive' since this function plays a special role in deductive logic),

observed instances of a molecular property have no influence on the prediction of future

instances of this property. Experience cannot teach us anything about the future if this

function is applied. It has, nevertheless, great importance: its definition is of extreme

simplicity, calculations on its basis are relatively easy, and results obtained by its use

may have at least approximative value in cases where experience is estimated to be of

little or no influence.

The definition of mD incorporates a principle which looks very plausible to untrained

common sense, viz. the principle of assigning equal m-values to all state-descriptions.

It is of some psychological interest that this rather obvious procedure should lead to an

inductive method that is unacceptable as a final method. (The function designated here

by 'mD' has been denoted by 'mi' in [Prob.] §100A and by 'mot in [Cont.] §13.)

We define

D9-2.

a. For every Z i, mD(Zi) =Df 1/z.

b. For every L-false sentence j, mD(j) =Df 0.

c. For every non-L-false sentence j, mD(j) =Df the sum of the mD-values for the

Z in R(j); this is r(j)/z, where r(j) is the number of the state-descriptions in R(j).

It can easily be verified that mD fulfills conditions D6-la through D6-lg and D6-li.

That 'mD also fulfills D6-lh and is therefore an mp-function, follows from the much

stronger theorem T9-1 below.

T9-1. If i and j have no atomic sentences in common, then

mD(i. j) = mD(i) x mD(j).

Proof: Let K1 be the class of those atomic sentences which occur in i, K2 the
class of those atomic sentences which occur in j, K3 the class of all other atomic
sentences. Let C be the class of those conjunctions which contain, for each atomic
sentence in K 1 , either it or its negation, but not both nor any other component. Let
C 2 and C 3 be determined analogously with respect to K and K3 . Let c1 be the
number of the conjunctions in C 1. Let c 2 and c 3 be determined analogously with
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respect to C2 and C 3 . (However, if C3 is empty, let c3 = 1.) Each Z is a conjunc-
tion of three conjunctions (disregarding the order) belonging respectively to C 1, C 2,
and C 3 . Therefore

z = l X c X c 3 ' (1)

Let cl(i) be the number of those conjunctions in C1 which L-imply i, and let c(j)
be the number of those conjunctions in C2 which L-imply j. (Notice that i cannot
be L-implied by any conjunction of C 2 or C 3 , nor can j be L-implied by any con-
junction of C 1 or C 3. ) Therefore

r(i) = cl(j) X c2 X c3 (2)

and

r(j) = c 2 (j) x c1 Xc 3 . (3)

But for the same reason we have also

r(i. j) = cl(i) X c 2 (j) x c3. (4)

From (2) and (3) we get

r(i) x r(j) = c1 (i) x c2 x c3 x c2 (j) x c 1 c3

= r(i. j) x c x c2 x c3 (from (4)) (5)

= r(i.j) z (from (1)).

Dividing by z2 we get finally

r(i) x r(j) = r(i. j) (6)

from which the assertion follows, by D2c.

Since mD is a mp-function, all theorems stated in §6 for mp hold also for mD. But

some of them, having conditional form, can be strengthened by weakening the ante-

cedent. We get, for instance, in analogy to T6-9,

T9-2. If i and j have no atomic sentence in common, then

mD(ij) = mD(i) + mD(j) - mD(i) xmD(j)

and in analogy to T6-10 Ob,

T9-3. For any conjunction, C n , of n basic sentences with n distinct atomic

sentences, mD(Cn) =(1/2)n .

For that cont-function which is based on mD according to D6-2, contD, we have

T9-4.

a. For every E i , contD(E i ) = /z.

b. For every sentence j, contD(j) = n/z, where n is the number of E which belong

to Cont(j).

contD has advantages and disadvantages similar to those of mD. Tlb points to the

extreme simplicity, at least in principle, of its computation.

All theorems on cont stated in §6 also hold, of course, for cont D and all cont I, the

cont-functions defined on the basis of the m I, analogously to D3. With respect to cont I,

no additional theorems in the form of equalities can be derived from Ri. We shall not

care to derive some inequalities from Ri and the previous theorems, especially since

we shall treat later (§10) at some length a numerical example based on a specific
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conti-function.

With respect to contD, however, various theorems holding for contp can be strength-

ened by weakening the condition in the antecedent, in complete analogy to the relation

between mD and mp. T6-9, T6-10b, T6-11, T6-12, T6-13b, c, e,.f, T6-15, and T6-16

hold for contD, even if the expression 'primitive predicate(s)' in their antecedents is

replaced by 'atomic sentence(s)'. That this should be so is plausible in view of T1. But

it is also easy to check the truth of our general assertion by inspecting the proofs of

these theorems.

Let us state, however, also one theorem which is not a counterpart of a previous

theorem:

T9-5.

a. For every conjunction, C n, of n distinct E, contD(Cn) = n/z (T4b).

b. For every conjunction, Cn, of n distinct E, different from Ei,

contD(Ei/Cn) = l/z (D6-2, (a)).

The relation between infD, defined on the basis of contD following D7-1, and inf is

the same as that between contD and cont. We shall therefore state only those theorems

which are based on T4 and T5.

T9-6.

a. For every E, infD(E) = - Log(z-l).

Proof: infD(E) = Log 1 (T4a) = Log z - Log(z-1) (T2-lc).
1--

z

b. For every conjunction, C n, of n distinct E, infD(Cn) = p - Log(z-n).

1
Proof: infD(Cn) = Logn (T5a) =Log - Log(z-n) (TZ-lc).

1--
z

c. For every conjunction, C n , of n distinct E, different from E i ,

inf(Ei/Cn) = Log(z-n) - Log(z-n-l) (D7-2, (b)).

