
Cellular 
Automata 



What are Cellular Automata? 
•! It is a model that can be used to show how the 
elements of a system interact with each other.  
•! Each element of the system is assigned a cell.  
•! The cells can be: 

–! 2-dimensional squares,  
–! 3-dimensional blocks  
–!or another shape such as a hexagon. 



 Example of a two-dimensional 
automaton 

Here is a 2-d model, with 
256 cells, each cell in this 
example can be in either (0 
or 1) state, 

State 1 is encoded with 
color black, 0 with white. 

Each cell has eight 
neighbors (excluding 
itself). 



Cellular Automata: the 
specification 

•! A neighborhood function that specifies 
which of the cell s adjacent cells affect its 
state. 

•! A transition function that specifies mapping 
from state of neighbor cells to state of given 
cell 



Each cell has a defined neighborhood.  
 
For example, in a one dimension cellular automaton, a 
neighborhood of radius one for a given cell would include the 
cell to the immediate right and the cell to the immediate left.  
 
The cell itself may or may not be included in the 
neighborhood. 

Different models. 

(A,B,C,D,E,F,X) are cells 

Examples of neighborhoods 



What is the main 
characteristics of  Cellular 

Automata? 
•! Synchronous computation 
•! Infinitely-large grid: 

–!  but finite occupancy, 
–!  grows when needed 

•! Various dimensions (1D, 2D, 3D, …) 
•! Typically fine-grain 
•! If cells are distributed, they still need to communicate 

across boundaries; they communicate once per cycle. 



What are the Applications 
of Cellular Automata?     
•! Universal computers (embedded Turing 

machines) 
•! Self-reproduction 
•! Diffusion equations 
•! Artificial Life 
•! Digital Physics 



Some Examples of Application of 
CA: Simulation Models 

•! Game of Life  
•! Gas particles: Billiard-ball model 
•! Ising model: Ferro-magnetic spins 
•! Heat equation simulation 
•! Percolation models 
•! Wire models 
•! Lattice Gas models 



•The cells on the end may (or may not) be treated as 
"touching" each other as if the line of cells were circular.

If we consider them as they touch each other, then the cell 
(A) is a neighbor of cell (C)

One-Dimensional Cellular Automaton with Wrap-
around 



Life - The Game 



Life - Conway s Game of Life 

John H. Conway 



Life - The Game 
•! A cell dies or lives according to some transition rule 

•! The world is round (flips over edges)  

•! How many rules for Life? 20, 40, 100, 1000? 

T = 0 T = 1 

transition 
 

rules 



Three simple rules 
 
•! dies if number of alive neighbour cells =< 2  (loneliness) 

•! dies if number of alive neighbour cells >= 5  (overcrowding) 

•! lives is number of alive neighbour cells = 3  (procreation) 

Life - The Game 



SOS - Lecture 4 

Life - The Game 

Examples of the rules 
 
•! loneliness   (dies if #alive =< 2) 

•! overcrowding  (dies if #alive >= 5) 

•! procreation  (lives if #alive = 3) 

Life - The Game 



How to design the functions for rules? 
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How to design the functions for rules? 
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block pond ship eater

Stable 

!

time = 1 time = 2

Periodic 

Time = 1 time = 2 time = 3 time = 4 time = 5

Moving 

Life  - Patterns 



Cellular Automata - Introduction 

Now 1 second 
later 

Traditional science 
 
•! Newton laws 
 
•! states 

Heisenberg principle 
 
•! states that it is impossible to precisely know  
the speed and the location of a particle 
 
•! basis of quantum theory 

•! problem: detailed description of states impossible etc etc 



A CA is an array of identically programmed automata, or cells, 
which interact with one another in a neighbourhood and have 
definite state  

Beyond Life - Cellular Automata 



A CA is an array of identically programmed automata, or cells, 
which interact with one another in a neighbourhood and have 
definite state  

Cellular Automata - Array 

1 45 34 12 90 4 27 7 

H Q M S W E T G 
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•! 1 dimensional 

•! 2 dimensional 
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Cellular Automata - Array 



A CA is an array of identically programmed automata, or cells, 
which interact with one another in a neighbourhood and have 
definite state  

SOS - Lecture 4 

Cellular Automata - Cells 

•! if #alive =< 2, then die 
•! if #alive = 3, then live 
•! if #alive >= 5, then die 

