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Basic Idea 

 Examine short sequence of 
words. 

 How likely is each sequence? 
 



Statistical Language Models 
  The original (and is still the most important) application 

of SLMs is speech recognition. 
(“I ate a cherry” is a more likely sentence than “Eye eight uh Jerry”) 
 
  SLMs also play a vital role in other natural language 

applications: machine translation, POS tagging, 
intelligent input method (autocomplete) and Text To 
Speech system. 

  What we want to accomplish: 
  Given a short sequence of words – how likely is it? 
  Markov assumption in effect 

  Suppose we have a model – how do we determine if 
it’s “good”? 
 



When autocomplete goes wrong… 



Shannon’s Game 

  Claude E. Shannon. “Prediction and Entropy of Printed 
English”, Bell System Technical Journal 30:50-64. 
1951. 

  Predict the next word, given (n-1) previous words 
  Please turn off your cell _____ 
  I want to go to ______ 

 
 

  Woody Allen - Take the money and run: 
http://www.youtube.com/watch?v=-
UHOgkDbVqc 



Forming Equivalence Classes (Bins) 
  “n-gram” = sequence of n words 

  bigram 
  trigram 
  four-gram 

  Estimate probability of each word given prior context. 
  P(phone | Please turn off your cell) 

  Number of parameters required grows exponentially 
with the number of words of prior context. 

  An N-gram model uses only N-1 words of prior context. 
  Unigram:  P(phone) 
  Bigram:  P(phone | cell) 
  Trigram:  P(phone | your cell) 



Reliability vs. Discrimination 

  Reliability vs. Discrimination 

  larger n:  more information about the context of the 
specific instance (greater discrimination). Also, Using 
larger n sizes exponentially increases the 
computational complexity. 

  smaller n:  more instances in training data, better 
statistical estimates (more reliability) 

“large green ___________” 
  tree? mountain? frog? car? 

 
“swallowed the large green ________” 

  pill? broccoli?  



Formulas 

  Word sequences (n-gram) 

  Chain rule of probability 

  Bigram approximation 

  N-gram approximation 
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Formulas 
  Let us focus on the bin comes across. In a certain 

corpus the authors found 10 training instances of the 
words comes across. 8 times they were followed by 
as, once by more and once by a. 

  A naïve approach: 
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C - frequency of n-gram 
B - number of training instances (actual n word sequences we found in the text),    
      aka bins   
         if bigram: B = text.length – 1  

    if trigram: B = text.length – 2 



The problem 
  Obviously flawed – we’ll never accept sequences we didn’t see 

in our training corpus (very sparse data), for instance: comes 
across seven dwarves. 

  Suppose we want to estimate the likelihood of the sentence he 
likes apple cake: 

 
 
  According to the chain rule: 

  Assuming a 2nd order Markov Chain model: 

 
  If one of them equals zero it negates the entire probability. 
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How to count bigrams? 

Vocabulary 
words 

<UNK> 

<#> 

Count Bigram 
17 (I, first) 
11 (When, we) 
1 (Raspberry, cake) 
… 
5 <UNK, county> 
3 <year, #> 

<UNK> := words not in our vocabulary (OOV), or all words which appear 
only once in the text (Hapax Legomenon) 

Names? 



Selecting an N 

Vocabulary (V) = 20,000 words 

N Number of bins (V2) 

2 (bigrams) 400,000,000 

3 (trigrams) 8,000,000,000,000 

4 (4-grams) 1.6 x 1017 



Smoothing 
But what happens if we try 
to calculate 
 
 
 
 
but  wn is a new word we 
never saw in the training 
corpus? P will equal 0… 
We can “back off” to lower 
n-gram models, and we will 
use this method later 
(combined with other 
methods). But it’s not good 
enough.  
What about single words 
we never saw? 
 
So…. 
Smoothing methods to 
the rescue! 
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Smoothing (cont.) 

  parameters are smoothed (a.k.a. regularized) to reassign 
some probability mass to unseen events. 

  Adding probability mass to unseen events requires removing 
it from seen ones (discounting) in order to maintain a joint 
distribution that sums to 1. 

  Various smoothing methods: 
  Discounting methods – Laplace, Lidstone 
  Validation - Smoothing methods which utilize a second 

batch of test data. 



Smoothing (cont.) 

  What are the chances that the sun won’t shine tomorrow? 

  Homo sapiens have existed for approx. 250,000 years 
(almost 100 million days). Laplace says we have to take into 
account a single unknown day the sun didn’t shine. 



Laplace (Add-One) Smoothing 
  “Hallucinate” additional training data in which each word occurs 

exactly once in every possible (N-1)-gram context and adjust 
estimates accordingly. 