According to the correlate of T7-10e, infD(i) = n - Log m, where i has disjunctive

normal form: CVC 2V...VCm , each C being a conjunction of basic sentences with n

distinct atomic sentences, the same n atomic sentences occurring in all conjunctions.

According to a well-known theorem in the sentential calculus, there exists for every

molecular sentence a sentence in disjunctive normal form L-equivalent to it (see, for

instance, [Prob.] D21-2). It follows that for every molecular sentence i, infD(i) has

the form n - Log m, where both n and m are integers. Hence it is easy to calculate

the infD-value of any molecular sentence. Such a sentence has to be transformed into

one of its disjunctive normal forms, according to some standard procedure available

for this purpose. Then the number of its components has to be counted as well as the

number of atomic sentences in one of these components. Finally, a table for Log m,

for integer m, will have to be consulted and a simple subtraction performed. For

purposes of reference, such a table is given here for some selected integral values

of m.
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Table IV

m Log m m Log m m Log m

1 0. 0000

2 1.0000

3 1.5849

4 2. 0000

5 2. 3219

6 2.5849

7 2. 8073

8 3.0000

9 3. 1699

10 3. 3219

16 4.0000

32 5. 0000

33 5.0443

34 5. 0874

35 5. 1292

36 5.1699

37 5.2094

38 5.2479

39 5.2853

40 5.3219

41 5. 3575

42 5.3923

43 5.4262

44 5.4594

45 5.4918

46 5. 5235

47 5. 5545

48 5. 5849

49 5. 6147

50 5. 6438

51 5. 6724

52 5. 7004

53 5. 7279

54 5.7548

55 5.7813

56 5. 8073

2
Let the E in our 3 be E, E E4 Let C be the conjunction of the first

m E. Then contD(Cm) = m/64 (T2a) and infD(Cm) = 6 - Log(64-m) (T3b). Table V gives

the values of the absolute and relative contD for the first six values of m and for the

last six values of m.

We see from this that if a series of messages is received, each being an E, then

contD grows by every one of these messages by the same amount, namely, by 1/64,

from 0 to 1. infD , however, behaves in a different way. It grows from 0 to by

unequal amounts. The first message contributes only a small fraction. Every further

message contributes a little more than the preceding one. The last-but-three message

contributes less than 1/2. The last-but-two contributes more than 1/2. The last-but-

one contributes 1. And the last message contributes m. This behavior of infD becomes

plausible when we realize that the different messages, although each of them is an E,

nevertheless play different roles in the series of messages. When we have received

sixty messages (in other words, when we have the knowledge C 6 0 ), then we know that

sixty of the sixty-four possible states of the universe are excluded. There still remain

four possible states; that is, our knowledge C 6 0 means that the universe is in one of

the four remaining states. The sixty-first message excludes among these four possible

states a further one; hence, the range of those that are still open decreases from four

to three. By the sixty-second message the range is further decreased from three to
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58

59

60

61

62

63

64

100

128

250

251

252

253

254

255

256

1000

5.8328

5.8579

5.8826

5.9068

5.9307

5.9541

5.9772

6. 0000

6. 6438

7.0000

7.9657

7.9715

7.9772

7.9829

7.9886

7.9943

8.0000

9.9657



Table V

m contD(Cm)

1

2

3

4

5

6

59

60

61

62

63

64

1/64

1/64

1/64

1/64

1/64

1/64

1/64

1/64

1/64

1/64

1/64

1/64

contD(Em/Cm- 1)

1/64

2/64

3/64

4/64

5/64

6/64

59/64

60/64

61/64

62/64

63/64

1

infD(C m )

0.0228

0. 0459

0. 0693

0. 0931

0. 1174

0. 1421

3. 6781

4. 0000

4.4151

5. 0000

6. 0000
00

infD(Em/C m _ 1)

0. 0228

0.0231

0. 0234

0. 0238

0. 0242

0. 0247

0. 2630

0. 3219

0.4151

0. 5849

1.0000

00

two, and this may well be regarded as a stronger addition to our knowledge than the

decrease from four to three. At this moment, only two possibilities are left open. The

sixty-third message gives us information concerning which of these two remaining

sentences is the actual one and hence completes our knowledge of the universe. Thus,

this step has a great weight, more than any of those prior to it. After this step, nothing

can be added to our knowledge in a consistent way. The sixty-fourth message is incom-

patible with the conjunction of the sixty-three preceding ones. If this message is never-

theless added, then this is a still more weighty step which leads to contradiction. The

strongest factual message, which is a state-description, a conjunction of 6 basic

sentences, carries 6 units of information as measured by infD. The only messages that

carry more units of information, and then by necessity infinitely many such units, are

the messages that contradict either themselves or prior messages.

§10. cont and inf*

Two special contI and inf I functions, cont and inf*, are defined and theo-
rems regarding them developed. These functions are based upon that
m I - m* - which assigns equal values to all structure-descriptions, i. e., dis-
junctions of isomorphic state-descriptions. Since m* seems to have a special
status among the various mI-functions, cont* and inf* are deemed to be of
special importance. Various computations and tables regarding these functions
are presented.

We shall now define and investigate two special I-functions that might turn out to be
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of special importance. They are based on the function m defined in [Prob.] §110 essen-

tially as a proper m-function which has the same values for all structure-descriptions,

that is, disjunctions of isomorphic state-descriptions.