•! if #alive =< 2, then 
die 
•! if #alive = 3, then live 
•! if #alive >= 5, then 
die 

•! if #alive =< 2, then 
die 
•! if #alive = 3, then live 
•! if #alive >= 5, then 
die 

Cellular Automata - Cells 



A CA is an array of identically programmed automata, or cells, 
which interact with one another in a neighbourhood and have 
definite state  

SOS - Lecture 4 

Cellular Automata - Interaction 

 Da rulez 
 if #alive =< 2, then die 
 if #alive = 3, then live 
 if #alive >= 5, then die 

Cellular Automata - Interaction 



A CA is an array of identically programmed automata, or cells, 
which interact with one another in a neighborhood and have 
definite state  

SOS - Lecture 4 

Cellular Automata - Neighbourhood 

Neumann 
neighborhood 

Moore 
neighborhood 

gCellular Automata - Neighborhood 



A CA is an array of identically programmed automata, or cells, 
which interact with one another in a neighborhood and have 
definite state  

SOS - Lecture 4 

Cellular Automata - States 

2 possible states:   ON   OFF 

O 
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I T 

D 
G M 

X E 
N Z 

R 
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A 

Z 
26 possible states:   A ! Z 

Never infinite! 

Cellular Automata - States 
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! ! ! !

! ! ! !

cell# 1 2 3 4 5 6 7 8 9 10 11 12 13

time = 1
!

time = 2
!

time = 3
!

time = 4
!

time = 5
!

time = 6
!

time = 7

The rules 

Cellular Automata - Simple 1D example 



One difficulty with 
three-dimensional 
cellular automata is the 
graphical 
representation (on two-
dimensional paper or 
screen) 

Example of a three-dimensional cellular 
automaton 



In the initial configuration of the cellular automata, 
each cell is assigned a "starting" value from the range 
of possible values.  
 
For example, if the range of possible values is 0 or 1, 
then each cell would be assigned a 0 or a 1 in the initial 
configuration. 
 
Each value represents a color to the computer.  
 
Each cell is associated a transition rule. 

Example of description of a cellular 
automaton 



Here is an example 
In this example, the initial configuration for all the cells is state 
0, except for 4 cells in state 1. 
 

 

     Initial                                Step1                            Step2 

The next slide shows animation for this example 

• The transition rule for this example, is :  
• a cell stays in state 1 (black), if it has two or three black 
neighbors.  
• a cell changes to black, if it has exactly three black neighbors. 







In this example: 
•  Each cell has 8 neighbors, 
•  Each cell can be in one possible value at any given time, 

–  the transition takes place in discrete times 
•   it helps to imagine a clock feeding  all the cells. 

•  Each State is encoded with a unique color, 
–  The transition rule takes as input the present states (i.e., the 

present values) of all of the cells in a given cell's neighborhood 
and generates the next state (i.e., the next value) of the given 
cell.  

–  When applied to all of the cells individually in a cellular 
automata, the next state of the whole cellular automata is 
generated from the present state.  

–  Then the next state of the cellular automata is copied to the 
(new) present state and the process is repeated for as many 
clock cycles as desired.  



Let us now find 
some real-life 
examples!!! 



•! Vote is an example of the simplest 
possible kind of eight-neighbor CA.  

•! Vote is so simple because: 
–! (1) Vote is a "one-bit rule" and, 
–! (2) Vote is "totalistic.  

•!  What do these expressions mean? 

Example of a Cellular Automaton: 
VOTE 



•! NineSums:                                                              
The NineSum for a cell (C) is the  sum of 
1 s in all the surrounding cells 
(neighbors including cell (C)). 

•!  EightSum:                                                         
EightSum for a cell (C) is the  sum of 1 s 
in all the surrounding cells (neighbors 
excluding cell (C)). 

Example of a Cellular Automaton: 
VOTE 



•! Let s consider the above example to explain what 
NineSume & EightSum are. 

•! In this example, each cell can be in either 0 or 1 state. 
•! Cell C has 8 neighbors, 3 of them are in state 1,  

–! Then the EightSum for cell C is 3, NineSume is 4. 

