
Analog Models 



Alan Turing (1936)
  

 A man provided 
with paper, pencil, 

and rubber, and 
subject to strict 
discipline, is in 

effect a universal 
machine



Turing’s Machines



Turing [1948]

• The property of being ‘discrete’ is 
only an advantage for the 
theoretical investigator, and 
serves no evolutionary purpose, 
so we could not expect Nature to 
assist us by producing truly 
`discrete’ brains.



Turing [1948]

• All machinery can be regarded as 
continuous, but when it is 
possible to regard it as discrete  
it is usually best to do so. 



Turing’s Premises

• Sequential (discrete) symbol 
manipulation 

• Deterministic 
• Finite internal states 
• Finite symbol space 
• Finite observability and local 
action 

• Linear external memory suffices



Digital vs. Analog



Turing [1950]

• It is true that a discrete-state 
machine must be different from a 
continuous machine. But if we 
adhere to the conditions of the 
imitation game, the interrogator 
will not be able to take any 
advantage of this difference.



Analog

Analog space 

Analog time



Analog Space

Uncountably 
many possible 
values



Euclid (c. -300)
 Euclid’s GCD algorithm 

was formulated 
geometrically: Find 
common measure for 2 
lines.   

 Used repeated 
subtraction of the 
shorter segment from 
the longer.



Euclid’s Elements

Finitely 
describable     
— in terms of 
basic compass 
operations



Turing [1950]

• A small error in the information 
about the size of a nervous 
impulse impinging on a neuron, 
may make a large difference to 
the size of the outgoing impulse.



Bisection Search

if |b-a|>� & sgn f((a+b)/2) = 
sgn f(a) then a := (a+b)/2 

if |b-a|>� & sgn f((a+b)/2) = 
sgn f(b) then b := (a+b)/2



Bisection Search     
(Saul Gorn)

Although [this procedure 
is] among the slowest, it 
is applicable to any 
continuous function.  The 
fact that no 
differentiability 
conditions have to be 
checked makes it ...  an 
'old work-horse'.



Continuous Space

Idealized 

Computable reals 

Intervals 

Arbitrary precision



Vannevar Bush’s 
Differential Analyser





Analog Programs

49

50



General-Purpose 
Analog Computer

5.3 Another Explicit Pure Flow

One of the most famous models of analog computations is the General Pur-
pose Analog Computer (GPAC) of Claude Shannon [12].

Example 24. Here is a (non-mimimal) GPAC that generates sine and cosine:

� � �
-1

q q
t

z
y

x

Indeed, if initial conditions are set up correctly, we have
⇤
⇧

⌅

x� = z x(0) = 1
y� = x y(0) = 0
z� = �y z(0) = 0 ,

from which it follows that x(t) = cos(t), y(t) = sin(t), z = � sin(t).

At an explicit level, the flow trajectory �t(X) can be specified simply by

⇤
⇧

⌅

x = cos(ı)
y = sin(ı)
z = � sin(ı)

where ı is the input port and nothing but x, y and z change from state
to state. The update function is, accordingly,

�t(X) = {x ⇤⇥ cos(ı), y ⇤⇥ sin(ı), z ⇤⇥ � sin(ı)}

Hence, the critical term are cos(ı), sin(ı) and � sin(ı).
If one prefers, it can be specified by

FLOW

�

⌃
x = cos(ı)
y = sin(ı)
z = � sin(ı)

⇥

⌥
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Hybrid Computers



Analog Time

State evolves as 
time progresses 

Time is dense 
or continuous



Turing [1948]

• The states of `continuous’ 
machinery ... form a continuous 
manifold, and the behaviour of 
the machine is described by a 
curve on this manifold.