Recalling the definition of 'isomorphic sentences' given in §6, the reader will easily

see that our 2 has exactly 20 structure-descriptions. Let the Z of 2 as presented3 3'
in Table I, be Z 1, Z 2, . . . Z64 Then the structure-descriptions 'T',T' , T64 1' '0'
are:

T1: Z 1

T 2: Z 2

T3: Z 3

T 4: Z 4

T5: Z 5V Z6 VZ 7

T6: Z8V Z9VZ 10

T7: Zl lVZ1 VZ13

T8: Z14VZ15VZ16

T9:Z17VZ18VZ19
T 10: Z20VZ21VZ22

T:11 Z23V Z24V Z25

T 1 2 : Z 2 6 VZ 2 7 VZ 2 8

T13 Z29 V30VZ31
T 14 : Z3VZ33VZ34

T15: Z35VZ36VZ37

T16: Z 3 8 VZ 3 9V Z4 0

T17 Z41 VZ42V Z43 V44V Z45VZ46

T18 Z47V 48V 49V 50VZ 51V Z52

T19 Z53 V54 V55 V56 V57V 58

T 2 0: Z 5 9 VZ 6 0 VZ 6 1 VZ 6 2 VZ 6 3 VZ 64

For all i, m*(Ti) = 1/20, hence m*(Z) = m (Z2) = m*(Z3) = m(Z4) = 1/20, m*(Z 5 ) =

= m*(Z 4 0 ) = 1/60, m*(Z 4 1 ) = ... = m*(Z6 4 ) = 1/120.

In [Cont.] §18, an argument is presented which shows that the function c based on

m is in a certain sense simpler than other cp-functions. Explicata for amount of infor-
mation based on m would share this special status.

c*(h, e), cont*(e), cont*(h/e), inf*(e), and inf*(h/e) can all be expressed as simple

functions of m*(e) and m*(e. h):

c*(h, e) = m*(e.h) (D7-3). (1)
m*(e)

cont*(e) = 1 - m (e) (T6-3a). (2)

cont*(h/e) = m*(e) - m*(e.h) (T6-8a). (3)
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inf* (e) = -Log m*(e) (T7-5b). (4)

inf*(h/e) = Log m *(e) - Log m (e.h) (formula (1) in §8). (5)

Let e be 'Ma. Mb' and h be 'Mc'. Then, by inspection of Table I,
we see that

m* ('Ma. Mb') = 2 x + 10 X 1 + 4 X 1 = 0.3.

Notice that m (e) = 0. 25. The larger value of m is due to instantial rele-
vance. We aso have

m*('Ma. Mb. Mc') = 2 X 1 + 6 X 610. 2.

Hence

c*('Mc', 'Ma. Mb') = 0. =

* 
cont ( 'Ma. Mb') = 0. 7.

cont *('Mc'/'Ma. Mb') = 0.3 - 0.2 = 0. 1;

On the other hand,

contD('Mc'/'Ma. Mb') = 0. 125.

inf*('Ma. Mb') = -Log 0.3 = Log 10 - Log 3 = 1.7370,

as against an infD-value of 2. Finally,

inf*('Mc'/'Ma. Mb') = Log 02 = Log 3 - Log 2 = 0. 5849

whereas the corresponding relative infD-value is 1.

It might perhaps be worthwhile to investigate now another sample language, this time

with only one primitive predicate and n distinct individual constants. In this case, c

yields the same values as Laplace's rule of succession. (See [Prob.] §110E.) Let e be

a conjunction of s < n basic sentences with s distinct individual constants, among them

s 1 atomic sentences with 'P' and s-sl negations of such. Let h be ' ' where 'b' is an

individual constant not occurring in e. Then the following holds (accu. ding to formula

(4), [Prob.] p. 566, cf. remark to D6-1i).

m* (e)= (6)
(s+i) (s)

m*(e. h) (s+1 ) ' m*(e) . (7)- m*(e) s+2 (7)

s +1
c (h, e) = s ((1), (6), (7)). (8)

cont (h/e) = m( e ) x (1 - 1 ((3), (6), (7)) = m*(e) X s-s+ (9)To have a numerical example, assume s=10. We get+2

To have a numerical example, assume s10. We get
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m*(e) = 1 (10)

10

m*(e.h) = m*(e) X 1+ (11)

*h, s +1
c (h, e) 12 (12)

11-s
cont*(h/e) = m*(e) x 12 (13)

inf*(e) = Log i*1 (14)

1

The values given in Table VI are calculated according to these formulas.

Table VI

s m* (e) m (e. h) c*(h, e) cont*(e) cont*(h/e) inf*(e) inf*(h/e)1

0 0. 09091 0. 0076 0. 0833 0. 90909 0. 08333 3.459 3. 585

1 0.00909 0.0015 0.1667 0.99091 0.00758 6.781 2. 585

2 0.00202 0.0005 0.2500 0.99798 0.00152 8.751 2.000

3 0.00076 0.0003 0.3333 0.99924 0.00051 10.366 1.585

4 0.00043 0.0002 0.4167 0.99957 0.00025 11.174 1.263

5 0.00036 0.0002 0.5000 0.99964 0.00018 11.437 1.000

6 0.00043 0.0003 0.5833 0.99957 0.00018 11.174 0.778

7 0.00076 0.0005 O.6666 0.99924 0.00025 10.366 0.585

8 0. 00202 0.0015 0.7500 0.99798 0.00051 8.751 0.415

9 0.00909 0.0076 0.8333 0.99091 0.00152 6.781 0.263

10 0.09091 0.0833 0.9167 0.90909 0.00758 3.459 0.126

In addition to these formulas, we have, of course, also

m*(h) = (16)

cont*(h) = Z (17)

inf*(h) = 1. (18)

A few comments on Table VI might be indicated. The columns for m (e) and m* (e. h)

show that this mI-function, as is to be expected from any adequate mi-function, puts a

premium on homogeneity; that is, those states for which the absolute difference between
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the individuals having P and those not having P is higher, are treated as initially more

probable. When the evidence states that 5 individuals have P and 5 others do not have

P. the last column shows that the inf -value of our hypothesis, which states that an

eleventh individual has P, is just 1. Hence it is the same as the absolute inf -value of

this hypothesis. The greater the number of individuals having P, according to the evi-

dence, the larger c*(h, e) and the smaller inf*(h/e). cont*(h/e), however, behaves dif-

ferently. It reaches its minimum for intermediate values of s but increases both when

sI increases from 6 to 10 and when it decreases from 5 to 0.