   
B is the number of possible bins 
 
V is the total number of possible words (i.e. the vocabulary size). 
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Laplace’s Law (adding one) 



Laplace’s Law (adding one) 



Laplace’s Law (adding one) 



Lidstone’s Law 
•  Laplace tends to reassign too much mass to unseen events, so 

it can be adjusted to add 0<λ<1, normalized by Bλ instead of B 
(Lindstone) 
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P = probability of specific n-gram 

C = count of that n-gram in training data 

N = total n-grams in training data 

B = number of “bins” (possible n-grams) 

λ = small positive number 

M.L.E: λ = 0 
LaPlace’s Law:  λ = 1 
Jeffreys-Perks Law:  λ = ½  



Objections to Lidstone’s Law 

  Need an a priori way to determine λ. 
  Predicts all unseen events to be equally 

likely. 
  Works really bad for large texts 

  So instead of modifying 
the counts, lets modify 
the probabilities. 

Jeffreys-Perks Law:  λ = ½  : 



A simple example 
  consider the trigram estimates for a new language ABC with  

V={A, B, C}, and given the following corpus: 
A B C A B B C C A C B C A A C B C C B 

  There are 33 = 27 different possible trigram types, only 13 of which 
are observed outcomes (ABC, BCA, CAB, …,CBC) and thus 14 
have not been seen. The raw counts are show in the following table, 
organized by the “context” (i.e., the previous two letters). 

Trigram Count Trigram Count Trigram Count Context Count 
AAA 0 AAB 0 AAC 1 AA 1 
ABA 0 ABB 1 ABC 1 AB 2 
ACA 0 ACB 2 ACC 0 AC 2 
BAA 0 BAB 0 BAC 0 BA 0 
BBA 0 BBB 0 BBC 1 BB 1 
BCA 2 BCB 0 BCC 2 BC 4 
CAA 1 CAB 1 CAC 1 CA 1 
CBA 0 CBB 0 CBC 3 CB 3 
CCA 1 CCB 1 CCC 0 CC 2 



A simple example (cont.) 
  The smoothed counts using the add-λ Technique 

  Since                                            : (a sampling of trigrams) 

Trigram Count Trigram Count Trigram Count Context Count 
AAA λ AAB λ AAC 1+λ AA 1+3λ 
ABA λ ABB 1+λ ABC 1+λ AB 2+3λ 
ACA λ ACB 2+λ ACC λ AC 2+3λ 
BAA λ BAB λ BAC λ BA 3λ 
BBA λ BBB λ BBC 1+λ BB 1+3λ 
BCA 2+λ BCB λ BCC 2+λ BC 4+3λ 
CAA 1+λ CAB 1+λ CAC 1+λ CA 1+3λ 
CBA λ CBB λ CBC 3+λ CB 3+3λ 
CCA 1+λ CCB 1+λ CCC λ CC 2+3λ 

Probability λ = 1 λ = .5 λ = .31 λ = .01 
P(A | AA) .25 .2 .16 .01 
P(C | AA) .5 .6 .68 .98 
P(C | BA) .333 .333 .333 .333 
P(A | BC) .428 .45 .47 .499 
P(B | BC) .143 .2 .06 .002 
P(C | BC) .428 .45 .47 .499 
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Held-out Estimator 
  For this technique, we will call this additional corpus the held out 

data, for in essence it is a subset of the training data that is withheld 
from the initial estimation procedure.  

  We could count how many times each observation occurred in both 
a training set and the held-out data, and use these number to 
explore how often observations that occur r times in the training 
data occur in the development data.  

  This would not only give us an estimate of how often observations 
not in the training data occur in subsequent data but also how often 
observations that occur r times occur in subsequent data. 

 

Training 
text 

Held out  
text 



Held-out Estimator 
  We first divide our training data into two corpora: T, still called the 

training data, and HO, called the held out data. 
 

  For each sequence w1…wn, we count: 
 

  We are interested in n-grams with the same number of occurrences. 
  Let Nr be the set of all sequences that occurred exactly r times in the 

training corpus. If we used the standard MLE technique, we would 
estimate the probability of each item in Nr as having a probability  
r/N. 

  Rather than use this, however, we look at how many times elements 
in each class occur in HO. Specifically, we count how many times 
any of these items occur in the development corpus: 
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Held-out Estimator 
  Now we can compute the average number of times an observation that 

occurred r times in the training corpus occurs in the HO corpus: 
  AverageCnt(r) = Tr/Nr 

  We now use this “adjusted count” for producing the probability estimate: 
        

      (NHO is the size of the held out data) 

  The most clear case where this helps is seen by looking at the elements 
that do not occur in the training corpus. Let’s use the previous trigram 
example. There were 14 trigrams that did not occur in the training corpus. 
Let’s assume only 6 of these occur (or actually, don’t occur ) in the HO 
text with size 40 (it doesn’t matter if the same word occurred three times or 
three words occurred once). So we have T0= 6 

  Thus the average number of times we can expect one of these unseen 
bigrams to appear in the held out data is AverageCnt(0) = 6/40 = .15 

  Thus, the held-out probability estimate for any one of these, say, AAA, is 
PHO(AAA) = .15/40 = .00375 
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Different approaches for HO data 
  As mentioned above, one disadvantage of the held out method appears to 

be that we need to reduce our training corpora in order to produce the held 
out data. So the smaller initial training set could hurt us. 