Baron Kelvin’s 
Tide Predictor



Britt Phillips‘       
Water Computer



Toy Problem: Mortar

• t time signal 

• g,a,s inputs 

x := t·s·cos a 
y := t·s·sin a 

      - ½·g·t2



Flow & Jump



Flows

Fixed dynamics 
over stretch of 
time



Jumps

Change of 
dynamics 

Shouldn’t 
happen too 
often



Sparse Jumps

• Dynamics 
change only 
finitely often 
in any finite 
trajectory



Flows
Fixed dynamics 
over stretch of 
time 

If input 
wouldn’t change, 
nothing would 

Critical 
equalities 
unchanging



A discrete algorithm is 
a discrete process 

whose evolution has a 
finite description



An analog algorithm is 
a continuous process 
whose evolution has a 

finite description



Algorithm

I. An algorithm is a state-transition 
system 

II. Logical structures capture 
salient aspects of states 

III. The transition relation can be 
described finitely



Simple

• No input signal other than time 

• Explicit (solved) equations 

• Ignore output or interaction



Transition System

State

Transition

State



Transition System

State

Transition

State

P
r
o
g
r
a
m

Algorithmic



Transition System

State

Transition

State

P
r
o
g
r
a
m

Initial 
State

Effective



I



Timelines

Sequential/
Branching 

Discrete/
Continuous 

Dense/Sparse 

Finite/Infinite/
Transfinite



 For any given input, the 
computation                         
is carried out in a discrete 
stepwise fashion, without use 
of continuous methods or 
analogue devices. 

Hartley Rogers, Jr.



• A discrete state-transition   
system

Discrete Algorithm



•A continuous state-transition 
system.

Analog Algorithm



Discrete Transitions
Beijing, China Weather
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States

Everything 
needed 

Initial & 
terminal states



Discrete Transition System

I

O

Q



Continuous System

I

O

Q



Infinite Change

• Zap f 

• f(t) := 0 

• Uncountably 
many changes



• An algorithm is a state-transition 
system. 

• Its transitions are partial 
functions.

I. Evolution





Intermediate States



Inputs

Environment 
provides inputs



Discrete Input

• Alternate environment steps 
and algorithm steps



Signals

Function from 
time to domain 
(closed under 
isomorphism) 

Concatenation 
is associative







II



State encapsulates all relevant data!



States

Everything 
needed to 
proceed 
(besides the 
algorithm)



Geometry

Domain 
(underlying set): 
points, lines, rays, 
circles, tuples 
and small bags 

Vocabulary & 
Operations: 
Compass; Ruler; 
=; ∩; Tuple & Bag



a    b

f   e

+ - / sgn

=  &





Algebras

Transitions change interpretations



• States are (first-order) structures.   
• All states share the same (finite) 
vocabulary.   

• Transitions preserve the domain (base set) 
of states.  

II. Abstract State



C°
C°



States & Transitions

States are abstract 
(closed under 
isomorphism)  

Behavior does not 
depend on internal 
representation



C°

C

C°

F° F°

Transitions respect isomorphisms 



Isomorphism

Transitions respect isomorphisms 

X ≅ Y  �  X’ ≅ Y’



Isomorphism

Transitions respect isomorphisms 

X ≅ Y  �  Xt ≅ Yt



Isomorphism

Transitions respect isomorphisms 

X ≅ Y & u ≅ v  �  Xu ≅ Yv



Inputs

Environment 
provides inputs 
via ports 

Xu state after 
input u



•Data is arranged in a structure of a 
finite signature.

States are Abstract

τ
x=5; s(x)=6;…x=“101”; s(x)=“110”;…

x=6; s(x)=7;…

τ

x=“110”; s(x)=“111”;…

≅

• An algorithm is abstract, thus applicable to all isomorphic 
structures.

c
f g

≅



Compute by Analogy



What is Analog 
Computation?

•  Identifying the motivating problem. 
•  Specifying the problem by a system of 
differential equations.  

•  Designing a network to solve the equations. 
•  Calculating conditions on the data and 
parameters to ensure good experimental 
behaviour of the network. 

•  Constructing an analog machine using a 
particular technology. 

•  Using the machine for measurements/
experimental procedures.



Models
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ANALOG SIMULATION OF AN ISOTHERMAL 
SEMIBATCH BUBBLE.COLUMN SLURRY REACTOR * 

V.M.H. G O V I N D A R A O  * *  

ABSTRACT - -  The boundalT-value problem des- 
c~ibing the dynamics of an isothermal, senHbatch bub- 
ble-column dun 7 reactor was smaulated on a EAI 680 
analog computer by the method o/ modal simulation. 
Detads of the simulation me described here. The 
method enables the e~,aluation of the steady-state aJad 
the transient ~esponse of the reactor. Sample results 
are presellted. 