Example of a Cellular Automaton: 
VOTE 



•!Vote is a one-bit rule.  
•!The cells of Vote have only two possible 

states: on or off, zero or one.  
•!Choosing between two options requires 

one bit of information, and this is why 
we call Vote a one-bit rule.  

Example of a Cellular Automaton: 
VOTE 



•! Vote is totalistic.  
•! A totalistic rule updates a cell C by forming the 

EightSum of the eight neighbors, adding in the value of 
C itself to get the full NineSum, and then determining 
the cell's new value strictly on the basis of where the 
NineSum lies in the range of ten possibilities 0, 1, 2, 3, 4, 
5, 6, 7, 8, and 9.  

•! Under a totalistic rule, a cell's next state depends only on 
the total number of bits in its nine-cell neighborhood.  

•! Let us present more detail of this example. 

Example of a Cellular 
Automaton: VOTE 



A rule like this is completely specified by a ten-entry 
lookup table which gives the new cell value for each of 
the ten possible neighborhood NineSums.  

Each of the entries has to be 0 or 1, so filling in such a 
lookup table involves making ten consecutive binary 
decisions, which can be done in 210 different ways. 

How many different eight-neighbor  
1-bit totalistic rules are there? 

Example of a Cellular Automaton: 
VOTE 



Each time a cell is updated, the NineSum of the cell and its eight neighbors is formed.  

The idea behind Vote's rule is that if most cells in your neighborhood are 1, then you go 
to 1, and if most cells in your neighborhood are 0, then you go to 0.  

What do we mean by "most cells in your neighborhood?"  

Since there are nine cells in your neighborhood, the most obvious interpretation is to 
assume that "most" means "five or more".  

Here is the lookup table for this simple majority rule. 

Example of a Cellular Automaton: 
VOTE 



At this time we have an idea about 
what the Cellular Automata is. 

Let us now try to get closer to the 
basic digital logic aspects 

 and find a different definition for 
Cellular Automata. 

Many models of life  can be created like this that illustrate 
congestion, scarcity of resources, competing species, etc. 



•! Let us first try to define the cellular automata as 
follows: 
–! it is a Finite State Machine, with one transition function for 

all the cells,  
–! this transition function changes the current state of a cell 

depending on the previous state for that cell and its 
neighbors. 

•! All we need to do is to: 
–! design the transition function, 
–! set the initial state. 

•! Cells here use Flip-Flops. 
–! In general, registers. 

Another definition of a Cellular 
Automaton 



•! One advantage is that each cell  uses as many data as number of 
neighbor cells to calculate its next state. 

•! Next state represents an information that will be available for all 
neighbors including itself, 

•! The goal is to design the transition function for these cells 
•! There is no State Assignment problem because all cells are the 

same  
•! Transition function is the same for all cells. 
•! But the complexity is to design the Transition function that fits 

our application!!! 

What is the advantage of the CA 
over standard FSM? 

Formally, a CA with limited size is an FSM, but this model is 
not practical because of too many states of FSM, Cartesian 
Product of individual CA states. 



•! Images that represent evolutions of states of 
different cellular automata are used: 
–! each cell can be in state (0 or 1or 2 …..or n),  
–! each state is encoded with a unique color,  
–! each cellular automata has its own transition rule. 

Cellular Automata are often used to 
visualize complex dynamic 

phenomena 



Oil&Water Simulation 
(Bruce Boghosian, Boston Univ.) 

http://physics.bu.edu/~bruceb/MolSim/ 



SOS - Lecture 4 Cellular Automata - Pascal Triangle 
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Cellular Automata - Wow! examples Cellular Automata - Beauty 



Surfactant Formation 
(Bruce Boghosian, Boston Univ.) 











Other Application of CA: 
Consumer-resource 

interactions 
•! Key:  One species exploits the other in some way 

•! Predator-prey 
•! Herbivore-plant 
•! Host-parasite/parasitoid 
•! Host-Pathogen 

   



Predator-Prey (Lotka-Volterra) 

SOS - Lecture 6 



Predator-Prey - Basics 

SOS - Lecture 6 

•   Applicable to other problems: 
•  herbivore-plant 
•  parasitoid-host 

•  oscillations in the population size of both predator and 
prey 

•  peak of the predator's oscillation slightly behind the peak 
of the prey's oscillation 



