Analog Models

12/2

Alan Turing (1936)

A man provided with paper, pencil, and rubber, and subject to strict discipline, is in effect à universal machine

• The property of being 'discrete' is only an advantage for the theoretical investigator, and serves no evolutionary purpose, so we could not expect Nature to assist us by producing truly 'discrete' brains.

 All machinery can be regarded as continuous, but when it is possible to regard it as discrete it is usually best to do so.

Turing's Premises

and the second of the

- Sequential (discrete) symbol manipulation
- Deterministic
- Finite internal states
- · Finike symbol space
- Finite observability and local action
- e Linear external memory suffices

Digital vs. Analog

• It is true that a discrete-state machine must be different from a continuous machine. But if we adhere to the conditions of the imitation game, the interrogator will not be able to take any advantage of this difference.

All and the second second strength

· Analog space

Analog time

Analog Space

William Provident and the

 Uncountably many possible values

Euclid (c. -300)

Euclid's GCD algorithm was formulated geometrically: Find common measure for 2 lines.

Used repeated subtraction of the shorter segment from the longer.

Euclid's Elements

Finitely describable - in terms of basic compass operations

With a trained to do a - standed

Δύο άριθμῶν δοθέντων μή πρώτων πρός άλλήλοι ς ιστον αύτῶν χοινόν μέτρον εύρεῖν.

*Εστωσαν οἱ δοθέντες δύο ἀριθμοὶ μή πρῶτοι τη \ήλους οἱ AB, ΓΔ. δεῖ δή τῶν AB, ΓΔ τὸ μέγιστον κοι poν εύρεῖν.

Εί μέν ούν ό ΓΔ τὸν ΑΒ μετρεῖ, μετρεῖ δὲ καὶ ἐαυτερ ἄρα τῶν ΓΔ, ΑΒ κοινὸν μέτρον ἐστίν. καὶ φανερόν μέγιστον: οὐδεἰς γὰρ μείζων τοῦ ΓΔ τὸν ΓΔ μετογο

• A small error in the information about the size of a nervous impulse impinging on a neuron, may make a large difference to the size of the outgoing impulse.

Bisection Search (Saul Gorn)

Although [this procedure is] among the slowest, it is applicable to any continuous function. The fact that no differentiability conditions have to be checked makes it ... an 'old work-horse'.

Continuous Space

And the second second of the second second

Idealized

Computable reals

Intervals

Arbitrary precision

Vannevar Bush's Differential Analyser

Analog Programs

Argonne Rational Laboratory APPLIED MATHEMATICS DIVISION ANALOG COMPUTER

5. POTENTIOMETER SETTINGS

PROBLEM NO.	_
DRAWING NO.	
DATE	

POTENTIOMETER NO.		MÁTHEMATICAL		CORPEC	<u>1</u>			
DRAWING	MACHINE	VALUE	HINE YALUE YALI	YALUE	TION	SETTING	SET	PARAMETERS
]		+ b volts	+10		1000		If	
2		- l volt	- 1	• • ••••••••••••••••••••••••••••••••••	0100		b = 10	
21		w/a	6.283	· · · ·	6283(10		 ω = 6.283	
22		ω/a	6.283		6283(10		a = 1	
· · · · · ·		<u> </u>					A sine wave of I cps is generated	
		· · · ·		 		┥┥╿	i	

Greneral-Purpose Analog Computer

Hybrid Computers

Analog Time

The Lot Method Million

- State evolves as time progresses
- Time is dense or continuous

 The states of 'continuous' machinery ... form a continuous manifold, and the behaviour of the machine is described by a curve on this manifold.

Baron Kelvin's Tide Predictor

Brill Phillips' Waler Compuler

Toy Problem: Morlar t time signal • g,a,s inputs Height $x := t \cdot s \cdot cos a$ y := t·s·sin a - ½·9·62 Distance

15 . T. Lander Break and a King

Fixed dynamics over stretch of time

- Change of dynamics
- Shouldn't
 happen too
 often

 Dynamics change only finitely often in any finite trajectory

- Fixed dynamics over stretch of time
- If input wouldn't change, nothing would
- Critical equalities unchanging

A discrete algorithm is a discrete process whose evolution has a finite description

An analog algorithm is a continuous process whose evolution has a finite description

Algorikhm

E The state of the second second and the second of the second second second second second second second second

I. An algorithm is a state-transition system

II. Logical structures capture salient aspects of states

III. The transition relation can be described finitely

• No input signal other than time

• Explicit (solved) equations

· Ignore output or interaction

Transilion System

a the second the standing of the second s

State

Transilion

Transilion System

And the State of the second state of the secon

Algorithmic

State

Transilion

Section Dell'State

P

0

9

٣

a

M

Transilion System

And the second second and the second s

Effective

State

Initial State

Transilion

12

Section Bellings

P

0

9

r

a

m

Timelines

- Sequential/ Branching
- Discrete/
 Continuous
- · Dense/Sparse
- Finite/Infinite/ Transfinite

Harlley Rogers, Jr.

