
NLP:
Language Modeling

NLP Seminar, TAU, 2010, Semester A

Basic Idea

 Examine short sequence of
words.

 How likely is each sequence?

Statistical Language Models
  The original (and is still the most important) application

of SLMs is speech recognition.
(“I ate a cherry” is a more likely sentence than “Eye eight uh Jerry”)

  SLMs also play a vital role in other natural language

applications: machine translation, POS tagging,
intelligent input method (autocomplete) and Text To
Speech system.

  What we want to accomplish:
  Given a short sequence of words – how likely is it?
  Markov assumption in effect

  Suppose we have a model – how do we determine if
it’s “good”?

When autocomplete goes wrong…

Shannon’s Game

  Claude E. Shannon. “Prediction and Entropy of Printed
English”, Bell System Technical Journal 30:50-64.
1951.

  Predict the next word, given (n-1) previous words
  Please turn off your cell _____
  I want to go to ______

  Woody Allen - Take the money and run:
http://www.youtube.com/watch?v=-
UHOgkDbVqc

Forming Equivalence Classes (Bins)
  “n-gram” = sequence of n words

  bigram
  trigram
  four-gram

  Estimate probability of each word given prior context.
  P(phone | Please turn off your cell)

  Number of parameters required grows exponentially
with the number of words of prior context.

  An N-gram model uses only N-1 words of prior context.
  Unigram: P(phone)
  Bigram: P(phone | cell)
  Trigram: P(phone | your cell)

Reliability vs. Discrimination

  Reliability vs. Discrimination

  larger n: more information about the context of the
specific instance (greater discrimination). Also, Using
larger n sizes exponentially increases the
computational complexity.

  smaller n: more instances in training data, better
statistical estimates (more reliability)

“large green ___________”
 tree? mountain? frog? car?

“swallowed the large green ________”

 pill? broccoli?

Formulas

  Word sequences (n-gram)

  Chain rule of probability

  Bigram approximation

  N-gram approximation

n
n www ...11 =

)|()|()...|()|()()(1
1

1

1
1

2
131211

−

=

− ∏== k
n

k
k

n
n

n wwPwwPwwPwwPwPwP

)|()(1
1

1
1

−
+−

=
∏= k

Nk

n

k
k

n wwPwP

)|()(1
1

1 −
=
∏= k

n

k
k

n wwPwP

Formulas
  Let us focus on the bin comes across. In a certain

corpus the authors found 10 training instances of the
words comes across. 8 times they were followed by
as, once by more and once by a.

  A naïve approach:

()
()
()
() 0__

1.0
1.0

8.0

=

=

=

=

WORDOTHERANYP
aP
moreP
asP() ()

() ()
()11

1
11

1
1

|
−

− =

=

n

n
nnMLE

n
nMLE

wwC
wwCwwwP

B
wwCwwP









C - frequency of n-gram
B - number of training instances (actual n word sequences we found in the text),
 aka bins
 if bigram: B = text.length – 1

 if trigram: B = text.length – 2

The problem
  Obviously flawed – we’ll never accept sequences we didn’t see

in our training corpus (very sparse data), for instance: comes
across seven dwarves.

  Suppose we want to estimate the likelihood of the sentence he
likes apple cake:

  According to the chain rule:

  Assuming a 2nd order Markov Chain model:

  If one of them equals zero it negates the entire probability.

()cakeapplelikeshePMLE ,,,

() () () ()applelikeshecakePlikesheapplePhelikesPheP ,,|,|| ⋅⋅⋅=

() () () ()applecakePlikesapplePhelikesPheP ||| ⋅⋅⋅=

How to count bigrams?

Vocabulary
words

<UNK>

<#>

Count Bigram
17 (I, first)
11 (When, we)
1 (Raspberry, cake)
…
5 <UNK, county>
3 <year, #>

<UNK> := words not in our vocabulary (OOV), or all words which appear
only once in the text (Hapax Legomenon)

Names?

Selecting an N

Vocabulary (V) = 20,000 words

N Number of bins (V2)

2 (bigrams) 400,000,000

3 (trigrams) 8,000,000,000,000

4 (4-grams) 1.6 x 1017

Smoothing
But what happens if we try
to calculate

but wn is a new word we
never saw in the training
corpus? P will equal 0…
We can “back off” to lower
n-gram models, and we will
use this method later
(combined with other
methods). But it’s not good
enough.
What about single words
we never saw?

So….
Smoothing methods to
the rescue!