Predator-Prey - Formulas 

SOS - Lecture 6 

dP/dt = c0P - d0PR 
 

dR/dt = c1R + d1PR 
 

P = Prey 
R = pRedator 



Predator-Prey - History 

SOS - Lecture 6 

Biology 
Mathematics 

Lotka-Volterra 

Industrial 
Evolution 

Population growth 

Differential Equations 



Predator-Prey - Assumptions 

SOS - Lecture 6 

•  population will grow exponentially when the predator is 
absent 

•  predator population will starve in the absence of the prey 
population  

•  predators can consume infinite quantities of prey 

•  populations are moving randomly through a environment 



Predator-Prey - History 

SOS - Lecture 6 

•! Alfred Lotka (american) and Vito Volterra (italian) 

•! Volterra wanted to model the fish populations in the Adriatic Sea 

•! Published his findings in Nature: 

dP/dt = c0P - d0PR 

dR/dt = c1R + d1PR 

•! Received letter from Lotka about  
previous similar publications of Lotka 
himself 

•! Developed model independently 



Predator-Prey (ideal) 

SOS - Lecture 6 



Predator-Prey (for real) 

SOS - Lecture 6 

Huffaker (1958) 



Predator-Prey - Correct? 

SOS - Lecture 6 



On the side - About Models 

SOS - Lecture 6 

•  must be simple enough to be mathematically tractable, 
but complex enough to represent a system realistically.  

•  shortcomings of the Lotka-Volterra model is its reliance 
on unrealistic assumptions.  

•  For example, prey populations are limited by food 
resources and not just by predation, and no predator 
can consume infinite quantities of prey.  
•  Many other examples of cyclical relationships 
between predator and prey populations have been 
demonstrated in the laboratory or observed in nature, 
which are better explained by other models. 



Characteristics of these types 
of problems 

•! Consumers can impact resources 

•! Consumers and resources are dynamic in space and 
time 

•! Models can result in complex dynamics 



Resource 

Consumer 1 Consumer 2 

Competition (true) 

Apparent Competition caused  
by consumer. 

Complex web of interactions 

Top Consumer 

Two consumers compete 
for resources 



Predator-prey simulation 
•! Cellular Automata 

•! http://www.stensland.net/java/erin.html 



Examples: Impacts of predators 

•! Marine organisms. 
–!Many lay 10,000 - 1,000,000 + eggs.   
–!On average, all but one become an adult 

•! Desert/arid grassland transition. 
–!Dominant vegetation type depends on small 

mammal seed predation. 



present 

removed 



Cascading Impacts of predators 

Islands in the Bahamas.  Simple food webs 

Lizards 

Plants 

Web Spiders 

Herbivorous 
Arthropods 

+ or - ? 

- 

- 

- 

Less arthropods will 
cause less or more 
lizards? 

Lizards eat 
spiders, 
spiders eat 
arthropods, 
etc. 



Biomedical simulations: what can be 
done? 

•! Lizards feed at two trophic levels 
–! They eat spiders (predators) and insect herbivores 
–! Results in complex responses 

•! Spiders increase by 3.1 times in absence of lizards 
–! predation and competition 

•! Arthropods (control vs. removal).  
–! Increase with lizards removed but not much… 
–! Damage to plants depends on what predator is dominant 
–! Lizards eat terrestrial bugs 
–! Spiders eat flying insects



Remove lizards, see what happens 

Spiders Insect herbivores 

Plants 

This color shows 
what happens with 
lizard removal 
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Cellular Automata - Classification 

•! dimension   1D, 2D ! nD 

•! neighborhood  Neumann, Moore for 1D 
   (2D => r is used to denote the radius) 

•! number of states  1,2,!, n 

Classification of Cellular 
Automata 
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Cellular Automata - Types 

•! Symmetric CAs 

•! Spatial isotropic 

•! Legal 

•! Totalistic 

•! Wolfram 

Cellular Automata - Types 
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Cellular Automata - Wolfram 

 I.  Always reaches a state in which 
 all cells are dead or alive 

 
 II.  Periodic behavior 
 
 III.  Everything occurs randomly 
 
 IV.  Unstructured but complex behavior 

Cellular Automata -  
Steven Wolfram 
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Cellular Automata - Wolfram 

! = chance that a cell is alive in the next state 

! 0.0 0.1 0.2 0.3 0.4 0.5 

I I II IV III 

Cellular Automata -  
Steven Wolfram 

What do these classes look like? 
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Cellular Automata - Complexity 

•! What is the total number of possibilities with CAs? 