§ 11. Estimates of amount of information

A scientist is often interested in the expectation-value of the amount of
information conveyed by the outcome of an experiment to be made. If the var-
ious possible outcomes can be expressed by hi, h2 , ... , hn, such that these
sentences are pairwise exclusive and their disjunction L-true on the given evi-
dence e, in short, when H = h1 h, ... hnt is an exhaustive system on e,
the estimate of the amount of information carried by H with respect to e is
given by the formula

n

est(in, H, e) = X c(hp, e) x in(hp/e).

p=l

Various formulas for est(cont, H, e), est(inf, H, e), and other functions based
upon them are derived. The concepts of posterior estimate of amount of infor-
mation, amount of specification, estimate of the posterior estimate, and
estimate of the amount of specification are defined, and various theorems
concerning them proved. A simple illustrative application is given.

If an experiment is performed, the possible results of which are expressed in n

sentences h, .. ., h n (or in n sentences L-equivalent to them), we can compute the

amounts of information which each possible outcome would convey, assuming that an

m-function has been defined for all the sentences of the language in which the h's are

formulated. So long as the actual outcome is not known, the amount of information it

carries is also unknown. But, for certain purposes, it is important to have a good esti-

mate of this amount. The situation is analogous to that existing very often in scientific

investigations, where a certain magnitude is unknown and one has to work instead with

an estimate of this magnitude.

To give a crude but sufficiently illustrative example: Imagine a thermometer which

is divided rather unconventionally into three regions so that in region 1 the pointer indi-

cates Warm, in region 2 Temperate, and in region 3 Cold. Let the thermometer be read

in a place where, according to available evidence, most past readings indicated Cold,

some Temperate, and only very few Warm. Since the same distribution (approximately)

is expected for future readings, an adequate measure of information will assign to the

sentence 'Cold(tl)' (where t is a time-point in the future, that is, one not mentioned in

the evidence) a lower value, relative to the evidence, than to 'Temperate(tl)' which again

will have a lower value than 'Warm(tl)'. Let these sentences be h i , h 2 , and h3 , respec-

tively. What would be a reasonable estimate of the amount of information a future
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observation is expected to carry? One might at first think of taking the arithmetic mean

of the three amounts of information, that is,

in(hl/e) + in(h 2 /e) + in(h 3 /e)

3

but a little reflection will show that this would be utterly inadequate. The amounts have

to be weighted differently. It seems rather natural to take as appropriate weights here,

as well as in general, the degrees of confirmation which the sentences h l , h2 , and h 3

have on the available evidence. (For a more thorough discussion of this procedure, see

[Prob.] Chap. ix.) We arrive, therefore, at the value

c(hl, e) x in(hl/e) + c(h 2 , e) x in(h 2 /e) + c(h 3 , e) x in(h 3 /e),

or, in the convenient customary shorthand,

3

Z c(hp, e) X in(h/e).

p=l

Expressions of this type are well known in the theory of probability and statis-

tics (with the degree-of-confirmation subformula usually replaced by a corresponding

relative-frequency formula) under the name 'the mathematical expectation (or hope) of

. . . ', in our case, '... of the amount of information carried by the observation to be

made at t

In general, whenever we have a class of sentences H = {hl .. ., hnl such that the

available evidence e L-implies hlV hV... Vh n as well as - (h i. h), for all ij, we shall

say that H is an exhaustive system relative to e, and the expression

n

E c(hp, e) x in(hp/e)

p= 

will be called 'the (c-mean) estimate of the amount of information carried by (the

members of) H with respect to e', symbolized by 'est(in, H, e)'.

So far, our discussion has been proceeding on a partly presystematic, partly sys-

tematic level. To switch to a completely systematic treatment, we obviously have only

to replace the explicandum 'in' by one or the other of its explicata. We define:

Dll-1. Let H, h , e be as above. Then

est(cont, H, e) =Df I c(hp, e) x cont(hp/e).

p

D11-2. Let H, h , e be as above. Then

est(inf, H, e) =Df X c(hp, e) x inf(hp/e).

P
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E (example) 11-1 Let, for example, with respect to our 2, h 'Mc',
h2 = 'Fc', H =h,, h, e 'Ma. Mb'. On the basis of Table I, some formulas
in the preceding section, and the two following formulas which the reader will
easily be able to derive for himself, namely,

cont ('Mc'/'Ma. Mb') = 0. 1

and

cont ('Fc'/'Ma. Mb') = 0. 2,

we obtain now

*s~cnte 2 1
est(cont H, e) = 2 x 0. 1 + x 0.2 = 0. 1333 3

and

est(inf*, H, e) = - Log2 + x Log = 0.918.

est(infD, H, e), on the other hand, equals 1, of course.

E11-2. Let h1 , h 2 , and H be as before, but let now

e = 'Ma. Mb. Ya. Yb. Yc'.

Then

m*(e) 1 _ 1m (e) 20 + 60- 15'

m (e.h l ) 2 0'

m *(e. h 2) = 60-

Hence

cont*(h l /e) = 60',

cont *(h/e ) = 20'

inf*(hl/e) = 0.4151,

inf (h 2 /e) = 2,

c (hl, e) = 3

and

c (h 2 , e) 4 

Hence

* 3 1 1 1 1est(cont H, e) = x + x 160 4 20 40'

and *
est(inf ,H,e) =- 0.4151 + x2 = 0.811

(whereas est(infD, H, e) equals 1).