() ()
()11

1
11|

−
− =

n

n
nnMLE wwC

wwCwwwP





Smoothing (cont.)

  parameters are smoothed (a.k.a. regularized) to reassign
some probability mass to unseen events.

  Adding probability mass to unseen events requires removing
it from seen ones (discounting) in order to maintain a joint
distribution that sums to 1.

  Various smoothing methods:
  Discounting methods – Laplace, Lidstone
  Validation - Smoothing methods which utilize a second

batch of test data.

Smoothing (cont.)

  What are the chances that the sun won’t shine tomorrow?

  Homo sapiens have existed for approx. 250,000 years
(almost 100 million days). Laplace says we have to take into
account a single unknown day the sun didn’t shine.

Laplace (Add-One) Smoothing
  “Hallucinate” additional training data in which each word occurs

exactly once in every possible (N-1)-gram context and adjust
estimates accordingly.

B is the number of possible bins

V is the total number of possible words (i.e. the vocabulary size).

VwC
wwCwwP

n

nn
nn +

+
=

−

−
−)(

1)()|(
1

1
1

BN
wwCwwP n

n +

+
=

1)()(1
1


Bigram:

Laplace’s Law (adding one)

Laplace’s Law (adding one)

Laplace’s Law (adding one)

Lidstone’s Law
•  Laplace tends to reassign too much mass to unseen events, so

it can be adjusted to add 0<λ<1, normalized by Bλ instead of B
(Lindstone)

BλN
λ)wC(w)w(wP n

nLid +

+
=


 1
1

P = probability of specific n-gram

C = count of that n-gram in training data

N = total n-grams in training data

B = number of “bins” (possible n-grams)

λ = small positive number

M.L.E: λ = 0
LaPlace’s Law: λ = 1
Jeffreys-Perks Law: λ = ½

Objections to Lidstone’s Law

  Need an a priori way to determine λ.
  Predicts all unseen events to be equally

likely.
  Works really bad for large texts

  So instead of modifying
the counts, lets modify
the probabilities.

Jeffreys-Perks Law: λ = ½ :

A simple example
  consider the trigram estimates for a new language ABC with

V={A, B, C}, and given the following corpus:
A B C A B B C C A C B C A A C B C C B

  There are 33 = 27 different possible trigram types, only 13 of which
are observed outcomes (ABC, BCA, CAB, …,CBC) and thus 14
have not been seen. The raw counts are show in the following table,
organized by the “context” (i.e., the previous two letters).

Trigram Count Trigram Count Trigram Count Context Count
AAA 0 AAB 0 AAC 1 AA 1
ABA 0 ABB 1 ABC 1 AB 2
ACA 0 ACB 2 ACC 0 AC 2
BAA 0 BAB 0 BAC 0 BA 0
BBA 0 BBB 0 BBC 1 BB 1
BCA 2 BCB 0 BCC 2 BC 4
CAA 1 CAB 1 CAC 1 CA 1
CBA 0 CBB 0 CBC 3 CB 3
CCA 1 CCB 1 CCC 0 CC 2

A simple example (cont.)
  The smoothed counts using the add-λ Technique

  Since : (a sampling of trigrams)

Trigram Count Trigram Count Trigram Count Context Count
AAA λ AAB λ AAC 1+λ AA 1+3λ
ABA λ ABB 1+λ ABC 1+λ AB 2+3λ
ACA λ ACB 2+λ ACC λ AC 2+3λ
BAA λ BAB λ BAC λ BA 3λ
BBA λ BBB λ BBC 1+λ BB 1+3λ
BCA 2+λ BCB λ BCC 2+λ BC 4+3λ
CAA 1+λ CAB 1+λ CAC 1+λ CA 1+3λ
CBA λ CBB λ CBC 3+λ CB 3+3λ
CCA 1+λ CCB 1+λ CCC λ CC 2+3λ

Probability λ = 1 λ = .5 λ = .31 λ = .01
P(A | AA) .25 .2 .16 .01
P(C | AA) .5 .6 .68 .98
P(C | BA) .333 .333 .333 .333
P(A | BC) .428 .45 .47 .499
P(B | BC) .143 .2 .06 .002
P(C | BC) .428 .45 .47 .499

() ()
() λ

λ
⋅+

+
=

−
− VwwC

wwCwwwP
n

n
nnLid

11

1
11| 




Held-out Estimator
  For this technique, we will call this additional corpus the held out

data, for in essence it is a subset of the training data that is withheld
from the initial estimation procedure.