•! Let s look at total number of possible rules 

•! For 1D CA: 
 23 = 8 possible neighborhoods  (for 3 cells) 
 28 = 256 possible rules 

•! For 2D CA: 
 29 = 512 possible neighborhoods  
 2512 possible rules (!!) 

Cellular Automata -  
Complexity 
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Cellular Automata - Alive or not? 

•! Can CA or Game of Life represent life as we know 
it? 

•! A computer can be simulated in Life 

•! Building blocks of computer (wires, gates, 
registers) can be  simulated in Life as patterns 
(gliders, eaters etcetera) 

•! Possible to build a computer, possible to build life? 

Cellular Automata -  
Alive or not? 



Universal Machines - Cellular Automata 

Stanislaw Ulam (1909 - 1984) 



ZOS Course book 
1999/2000 

Stanislaw Ulam 
Memorial Lectures 

•! conceived in the 1940s 

•! Stanislaw Ulam - evolution of graphic 
constructions generated by simple rules 

•! Ulam asked two questions: 
•! can recursive mechanisms explain 
the complexity of the real? 
•! Is complexity then only apparent, 
the rules themselves being simple? 

Universal Machines - Cellular Automata 
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Alan Turing (1912-1954) 

Universal Machines - Turing Machines 



Data 
(e.g., resignation letter) 

Program 
(e.g., Microsoft Word) 

Are they really this different? 

No, they re all just 0s and 1s! 

Universal Machines - Turing Machines 

Let s look at a Turing Machine! 
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John von Neumann (1903- 1957) 

Universal Machines - Neumann Machines 



•! John von Neumann interests himself on theory of 
self-reproductive automata 

•! worked on a self-reproducing kinematon  
(like the monolith in 2001 Space Odyssey ) 

•! Ulam suggested von Neumann to use cellular spaces  

•! extremely simplified universe 

Universal Machines - Neumann Machines 



SOS - Lecture 4 

von Neumann - Reproduction 

Turing - Universal  Machines 

Conway - Game of Life 

Langton - Reproducing Loops 

Cellular Automata 

Self-reproduction 

Self-Reproduction 



An example of Self Reproducing 
Cellular Automata 

Self-Reproduction 
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Self Reproduction 

Langton Loop s  

•! 8 states 

•! 29 rules 

Self-Reproduction 
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Summary 

•! Ulam 

•! Turing  

•! von Neumann 

•! Conway 

•! Langton 

•! Universal Machines 

•! Turing Machines 

•! von Neumann Machines 

•! Game of Life 

•! Self Reproduction 

Summary 



1. Seth Copen Goldstein, CMU  
2. David E. Culler, UC. Berkeley, 
3. Keller@cs.hmc.edu"
4. Syeda Mohsina Afroze 
and other students of Advanced Logic Synthesis, ECE 572, 
1999 and 2000.  
5. Russell Deaton, The University of Memphis 
6. Nouraddin Alhagi, class 572  
7. Schut, Vrije Universiteit, Amsterdam 

Sources 



Computers, 
Life and 

Complexity 
Allen Shotwell 
Ivy Tech State College 

http://ivytech7.cc.in.us/mathsci/complexity/life/index.htm 



Overview 
•! Start Specific - Game of Life 
•!Globalize - Cellular Automata 
•! Speculate - Analogies and Stuff 



Game of Life Overview 

•! History 
•! The Rules 
•! Manual  Life 
•! Computerized Life 
•! Emergent Behavior 
•! Parameter Effects 

http://www.reed.edu/~jwalton/gameoflife.html 
FOR MORE INFO... 



Game of Life - History 

•! Ulam and Von Neumann 
•! John Horton Conway 
•! April 1970, Scientific American, Martin Gardner 
•! Past time for computer programmers and 

mathematicians 



The Rules 
 Each cell has eight possible neighbors (four on its sides, 

four on its corners).  
 
The rules for survival, death and birth are as follows:  

–!      survival: if a live cell has two or three live neighbors, it 
survives.  

–!      death: if a live cell has less than two or more than three 
live neighbors, it dies.  

–!      birth: if a dead cell has exactly three live neighbors, it is 
born.  