For any given input, the computation is carried out in a discrete stepwise fashion, without use of continuous methods or analogue devices.

Discrele Algorilhm

• A discrete state-transition system

Analog Algorikhm

•A continuous state-transition system.

Channel

DISCTERE TAISLELOIS

designed a loss and back on the William the

• Everything needed

• Initial & terminal states

Discrete Transition System

Continuous System

5 B - 1 S 1

• Zapf• f(E) := 0

 Uncountably many changes

• An algorithm is a state-transition system.

Its transitions are partial functions.

Intermediate States

Ce genre de Peinture ... de pouvoir être interrompu quand on veut & repris de même

Paul Romain Chaperon, Traité de la peinture au pastel (1788)

Intermediate states

Environment provides inputs

Alternate environment steps
 and algorithm steps

- Function from time to domain (closed under isomorphism)
- Concatenation
 is associative

State encapsulates all relevant data!

The second second and the second second second and the second second second second second second second second

Everything needed to proceed (besides the algorithm)

Crecmetry.

1. P. T. MERINAL MORE N

- Domain (underlying set): points, lines, rays, circles, tuples and small bags
- Vocabulary &
 Operations:
 Compass; Ruler;
 =; n; Tuple & Bag

Algebras

Transitions change interpretations

II. Abstract State

- · States are (first-order) structures.
- All states share the same (finite) vocabulary.
- Transitions preserve the domain (base set) of states.

States & Transitions

 States are abstract (closed under isomorphism)

 Behavior does not depend on internal representation

Isomorphism

Transitions respect isomorphisms X ≅ Y ⇒ X' ≅ Y'

- Lot and Bard Lowing a Class the

Isomorphism

Transitions respect isomorphisms X ≈ Y ⇒ Xt ≈ Yt

1. T. Martines Contrast of David With

Isomorphism

• Transitions respect isomorphisms • $X \cong Y \notin u \cong v \ \Box X_u \cong Y_v$

1. A AND DEAL AND A PORTATION

- Environment
 provides inputs
 via ports
- X_u state after input u

• Data is arranged in a structure of a finite signature.

 An algorithm is abstract, thus applicable to all isomorphic structures.

Compute by Analogy

What is Analog Computation?

- · Identifying the motivating problem.
- Specifying the problem by a system of differential equations.
- · Designing a network to solve the equations.
- Calculating conditions on the data and parameters to ensure good experimental behaviour of the network.
- Constructing an analog machine using a particular technology.
- Using the machine for measurements/ experimental procedures.

A Character Barran and Anna and Alberton Character and

$$\frac{\partial c_1}{\partial \theta} = \frac{1}{P_{\nu}} \frac{\partial^2 c_1}{\partial Z^2} - \frac{\partial c_1}{\partial Z} - \frac{N}{m} (c_1 - c_2) \qquad (1)$$

$$\frac{\partial c_2}{\partial \theta} = \frac{1}{P_{\mu l}} \frac{\partial^2 c_2}{\partial Z^2} + N \varepsilon (c_1 - c_2) - M f (c_2 - c_3) \qquad (2)$$

$$\frac{\partial c_3}{\partial \theta} = M f (c_2 - c_3) - Q f c_3 \qquad (3)$$

$$f = \exp (-P_{\mu} Z) \qquad (4)$$

- Function from time to domain (closed under isomorphism)
- Concatenation
 is associative

Retrospection

State Post and the

- Current state
 depends on
 past
- Intermediate states

• $X_{uv} = (X_u)_v$

II. Abstract State

- · States are (first-order) structures.
- All states share the same (finite) vocabulary.
- Transitions preserve the domain (base set) of states.
- States (and initial and terminal states) are closed under isomorphism.
- · Transitions commute with isomorphisms.

Algorichmic Transitions

States evolve

Evolution
 described by
 finite program

Teachable Transitions

190 Activities to Move from Morning Circle to the End of the Day

What is a transition?

•Transitions are algorithmic if they can all be described finitely (without presupposing any special knowledge).

Kleene

An algorithm in our sense must be fully and finitely described before any particular question to which it is applied is selected....

All steps must ... be predetermined and performable without any exercise of ingenuity or mathematical invention by the person doing the computing.

III. Algorikhmic Transilions

Yuri Gurevich

 Transitions are determined by a fixed finite set of terms, such that states that agree on the values of these terms, also agree on all state changes.