For the following theorems it is always assumed that H, hp , and e fulfill the above-

mentioned conditions.
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est(cont, H, e) =

p

m(h p. e)

m(e)

= E m(hp e)

= I m(hp. e)

1

m(e)

1 1
m(e)

x m(e) x (1 - c(hp, e)) (T7-14)

x (1 - c(hp, e))

x c(~hp, e)

E m(hp. e) x m( hp. e)

E m(hp.e) x (1 - m(hp e))

= E c(hp, e) x m(hp e)

= c(e, t) Z c(hp, e) X c(hp, e).

Let K = {k, . .. , kn} be an exhaustive system with respect to e. Then from well-

known theorems in the theory of inequalities, the following theorem can be derived:

Tll-2. Let c(k i , e) = c(kj, e) for all i and j (hence = l/n), and let there be at least

one pair i and j such that c(hi , e) c(hj, e). Then

est(cont, K, e) > est(cont, H, e).

Tll-3. For fixed n, est(cont, H i, e) is a maximum for those Hi all whose members

have the same c-values on e. Hence

maxi[est(cont, H i, e)] = m(e) x n-
n

(This is, of course, also the cont-value of each hi belonging to these Hi. )
p

T11-4. For fixed n, est(cont, Hi, e) is a minimum for those Hi one member of which

has the c-value 1 on e (and hence all the other members the c-value 0 on e); hence

mini[est(cont, Hi, e)] = 0.

Theorems similar to T2, T3, and T4 can be obtained for the second explicatum inf.

Let us first state a transformation of D2, according to T7-13:
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Tll-5.

est(inf, H, e) = c(hp, e) X Log 1
c(hp, e)

= - E C(hp, e) x Log c(hp, e).

We now get

Tl-6. Let c(ki, e) = c(kj, e) for all i and j (hence = /n), and let there be at least

one pair i and j such that c(hi , e) c(hj, e). Then

est(inf, K, e) > est(inf, H, e).

Tll-7. For fixed n, est(inf, Hi , e) is a maximum for those H. all whose members
1 1

have the same c-values on e; hence

max [est(inf, H., e)] = Log n.

(This is, of course, also the inf-value of each hi belonging to these Hi.)

Tll-8. For fixed n, est(inf, Hi, e) is a minimum for those H i one member of which

has the c-value 1 on e (and hence all the other members have the c-value 0 on e).

Hence

mini[est(inf, Hi, e)]= 0.

An expression analogous to

' - E c(hp, e) x Log c(hp, e)'

but with degree of confirmation replaced by (statistical) probability, plays a central role

in communication theory, as well as in certain formulations of statistical mechanics,

where the probability concerned is that of a system being in cell p of its phase space.

In statistical mechanics, in the formulation given it by Boltzmann, this expression is

said to measure the entropy of the system. In analogy to this, some communication-

theoreticians call the corresponding expression, which arises when the probabilities

concerned are those of the (expected) relative frequencies of the occurrence of certain

messages, the entropy of this system of messages. Other terms, used synonymously,

though unfortunately without any real effort for terminological clarification, were uncer-

tainty, choice, and even simply as well as confusingly, information.

Let H and K be exhaustive systems with respect to e, let H contain n members,

and K contain m members. Let 'H.K' be short for 'hl.k 1 , h l .k 2 , ... hl.k m ,

h2 kl hn.km'. Then we defineh·k..hn. k m
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Dl 1-3.

m n

est(in, H. K, e) =D c(hp. kq, e) x in(hp . kq/e).

q=l p=l

With respect to the explicatum inf, the following theorem can be proved:

T11-9. est(inf, H. K, e),< est(inf, H, e) + est(inf, K, e), where equality holds only if,

for all p and q, c(hp. kq, e) = c(hp, e) x c(kq, e), in other words, when the h's and the

k's are inductively independent on e (with respect to that m-function on which c is

based).

El11-3. Let e = 'a. Mb. Ya. Yb', h 1 = 'Mc, h2 Fc', kh 'Yc', k = Oc
H = h1 h2 }, and K =k1', k2}. 2

Then,

H.K = {hl.k1 , hl.k 2 , h 2 .k1 , h2 .k 2 }.

We have

m (e) = 1

m*(h1 k 1.e) = I0'

m*(hl k 2 .e)= m (h 2 .k.e) = (h 2 .k 2 .e) 60

c*(hl1 k1 e)= 1

c*(h 2 k 2 , e)= c*(h 2 .k 1 ,e) = c*(h 2 . k 2 , e) =6

cont* (h k 1 /e) I

cont (h1 kl/e) = --0'

inf (hl.kl/e) = 1,

inf (hl.k 2 /e) = ... = 2.585.

Hence

1
est(cont*, H. K, e) - 15

and
est(inf, H. K, e) = 1.792.

est(inf*, H, e) = est(inf*, K, e) = 0.918.

We verify that

est(inf*, H. K, e) < est(inf*, H, e) + est(inf*, K, e),

the h's and the k's not being inductively independent on this e with respect
to m*. They are, however, independent with respect to m D , and indeed

est(infD, H. K, e) = 2 = est(infD , H, e) + est(infD, K, e).
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In general, est(in, H, e) will be different from est(in, H, e. k), where k is a sentence

that has been added to the prior evidence e. Since 'est(in, H, e. k)' and similar expres-

sions are of great importance, it is worthwhile to give it a special name. We shall call

it the posterior estimate (of the amount of information carried by H on the evidence

comprised of e and k). The expression 'est(in, H, e)' will then be called, for greater

clarity, the prior estimate (of .. .). It is often important to investigate how such a prior

estimate has been changed through some additional evidence. We shall therefore give

also to the difference between the prior and the posterior estimate a special name, the

amount of specification of H through k on e, and denote this function by a special

symbol 'sp(in, H, k, e)':

Dll-4. sp(in, H, k, e) =Df est(in, H, e) - est(in, H, e. k).