  One way around this is two do the estimate with several different sets for 
held-out data . Say we divide the corpus into two parts: A and B. First we 
initially train on A and use B as the held out data, and then we create a new 
model by training on B and using A as the held-out data.  

  We then have two estimates, Pm1 and Pm2 and can combine them to make a 
new estimate Pm using: 

  Of course, we need not divide the corpus exactly into half. Experience has 
shown that, assuming the corpus is large enough, it is better to use more 
data for the initial estimate, saving only about 10% for the held-out data. 
This suggests a generalization of the above strategy. We divide the initial 
corpus into ten parts, and build ten estimates each one using a different part 
as the held out data. The final probability distribution would then be 
constructed using the average over the ten estimations obtained. 
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Cross Validation 
  Note we can use the same technique for test data as well as for evaluation. Say we 

have one corpus and need to select part of it as the test data. Once again, typically 
people choose test data to be 10% of the size of the training data. Rather than doing 
this once, we could do a more extensive evaluation of a technique by do ten 
experiments, each one using a different subset of the corpora as the test set and the 
rest as the training.  

  This is called the cross-validation technique and is an effective way to perform more 
extensive testing of a technique without requiring more data. 

  Of course, if we were evaluating a technique that requires held-out data, we’d need to 
combine both approaches. In this case, we’d select one subset as test data, one as 
held-out data and train on the rest. There are now a hundred combinations that 
perform different experiments using the same corpora.  

  The final evaluation result would be the average of the individual experiments 
performed. 

HO 

HO 

Experiment 1 

Experiment 2 

Etc… 



Good-Turing Estimation 
  Reminder: 

  Good and Turing estimated that text has a binomial distribution (on r 
and Nr) 

  Works bad for big r’s, mainly used for small r’s (Nr is big, due to Zipf’s 
Law). 

  There are ways of normalizing probabilities to integrate GT and MLE. 
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Linear Interpolation 

  We combine several n-grams 
  Learn proper values for λi by training to (approximately) maximize 

the likelihood of an independent development (a.k.a. tuning) 
corpus. 
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Backoff 
  Only use lower-order model when data for higher-order model is 

unavailable (i.e. count is zero). 
  Recursively back-off to weaker models until data is available. 

  Where P* is a discounted probability estimate to reserve mass for 
unseen events and α’s are back-off weights (see text for details). 
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Entropy 
  Suppose you want to maximize the amount of data 

you can transmit. 
  Example: random number between 1-8. Binary 

encoding – need 3 bits. 

  Entropy:                               
 
  What if each random number has a different 

probability? 
  Simplified Polynesian (letter frequency): 
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Entropy 

  Example of encoding “exploiting” new letter frequency information: 

(more frequent words take up 2 bits and start with 0) 

  The joint entropy of a pair of discrete random variables X, Y is the amount of 
information needed on average to specify both their values. It is defined as: 

  There is also a chain rule for entropy: 

  Therefore: 

I(X,Y) is called mutual information: the decrease in the uncertainty of X, given Y. 
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Simplified Polynesian - revisited 
  Let’s say we know more about Simplified Polynesian. Further fieldwork has 

revealed that Simplified Polynesian has syllable structure. It turns out that 
all words consist of sequences of CV (consonant-vowel) syllables. So the 
marginal distribution is as follows: 

  A quick calculation will reveal that: 

  Keep in mind these values are for whole syllables, i.e. two letters. In 
Comparison, we got 2.5 for one letter in the previous example (the actual 
result would be 5 bits on average for two letters) 

  So, given the right encoding, we can pass data through even less 
bandwidth. 

p t k 
a 1/16 3/8 1/16 ½ 
i 1/16 3/16 0 ¼ 
u 0 3/16 1/16 ¼ 

1/8 3/4 1/8 
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Entropy and model estimation 
  So far we have examined the notion of entropy, and seen roughly how it is a 

guide to determining efficient codes for sending messages, but how does 
this relate to understanding language? 

  Entropy is a measure of our uncertainty. The more we know about 
something (the language model), the lower the entropy will be, because we 
are less surprised by the outcome of a trial. 

  If we make certain assumptions that a language is “nice”, then the cross 
entropy for a language L using a model m can be calculated as: 

  Our goal – to minimize this number as much as possible. 
  If we were able to predict all words perfectly, the entropy would be 0. 
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Perplexity 
  Another method of assessing a model. 

  Same idea, simply non-logarithmic (according to 
Manning-Schutze: “We suspect that speech recognition 
people prefer to report the larger non-logarithmic 
numbers given by perplexity mainly because it is much 
easier to impress funding bodies by saying that ‘we’ve 
managed to reduce perplexity from 950 to only 540’ than 
by saying ‘we’ve reduced cross entropy from 9.9 to 9.1 
bits’” (p. 78) 
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Interesting links 
  IBM and the Jeopardy Challenge: 

http://www.youtube.com/watch?v=FC3IryWr4c8 

  http://ngrams.googlelabs.com/ 

  http://web-ngram.research.microsoft.com/spellerchallenge/ 



Questions? 