  We could count how many times each observation occurred in both
a training set and the held-out data, and use these number to
explore how often observations that occur r times in the training
data occur in the development data.

  This would not only give us an estimate of how often observations
not in the training data occur in subsequent data but also how often
observations that occur r times occur in subsequent data.

Training
text

Held out
text

Held-out Estimator
  We first divide our training data into two corpora: T, still called the

training data, and HO, called the held out data.

  For each sequence w1…wn, we count:

  We are interested in n-grams with the same number of occurrences.
  Let Nr be the set of all sequences that occurred exactly r times in the

training corpus. If we used the standard MLE technique, we would
estimate the probability of each item in Nr as having a probability
r/N.

  Rather than use this, however, we look at how many times elements
in each class occur in HO. Specifically, we count how many times
any of these items occur in the development corpus:

()
()nHO

nT

wwC
wwC




1

1

€

Tr = CountHO w1L wn()
w1L wn()∈Nr

∑

Held-out Estimator
  Now we can compute the average number of times an observation that

occurred r times in the training corpus occurs in the HO corpus:
  AverageCnt(r) = Tr/Nr

  We now use this “adjusted count” for producing the probability estimate:

 (NHO is the size of the held out data)

  The most clear case where this helps is seen by looking at the elements
that do not occur in the training corpus. Let’s use the previous trigram
example. There were 14 trigrams that did not occur in the training corpus.
Let’s assume only 6 of these occur (or actually, don’t occur ) in the HO
text with size 40 (it doesn’t matter if the same word occurred three times or
three words occurred once). So we have T0= 6

  Thus the average number of times we can expect one of these unseen
bigrams to appear in the held out data is AverageCnt(0) = 6/40 = .15

  Thus, the held-out probability estimate for any one of these, say, AAA, is
PHO(AAA) = .15/40 = .00375

() ()
HO

nHO N
rAverageCntwwP =1

Different approaches for HO data
  As mentioned above, one disadvantage of the held out method appears to

be that we need to reduce our training corpora in order to produce the held
out data. So the smaller initial training set could hurt us.

  One way around this is two do the estimate with several different sets for
held-out data . Say we divide the corpus into two parts: A and B. First we
initially train on A and use B as the held out data, and then we create a new
model by training on B and using A as the held-out data.

  We then have two estimates, Pm1 and Pm2 and can combine them to make a
new estimate Pm using:

  Of course, we need not divide the corpus exactly into half. Experience has
shown that, assuming the corpus is large enough, it is better to use more
data for the initial estimate, saving only about 10% for the held-out data.
This suggests a generalization of the above strategy. We divide the initial
corpus into ten parts, and build ten estimates each one using a different part
as the held out data. The final probability distribution would then be
constructed using the average over the ten estimations obtained.

() () ()nmnmnm wwPwwPwwP  12111 5.5. +=

Cross Validation
  Note we can use the same technique for test data as well as for evaluation. Say we

have one corpus and need to select part of it as the test data. Once again, typically
people choose test data to be 10% of the size of the training data. Rather than doing
this once, we could do a more extensive evaluation of a technique by do ten
experiments, each one using a different subset of the corpora as the test set and the
rest as the training.

  This is called the cross-validation technique and is an effective way to perform more
extensive testing of a technique without requiring more data.

  Of course, if we were evaluating a technique that requires held-out data, we’d need to
combine both approaches. In this case, we’d select one subset as test data, one as
held-out data and train on the rest. There are now a hundred combinations that
perform different experiments using the same corpora.

  The final evaluation result would be the average of the individual experiments
performed.

HO

HO

Experiment 1

Experiment 2

Etc…

Good-Turing Estimation
  Reminder:

  Good and Turing estimated that text has a binomial distribution (on r
and Nr)

  Works bad for big r’s, mainly used for small r’s (Nr is big, due to Zipf’s
Law).

  There are ways of normalizing probabilities to integrate GT and MLE.

()

frequency) of (frequency
r times.appear which grams-n ofnumber

1

=

=

r

n

N
rwwC 

)(
)()1(1*

r

r

NE
NErr ++= NrPGT

*=
E(Nr) = “expected value”

 E(Nr+1) < E(Nr)

Linear Interpolation

  We combine several n-grams
  Learn proper values for λi by training to (approximately) maximize

the likelihood of an independent development (a.k.a. tuning)
corpus.