El11-4. Let e, H, and k1 be as in E3. Then e.k1 is the e of E2. There-
fore est(inf*,H,e. kl) = 0.811. Since est(inf*, H, e) = 0.918 (from E3), we have
sp(inf*, H, kl, e) = 0.918 - 0. 811 = 0. 107.

It can be easily seen that sp(in, H, k, e) = 0 if (but not only if) k is inductively

independent of the h's on e. Otherwise sp can be either positive or negative. Its

maximum value is obviously equal to est(in, H, e) itself. This value will be obtained

when e. k L-implies one of the h's. In this case H is maximally specified through

k on e.

Situations often arise in which the event stated in k has not yet occurred or,

at least, in which we do not know whether or not it has occurred but know only

that either it or some other event belonging to an exhaustive system of events will

occur or has occurred. In such circumstances, it makes sense to ask for the expec-

tation value of the posterior estimate of the amount of information carried by H on

e and (some member of the exhaustive system) K. We are led to the (c-mean) esti-

mate of this posterior estimate which we shall denote by 'est(in, H/K, e)' and define

as

Dll-5.

m

est(in, H/K, e) =Df Z c(kq, e) x est(in, H, e. kq).
q=1

E11-5. Let e, H, and K be as in E3. Then

est(inf *,H/K,e) = x 0.811 + x 1 = 0.874.3 3

The stroke-notation has been chosen instead of a more neutral comma-notation

because the following theorem, which stands in a certain analogy to the definitions of

relative amounts of information, holds.
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Tll-10. est(in, H/K, e) = est(in, H. K, e) - est(in, K, e).

Proof:

est(in, H/K, e) = Z
q

c(kq, e) Z c(hp, e. kq) x in(hp/e. kq)

p

= Z
q P

c(kq, e) x c(hp, e. kq) x in(hp/e. kq)

=Z
q

= z
q P

Z c(hp. kq, e) x in(hp/e. kq)

p

c(hp. kq, e) x [in(hp. kq/e) - in(kq/e)]

= est(in, H. K, e) - Z c(kq, e) x in(kq/e)

q

= est(in, H. K, e) - est(in, K, e).

Indeed, est(inf*
= 0. 874 (as in E5).

H. K, e) - est(inf, K, e) = 1.792 (from E3) - 0.918 (from E3)

One will often be interested in an estimate of the amount of specification of H on e

through K. This function will be symbolized by 'sp(in, H, K, e)'. Its definition is

D1 1-6.

sp(in, H, K, e) =Df 3 c(kq, e) x sp(in, H, kq, e).

q

Ell-6. Let e, H, and K be as in E3. Then

sp(inf, HK,e) = x 0. 107 (from E4) + X (-0. 082) (computed in the same way)

= 0. 044.

We see immediately that the following theorem holds:

Tl -1 . sp(in, H, K, e) = est(in, H, e) - est(in, H/K, e).

Indeed, est(inf*, H, e) -est(inf*, H/K, e) = 0. 918 (E3) - 0. 874 (E5) =
0. 044 (as in E6).

Though it may happen that, for some q, sp(in, H, kq, e) is negative, it can be proved

that sp(in, H, K, e) is never negative, in other words, that the estimate of the posterior

estimate is at most equal to the prior estimate.

T11-12. sp(in, H, K, e) >,, 0, with equality holding iff the h's and the k's are induc-

tively independent.
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Combining T10 and T11, we get

Tl1-13. sp(in, H, K, e) = est(in, H, e) + est(in, K, e) - est(in, H.K, e).

From T13 follows immediately the following theorem of the symmetricity or mutu-

ality of specification:

Tll-14. sp(in, H,K,e) = sp(in, K,H,e).

To illustrate the importance and use of the functions defined in this section, let us

work out a different numerical example, albeit an artificially simplified one, for ease

of computation. Let h1 be 'Jones is bright', h be 'Jones is average (in intelligence)',

and h 3 be 'Jones is dull'. Somebody who is interested in Jones's intelligence makes

him undergo a certain test. Let now k1 be 'Jones achieves more than 80 percent

(in this test)', k2 be 'Jones achieves between 60 percent and 80 percent', and k3 be 'Jones

achieves less than 60 percent'. Let the following degrees of confirmation hold on the

available evidence, according to some m-function:

c(hl, e) = c(h 3 , e) =

1
c(h2 , e) =

c(k 1 ,e.h) = c(k 2 , e.hl) = c(k 2 , e.h 2 ) = c(k2,e.h 3 ) = c(k 3 , eh 3 ) =-

c(kl,e.h 2 ) = c(k 3 , e. h 2 ) =4

(All other c(kq, e.hp) = 0.) Figure 2 might help to visualize the situation.

For the following computations, the explicatum inf will be used. First we compute

with the help of T5 the value of est(inf, H, e) in our example.

1 1 1
est(inf, H, e) = Log 4 + 2 Log 2 + 4 Log4 = 1.5.

To evaluate est(inf, K, e) we have first to find the various c(kq, e). These can be easily

read off the diagram.
1

c(k 1 , e) = c(k 3 , e) 4'

1
c(k 2 , e) = 2

4 I k,
2 4

k2

h 4F4 3k34 2

Fig. 2
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Since c(k i , e) = c(h i , e) for all i (this is pure coincidence), we have

est(inf, K, e) = 1.5.

For est(inf, H. K, e) we get, again by simple inspection of the diagram,

1 1est(inf, H.K,e) = 6 x 8 Log 8 + Ix 4 Log 4 = 2.75.

This verifies T9. It is obvious that not all h's and k's are inductively independent.

To find the various est(inf, H, e. kq), we compute first all c(hp, e. kq).