RESUME. - -  Le probl&,le avec conditions aux fi- 
niltes qu/ ddc,vt la dynamique d'un rdacteur isother- 
mique semi-discontinu inerrant en ~euvre une rdaction 
gaz liquade catalys& par une poudre en suspension a 
did simulg surun  calculateur analoglque EAI 680 par 
apphcation de la mdthode de let smzulation modale. Les 
ddtads de la smlulanon sont donngs 1ca. La mgthode 
utdis~e pe~waet l'~t,aluation de let rdponse du rdacteur 
e~z rdghne permanent et en r~gime transltoire. Des 
r,asultats exemplati/s sont donnds. 

I N T R O D U C T I O N  
Bubble-column slurry reactors (BCSR) find exten- 

sive application in the chemical process industry for 
gas-liquid-particle contacting. Processes like hydro- 
genation, oxidation, polymerization, hydrodesulfuriza- 
tion, Fisher-Tropsch synthesis etc. are often carried 
out in such a reactor. Understanding of the dynamic 
behavmur of the reactor is important for the proper 
design of the reactor as well as its control system. 
Recently an analysts was proposed [Govindarao, 1974] 
of the dynamics of a BCSR that takes into considera- 
tion the longitudinal mtxmg in each of the 3 phases 
of the reactor. Apphed to the simple case of isothermal 
and semtbatch con&ttons, and with the assumption 
of stationary distribution of the concentration of the 
solid particles, the equations were shown to simplify 
considerably The present paper describes the simula- 
tion of this simplified model on an EAI 680 analog 
computer. 

THE MODEL E Q U A T I O N S  
Figure 1 gives a schematic representation of the 

model for the semibatch BCSR The equations of the 
system, under isothermal conditions and with stationary 
solids concentration distribution, are [Govmdarao, 
1974] : 

- (c, - -  :..,) (i) 
0 P, ~ Z ~ ~ Z /n 

* Manuscript recelved on 15 may t974 
~* Instltut fill Systemdynamlk and Regelungstechoik der 

Un,versit,it Stuttgart, West Germany 
On leave from Department of Chemical Engmeetlng, lnd,an 

lqstltute of Scmnce, Bangalore 560012. India. 

c~ t 22 ca 
- -  + Ne(c~--c2)--M/(c2--ca) 

8 0 P,l ~ Z'~ 
(2) 

Ca 
- - -  = M / (c~-- ~a) - -  Q / c~ (3,) 

~0 
/ = exp ( - -  p,, z )  (4) 

where, for brevity, the surface reaction is considered 
to be first order with respect to the diffusing com- 
ponent, and zero order with respect to all the other 
components. 

~ gas 
# gosphase j slur ry Ip~a~ 

Cg [ ¢1 Ug c s 

Og f w ka Up 
Dp 

I k: kl 

]'~oo 
Fig. 1 

Model of an isothermal, semibatch BCSR 

The assooated boundary conditions are 

c~ 
a z ~ l .  = P. [ < . -  c,°l (5) 
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Signals

Function from 
time to domain 
(closed under 
isomorphism) 

Concatenation 
is associative



Retrospection

Current state 
depends on 
past 

Intermediate 
states 

Xuv = (Xu)v



• States are (first-order) structures.   
• All states share the same (finite) 
vocabulary.   

• Transitions preserve the domain (base set) 
of states.   

• States (and initial and terminal states) are 
closed under isomorphism.   

• Transitions commute with isomorphisms.

II. Abstract State



III



Algorithmic Transitions

States evolve 

Evolution 
described by 
finite program



•Transitions are algorithmic if they 
can all be described finitely 
(without presupposing any special 
knowledge).

What is a transition?



An algorithm in our sense must be fully and 
finitely described before any particular 
question to which it is applied is 
selected....    

All steps must ... be predetermined and 
performable without any exercise of 
ingenuity or mathematical invention by the 
person doing the computing. 

Kleene



•Transitions are 
determined by a fixed 
finite set of terms, such 
that states that agree on 
the values of these 
terms, also agree on all 
state changes.