)()|()|()|(ˆ 3121,211,2 nnnnnnnnn wPwwPwwwPwwwP λλλ ++= −−−−−

1=∑
i

iλWhere:

Backoff
  Only use lower-order model when data for higher-order model is

unavailable (i.e. count is zero).
  Recursively back-off to weaker models until data is available.

  Where P* is a discounted probability estimate to reserve mass for
unseen events and α’s are back-off weights (see text for details).

!
"
>

=
−

+−
−

+−

−
+−

−
+−−

+− otherwise)|()(
1)(if)|(*

)|(
1

2
1

1

1
1

1
11

1 n
Nnnkatz

n
Nn

n
Nn

n
Nnnn

Nnnkatz wwPw
wCwwP

wwP
α

Entropy
  Suppose you want to maximize the amount of data

you can transmit.
  Example: random number between 1-8. Binary

encoding – need 3 bits.

  Entropy:

  What if each random number has a different

probability?
  Simplified Polynesian (letter frequency):

() () ()()∑
∈

−=
Xx

xpxpXH ln

p t k a i u
1/8 1/4 1/8 1/4 1/8 1/8

() () ()()
{ } 2

1
2

4
1

log
4
1

2
8
1

log
8
1

4log
,,,,,

=!"

#
$%

& ×+×−=−= ∑
∈ uiaktpi

iPiPPH

Entropy

  Example of encoding “exploiting” new letter frequency information:

(more frequent words take up 2 bits and start with 0)

  The joint entropy of a pair of discrete random variables X, Y is the amount of
information needed on average to specify both their values. It is defined as:

  There is also a chain rule for entropy:

  Therefore:

I(X,Y) is called mutual information: the decrease in the uncertainty of X, given Y.

p t k a i u
100 00 101 01 110 111

() () ()∑∑
∈ ∈

−=
Xx Yy

yxpyxpYXH .log,,

() () () () ()YXHYHXYHXHYXH ||, +=+=

() () () () ()YXIXYHYHYXHXH ,|| =−=−

Simplified Polynesian - revisited
  Let’s say we know more about Simplified Polynesian. Further fieldwork has

revealed that Simplified Polynesian has syllable structure. It turns out that
all words consist of sequences of CV (consonant-vowel) syllables. So the
marginal distribution is as follows:

  A quick calculation will reveal that:

  Keep in mind these values are for whole syllables, i.e. two letters. In
Comparison, we got 2.5 for one letter in the previous example (the actual
result would be 5 bits on average for two letters)

  So, given the right encoding, we can pass data through even less
bandwidth.

p t k
a 1/16 3/8 1/16 ½
i 1/16 3/16 0 ¼
u 0 3/16 1/16 ¼

1/8 3/4 1/8

()
()
() 44.2,

375.1|
061.1

=

=

=

VCH
CVH

CH

Entropy and model estimation
  So far we have examined the notion of entropy, and seen roughly how it is a

guide to determining efficient codes for sending messages, but how does
this relate to understanding language?

  Entropy is a measure of our uncertainty. The more we know about
something (the language model), the lower the entropy will be, because we
are less surprised by the outcome of a trial.

  If we make certain assumptions that a language is “nice”, then the cross
entropy for a language L using a model m can be calculated as:

  Our goal – to minimize this number as much as possible.
  If we were able to predict all words perfectly, the entropy would be 0.

() ()()∑
∈

−≈
sentencesx

i
i

xm
n

mLH log
1

,

Perplexity
  Another method of assessing a model.

  Same idea, simply non-logarithmic (according to
Manning-Schutze: “We suspect that speech recognition
people prefer to report the larger non-logarithmic
numbers given by perplexity mainly because it is much
easier to impress funding bodies by saying that ‘we’ve
managed to reduce perplexity from 950 to only 540’ than
by saying ‘we’ve reduced cross entropy from 9.9 to 9.1
bits’” (p. 78)

() () () nn
mxH

n xmmxperplexity n
1

1
,

1
12, −==

References
  Foundations of Statistical Natural Language Processing,

Christopher D. Manning and Hinrich Schütze, The MIT Press,
1999

  NLP Course 2010, TAU, Prof. Gideon Dror
  http://www.cs.rochester.edu/u/james/CSC248/
  http://homepages.inf.ed.ac.uk/lzhang10/slm.html
  http://www-nlp.stanford.edu/fsnlp/statest/
  Wikipedia

Interesting links
  IBM and the Jeopardy Challenge:

http://www.youtube.com/watch?v=FC3IryWr4c8

  http://ngrams.googlelabs.com/

  http://web-ngram.research.microsoft.com/spellerchallenge/

Questions?