We get

c(h1 e. kl) = c(h 2 , e.k l ) = c(h 2 ,e.k 2) c(h 2 ,e.k 3 ) = c(h 3 , ) = 

__ 1
c(h, e. k2 ) = c(h 3, e. k 2 ) 4

(All other c(hp, e. kq) = 0. ) Hence we have

est(inf, H, e. kl) = est(inf, H, e. k 3) = 1,

est(inf, H, e. k2 ) = 1.5.

Hence we get, according to D4,

sp( inf, H, kl, e) k3 , e) = 

sp(inf, H, k 2 , e) = 0.

The last result is of special importance. And indeed, if Jones achieves between 60
percent and 80 percent in his test, we are "so klug als wie zuvor", we know exactly as
much as we knew before. The addition of k2 to our evidence left the c-values of the h's
unchanged, k 2 is inductively irrelevant to the h's, and our knowledge has not become
more specific through this addition. The situation is different with respect to the two
other outcomes of the test. In both other cases, our knowledge has become more spe-

cific. This appears even on the qualitative level: Before the test, Jones could have been
bright, average, or dull. After the test, we know that he is not dull if the outcome is k,
and that he is not bright, if the outcome is k3. But one has to be careful with this argu-

ment. A reduction of the number of possibilities does not always entail an increase of

specifity of the situation. If the probability distribution of the remaining possibilities is
much more evenly spread than that of the initial possibilities, the situation may become,
in a certain important sense, less specific. Examples could be easily constructed. In
our case, however, there is a real increase in specificity, though not a large one.

It seems reasonable to measure one aspect of the effectiveness of this intelligence

test by the estimate of the amount of specification. One might compare the effective-
ness of various proposed tests in this way. In our case, according to D6,

sp(inf, H, K, e) = x + Ix 0+ Ix = 2 2 4 2 4'

-44-



a result that could, of course, also have been obtained from T13. Incidentally, it follows

that the test was a pretty poor one. Whereas a direct measurement of Jones's intelli-

gence, were it only possible, could be expected to yield 1.5 units of information,

the mentioned test can be expected to give us only 0.25 of a unit of information on

Jones's intelligence. The difference between 1. 5 and 0. 25, i.e., 1. 25, is the value of

est(inf, H/K, e), according to Tll 1. The same value would be obtained by using either

D5 or T10. We may say that by applying the test instead of measuring the intelligence

directly, we must content ourselves with expecting a "loss" of 1. 25 units of information.

The correlate of this function within communication theory has been called by Shannon

the equivocation. With fixed H, that test is more efficient whose K (the class of possible

outcomes) yields the higher value for the estimate of the amount of specification of H on

e through K, or the lower value for the estimate of the posterior estimate of the amount

of information carried by H on e and K.

§12. Semantic noise, efficiency of a conceptual framework

Two usages of 'semantic noise' are distinguished and a more general concept
of distortion through noise defined. Efficiency of the conceptual framework of
a language is introduced, both with respect to some given evidence and abso-
lutely. The symmetrical treatment of a predicate and its negation maximizes
initial efficiency. With increasing evidence, the efficiency of a language gener-
ally decreases.

Whenever a receiver of a message is unable to reconstruct immediately the message

as originally sent, the communication engineer describes the situation by saying that the

message has been distorted by noise. To combat noise is one of his principal tasks.

Sometimes the receiver of a message, in spite of a reception which is physically

free of distortion, reacts to it in a way which is different from that expected by the

sender. Attempts have been made to formulate this situation in terms of semantic noise.

Indeed, the same sentence (more exactly, two tokens of the same sentence-type) may

convey different informations (with different or equal amounts of information) to two

people (e. g. the sender and the receiver of a message) and this in at least two different

ways: first, the two tokens, which are physically alike, are interpreted as belonging
**

to different languages , and second, probably more common and interesting, the infor-

mation carried by them is evaluated with respect to different evidences. Misunder-

standings may be due either to physical mishearing or to semantic misevaluation (or to

both).

In addition to the two metaphorical usages of 'noise' mentioned above, which seem

pretty straightforward and should cause no confusion if properly distinguished among

themselves and from the engineer's noise, it seems natural to use this term also in the

*The Mathematical Theory of Communication, p. 36.

See Charles F. Hockett: An Approach to the Quantification of Semantic Noise,
Phil. Sci. 19, 257-260, 1952.
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following general situations. Whenever one is interested in knowing whether a certain

event out of an exhaustive system of events, H, has happened (or is going to happen) but

is unable, for some reason, to observe directly the occurrence of these events and has

to content oneself with the observation of some event out of another exhaustive system,

K, where not all of the kq are irrelevant to the h on e (cf. [Prob.] § 65), one can regard

K as a distortion or a transformation through noise of H.

Following this usage, we may not only say that the system of sounds coming out of

a telephone receiver is a distortion through noise of the systems of sounds coming out

of the mouth of the speaker and that the system of symbol printings at the output of a

teletypewriter is a distortion of the system of symbol printings at the input, but also

that the system of positions of a thermometer at a certain time is a distortion of the

system of the temperature situations at those times (for somebody who is interested in

the temperatures), that the system of weather predictions of a certain weather bureau

is a distortion of the system of weather situations at the times for which the predictions

are made (for somebody who is interested in the weather), and that the system of IQ-test

results is a distortion of the system of intelligence characteristics (for somebody inter-

ested in these characteristics).

Whether it is worthwhile, in the three last examples and in similar cases, to talk

about nature communicating with us and about our receiving nature's messages in a

noise-distorted fashion in order to drive home a useful analogy, is questionable. Some

heuristic value to such a form of speech can hardly be denied, but the strain such usage

would put upon terms like 'communication' or 'message' might well be too high.

The twin concepts of code-efficiency and code-redundancy play an important role in

communication theory. We shall not discuss here the definitions given these concepts

nor dwell on their various applications (and misapplications) but give instead definitions

for certain semantic correlates which seem to have some importance.