III. Algorithmic Transitions

Yuri Gurevich



Terms & Locations

   x, f(x)

x=3 
f(3)=5 
f(1)=2



Critical Terms

x=3 
f(3)=5 
f(1)=7

T: x, f(x)

x=1 
f(3)=0 
f(1)=7

x=1 
f(3)=0 
f(1)=2

x=3 
f(3)=5 
f(1)=2

x=3 
f(3)=5 
f(1)=1

x=1 
f(3)=0 
f(1)=4

X



Operations
Abstract 
algebraic 
operations 

May be partial 
(3/0 is 
undefined) 

Hangs when 
result is 
undefined



Algorithmic Transitions



Transitions

View state as  
location-value 
pairs 

f(a,b,c) ⟼ d 

Changes to state X 

ΔX = X’∖X 
ΔuX = Xu∖X



Evolution

Transition to Xu 
under input signal u 

ΔuX = Xu∖X 
Evolution depends 
on critical terms 
and input port 

X =T Y � ΔuX = ΔuY



Flows

Fixed dynamics over 
stretch of time 

If input wouldn’t 
change, nothing 
would 

Equalities between 
critical terms 
maintained 



Jumps

Change of 
dynamics 

Requires 
conditionals



Partiality

Locations still 
to be accessed 
are determined 
by locations 
already 
accessed



Past Determines Future

Xu =T Yv  

u|u| = v|v| 

�  

ΔuX = ΔvY

~ ~



Non-Deterministic



Deterministic



Critical Moment

c := 40

c := 40

40



Non-Flows

• x := x+1 

• if x=0 then y := -y 

• unless y=0 

• x := x/2 

• unless x=0



Flow   vs.     Jump

z =  t if t<z then z := z-1 || 

if t≥z+1 then z := z+1

 ⨼ ⨼



Before & After

• At every jump, there are “before” and 
“after” states: X before algorithm 
makes changes and X’ after



Critical Moment
Suppose f(a,b,c) := d in ΔuX 

After some prefix w of u, d in ⟦T⟧Xw  

If not, let Y be X with d’ instead of d 

And v be u with d’ instead 

By criticality f(a,b,c) = d also in Yu 

By isomorphism f(a,b,c) = d’ in Yv 

So u≠v, and signals must part ways



Flow Equations

Solved form 

Left-
differentiation 
operator 

Solver for 
implicit 
equations 

Infinitesimals



Bounce, Bounce

• t time signal 

• dt infinitesimal 

• g,k constants 

• s := s + g·dt 

• x := x + s·dt 

• if x=0 then s := - k·s



Explicit Flow
• t time signal 

• g,a,s inputs 

x := t·s·cos a 
y := t·s·sin a 

      - ½·g·t2



Implicit Flow
• t time signal 

• initially    
x=1; y=z=0 

x’ = z 

y’ = x 

z’ = -y

5.3 Another Explicit Pure Flow

One of the most famous models of analog computations is the General Pur-
pose Analog Computer (GPAC) of Claude Shannon [12].

Example 24. Here is a (non-mimimal) GPAC that generates sine and cosine:

� � �
-1

q q
t

z
y

x

Indeed, if initial conditions are set up correctly, we have
⇤
⇧

⌅

x� = z x(0) = 1
y� = x y(0) = 0
z� = �y z(0) = 0 ,

from which it follows that x(t) = cos(t), y(t) = sin(t), z = � sin(t).

At an explicit level, the flow trajectory �t(X) can be specified simply by

⇤
⇧

⌅

x = cos(ı)
y = sin(ı)
z = � sin(ı)

where ı is the input port and nothing but x, y and z change from state
to state. The update function is, accordingly,

�t(X) = {x ⇤⇥ cos(ı), y ⇤⇥ sin(ı), z ⇤⇥ � sin(ı)}

Hence, the critical term are cos(ı), sin(ı) and � sin(ı).
If one prefers, it can be specified by

FLOW

�

⌃
x = cos(ı)
y = sin(ı)
z = � sin(ı)

⇥

⌥
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Signal of Signals

Tiny pieces of 
history 

Left-
differentiation 
operator 

y := x’



Bruno Scarpellini 1963

• Compute the undecidable 
via infinite precision 
integral. 

• It is conceivable that the 
mathematics of a 
collection of axons may 
lead to undecidable 
propositions.  (2003)



John Myhill

• To make Scarpellini’s work a basis for 
constructing an actual computer which 
can solve problems which are not 
digitally (= recursively) solvable: 

• Assume perfect functioning. 

• Assume perfect sensor (zero test).



Tide-Prediction Manual

• The machine to be described here, 
like almost every contrivance, 
apparatus, or machine in practical 
use, is based very largely upon what 
has been accomplished by others who 
previously labored in the same field. 

U.S. Coast and Geodetic Survey  
(1915)



An algorithm is 
effective if its initial 
states have a finite 

description

IV



If initial states can be 
described, then all 

states can be