Terms & Locations

x, f(x)x = 3f(3) = 5f(1) = 2

Critical Erms T: x, f(x)X=3 X=3 X=3 f(3)=5f(1)=7f(3)=5f(1)=1f(3)=5f(1)=2 x=1x=1x=1f(3)=0f(1)=4f(3)=0f(3)=0 f(1)=7 f(1)=2

Operations

- Abstract
 algebraic
 operations
- May be partial (3/0 is undefined)
- Hangs when result is undefined

Algorikhmic Transilions

Construction of the Constr

Transilions

- View state as location-value pairs
 - $f(a,b,c) \mapsto d$
- Changes to state X
 - $\Delta X = X' \setminus X$
 - $\Delta_u X = X_u \setminus X$

Evolution

A MARTINE CONTRACTOR OF THE

- Transition to X_u
 under input signal u
 - $\bullet \Delta_u X = X_u \setminus X$
- - $X =_T Y \Rightarrow \Delta_u X = \Delta_u Y$

- Fixed dynamics over stretch of time
- If input wouldn't change, nothing would
- Equalities between critical terms maintained

All and the second strength

Change of dynamics

• Requires conditionals

 Locations still to be accessed are determined by locations already accessed

Past Determines Future

A CONTRACTOR AND AND AND A CONTRACT OF A

XX =T YX $U_{|u|} = V_{|v|}$ $\Delta_{u}X = \Delta_{v}Y$

0.0

Critical Moment

0

Non-Flows

A Construction of the second states the Construction of the

x := x+1
if x=0 then y := -y
unless y=0
x := x/2
unless x=0

VS.

z = [t]

if t < z then $z := z-1 \parallel 1$ if t < z+1 then z := z+1

60 Souvenir Postals of St. Charles and Vicinity

AFTER

BEFORE

HURRICANE FEBRUARY 26TH. 1876.

 At every jump, there are "before" and "after" states: X before algorithm makes changes and X' after

Critical Moment

- Suppose f(a,b,c) := d in $\Delta_u X$
- After some prefix w of u, d in [T]xw
- If not, let Y be X with d'instead of d
- And v be u with d'instead
- By criticality f(a,b,c) = d also in Y_u
- By isomorphism f(a,b,c) = d' in Y_v
- So $u \neq v$, and signals must part ways

Flow Equations

AND ALL MORE A STATE OF

· Solved form

 Leftdifferentiation
 operator

 Solver for implicit equations

• Infinitesimals

And Good said V-B= 0 V=E=- 31 V=B= MJ+ME M and there was

Bounce, Bounce

The Lot of Antipiped Contract of David State

- t time signal
- dt infinitesimal
- g,k constants
 - s := s + g · dł
 - $\cdot x := x + s \cdot dt$

• if x=0 then s := - k.s

Explicit Flows

• E time signal

Acquisition Staging Booster Burn Out Burger frager frager Burger frager frager Burger frager frager Burger frager frager

• 9,a,s inputs

 $x := k \cdot s \cdot \cos a$ $y := k \cdot s \cdot \sin a$ $- \frac{1}{2} \cdot q \cdot k^{2}$

Implicit Flow

• E time signal

y' = x

z' = -y

signal of signals

- Tiny pieces of history
- Leftdifferentiation
 operator
- y := x'

Mail Mail Mail 8.96 Mail 19.00 Mail 19.00 <th>Cons Lis Cons Subs Lis Cons Cons Subs Subs Cons Cons Subs Subs Cons Cons Subs Subs Cons Cons Subs Subs Cons Cons Cons Subs Subs Subs Cons Cons Cons Subs Subs Subs Cons Cons Cons Cons Subs Subs Cons Cons Cons Cons Cons Subs Subs Cons Cons Cons Cons Subs Subs Cons Cons Cons Cons Subs Subs Cons <td< th=""><th>Image: State Image: State<</th><th>AAT STRAT STRATT AT AT AT AT AT AT AT AT AT AT AT AT</th></td<></th>	Cons Lis Cons Subs Lis Cons Cons Subs Subs Cons Cons Subs Subs Cons Cons Subs Subs Cons Cons Subs Subs Cons Cons Cons Subs Subs Subs Cons Cons Cons Subs Subs Subs Cons Cons Cons Cons Subs Subs Cons Cons Cons Cons Cons Subs Subs Cons Cons Cons Cons Subs Subs Cons Cons Cons Cons Subs Subs Cons <td< th=""><th>Image: State Image: State<</th><th>AAT STRAT STRATT AT AT AT AT AT AT AT AT AT AT AT AT</th></td<>	Image: State Image: State<	AAT STRAT STRATT AT AT AT AT AT AT AT AT AT AT AT AT
ER 28-13 16500	MERTFIELD 14.07 22100	NOLINEETING 11.029 17200 1	SUNDAME C & SUNDAME C & SUNDER
	5:24Pm	4:2Pm	8124
Bruno Scarpellini 1963

 Compute the undecidable via infinite precision integral.

 It is conceivable that the mathematics of a collection of axons may lead to undecidable propositions. (2003)

John Myhill

And the second states the

- To make Scarpellini's work a basis for constructing an actual computer which can solve problems which are not digitally (= recursively) solvable:
 - Assume perfect functioning.
 - · Assume perfect sensor (zero test).

Tide-Prediction Manual

• The machine to be described here, like almost every contrivance, apparatus, or machine in practical use, is based very largely upon what has been accomplished by others who previously labored in the same field. U.S. Coast and Geodetic Survey (1915)

An algorithm is effective if its initial states have a finite description

If initial states can be described, then all states can be