By the efficiency of (the conceptual framework of) the language L1 , with respect to

(the amount-of-information function) in and (the evidence) e, in symbols: ef(L 1, in, e),

we understand the ratio of est(in, H 1, e), where H 1 is the class of the full sentences of

all Q-predicators (§2) with an argument not mentioned in e, to maxi[est(in, Hi , e)], where

the Hi are the corresponding classes in other languages L. covering, intuitively speaking,

the same ground. It seems to us that the choice of the class of the Q-sentences as the

class relative to which the efficiency of a language is defined is a natural one, though

it certainly is not the only plausible one. The efficiency of a language, as defined here,

changes, as a function of e, with a change of the evidence taken into account. A language

*This loose statement is in need of much elaboration. This is expected to be
achieved at a later stage. We have in mind that the languages L. refer to the same
physical magnitudes without, however, there existing a sentence-by-sentence trans-
latability between them.

-46-

I --



may become, in a sense, more or less efficient with a change in experience.

For an inhabitant of New York, a language with the predicates 'W', 'T', and
'C', designating Warm (above 75 ° F.), Temperate (between 40 ° and 75°), and
Cold (below 40 ° ), respectively, would be quite efficient. Should he move to
San Francisco, however, its efficiency would be highly reduced, because 'T'
occurs here much more frequently than the other two.

We would, therefore, like to have also a concept of efficiency that is independent of

experience. Such a concept is, of course, readily available. We have only to consider

the efficiency relative to the tautological evidence, i.e., ef(Ll, in, t). Let us call

this concept the initial efficiency and denote it also by 'eft(L l , in)'. A language will

accordingly have maximum initial efficiency if and only if each of the mentioned

Q-sentences will be initially equiprobable, that is, if and only if the m-function upon

which it is based ascribes equal values to all Q-sentences with the same argument,

which will be the case when (but not only when) this m-function treats each primitive

predicate and its negation on a par, as do, for instance, mD and all m I.

The symmetrical treatment of a predicate and its negation loses somewhat the arbi-

trariness with which it has often been charged; it turns out that this treatment, based

psychologically upon some principle of indifference and methodologically upon consid-

erations of simplicity, maximizes the initial efficiency of the language.

With an increase in experience and the establishment of empirical laws, which in

their simplest form are equivalent to the statement that certain Q-properties are empty

([Prob.] §38), the efficiency of the respective language generally decreases. The greater

the number of laws which are established, and the stronger they are, the less efficient

the language becomes. It is plausible that with a continuing decrease of the efficiency

of a language, a stage may be reached where this language will be altogether abandoned

and replaced by another which, on the same evidence, shows a higher efficiency, mainly

through the fact that the (or at least some) empirical laws of the first language have led

to a modification of the conceptual framework of the second.

The New Yorker, in our previous illustration, would do well, after having
stayed for some time in San Francisco, to adopt a new language in which 'W"
would stand for More-Than-60 °, 'T" for Between-50°-And-60 ° , and 'C" for
Less-Than-50, for instance, to save him from making the inefficient and unin-
teresting statements about the weather in San Francisco, which had before in
almost all cases the form 'T(x)', i. e., 'It is temperate at time x'.

It might be sometimes useful to talk about the inefficiency of a language. The defi-

nition is obvious:

inef(L 1, in, e) =Df 1 - ef(L1, in, e).

It is advisable to avoid the term 'redundancy' - the term used for the correlate of our

'inefficiency' in communication theory - since the expression 'redundancy of a concep-

tual framework' is usually understood in a different sense.
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§ 13. Conclusions

The concepts of information and information measures explicated here
should be of value in various theories, as in the Theory of Design of Experi-
ments and in the Theory of Testing. Various extensions are outlined. One
of these would take into account the linear arrangements of the individuals.

The Theory of Semantic Information outlined here is nothing more than a certain

ramification of the Theory of Inductive Probability presented in [Prob.] . The expli-

cation of the presystematic concept of the information carried by a sentence, which has

been attempted here, should be of value for a clarification of the foundations of all those

theories which make use of this concept and the measures connected with it. The impact

of the concepts presented here for the Theory of Design of Experiments or for the
*

Theory of Testing should be obvious.

The present theory requires extension into various directions. One extension has

already been mentioned: no great difficulties are involved in treating language systems

with denumerably many individuals. Nor would introduction of individual variables

and quantification over them present problems of which we do not know the solution.

Language systems of these types have already been treated in [Prbb.] .

Other extensions, however, will have to be postponed until the corresponding

theories of inductive probability are developed. One of us (R. C.) is engaged, at the

moment, in developing concepts with the help of which language systems that allow for

taking account of linear arrangements of their individuals can be investigated. This

being accomplished, the erection of a Theory of Semantic Information for sequential uni-

verses should prove to be a fairly straightforward task.

*See, for example, L. J. Cronbach: A Generalized Psychometric Theory Based on
Information Measure; A Preliminary Report, University of Illinois, March 1952.
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Corrigenda

1. Replace 'minimum' by 'null' in T3-7, 9, 10, and 11.

2. Cancel T3-12 and the paragraph following it.

3. Replace the text after D4-1 to the end of section 4 by the following:

Let us state only one theorem on the relative content:

T4-4.

a. If i is an L-true sentence, Cont(j/i) = Cont(j).

Proof: In this case, i. j is L-equivalent to j. The theorem follows from
D1 and TZa.

b. Cont(j/t) = Cont(j).

Thus the relative content of j with respect to t equals the absolute content of j.

Therefore it would be possible to begin with the relative content as primitive and define

the absolute content as the value of the relative content with respect to t. However, it

seems more convenient to begin with the simple concept of absolute content, because it

has only one argument and the relative content can be defined on the basis of it. This

is the procedure we have chosen here.
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