Manual  Life 
•!Try it 



Computerized Life 
•! Java - http://remus.rutgers.edu/~kenn/java/Life/ 
•! DOS - ftp://ftp.cs.jhu.edu/pub/callahan/conways_life/

life16.zip 
•! X Windows - ftp://ftp.cs.jhu.edu/pub/callahan/

conways_life/xlife-3.0.tar.gz 
•! Windows 95 - http://www.mindspring.com/~alanh/

Life32/ 
•! Windows 3.1 - ftp://ftp.cs.jhu.edu/pub/callahan/

conways_life/wlife.zip 



Emergent behavior 
A. Simple Life Forms 
B. The Glider 
C. The Eater 
D. Methuselahs 
E. Glider Guns and Puffer Trains 
F. Spaceships 

 
http://www.reed.edu/~jwalton/gameoflife.html 

FOR MORE INFO... 



A. Simple Life Forms 
•! Simple Life forms can generally be grouped into two categories: 

still-lifes and blinkers.  
•! Still-lifes are stable forms that do not change over successive 

generations unless disturbed by other live cells.  

•! The block and the beehive are two common forms of still-lifes.  
•! Blinkers are periodic Life forms which have predictable behavior.  
•! The traffic light is a quite common form of blinker that has a 

period of two. 



B. The Glider 
•! The glider is a unique Life form. 

•! Technically, it is a blinker, having a period of four.  

•! However, it is not a stationary blinker, but one that 
travels a single diagonal cell ever four generations.  

•! If a glider is capable of escaping the milieu of a 
changing pattern, it travels off into the distance 
forever.  



Cheshire: 

Generation 1: 

 



Cheshire: 

Generation 3 

 



Cheshire: 

Generation 8 
and on 

 



C. The Eater 
•! The eater is a still-life that is remarkable for 

it's capacity to devour gliders, provided that 
the glider approaches it at a certain angle.  



Eater: 

Generation 1 

 



Eater: 

Generation 16 

 



Eater: 

Generation 22 

 



Eater: 

Generation 48 

 



D. Methuselahs 
•! Methuselahs are initial patterns of live cells that require 

a large number of generations to stabilize.  

•! The smallest and perhaps most famous methuselah is 
the R-pentomino which takes 1103 generations before 
it reaches a stable (periodic) state.  

•! The acorn is perhaps the longest lived methuselah 
known, requiring over 5000 generations to reach 
periodicity. 



R-pentomino  

Generation 1: 

 



E. Glider Guns and Puffer Trains 

•! Glider guns and puffer trains are two unique Life forms 
that produce populations of live cells that grow without 
limit.  

•! The glider gun simply continues to produce gliders 

•! The puffer train travels endlessly in a horizontal 
direction, leaving a trail of smoke behind it.  

•! Both were discovered by Bill Gosper of the 
Massachusetts Institute of Technology.  



Puffer Train: 

Generation 1 

 



Puffer Train: 

Generation 54 



F. Spaceships 
•! A spaceship is a finite pattern of live cells in Life that after a 

certain number of generations reappears, but translated in some 
direction by a nonzero distance.  

•! Translation is measured by the shortest king-wise connected path 
between two cells.  

•! So two cells adjacent to each other are one cell apart, whether or 
not the cells are adjacent orthogonally or diagonally.  

•! The process of translating after a certain number of generations is 
called moving or traveling.  

•! The number of generations before the pattern reappears (but 
translated) is called the period of the spaceship.  
–! (This is analogous to the period of stationary oscillators.) 



F. Spaceships (Cont) 
•! Many spaceships appear to be the same pattern after a number of 

generations,  
•! but on closer examination are not really the same.  

•! Instead of being merely translated, they are also reflected (or 
flipped) as in a mirror.  

•! After twice that number of generations, the spaceship does 
reappear in its original form, with just a translation.  

•! The period always measures this full number of generations. 

•! Spaceships which show their mirror image after half their period 
are called glide- reflection spaceships.  



Example Space 
Ship: 

Generation 1 

 



Example 
Spaceship: 

Generation 5 



Additional Life/CA Forms 
There are many other variations on these themes and many 
methods (in some cases) of ways of producing the ones shown 
here. 
•!ANTS (http://math.math.sunysb.edu/%7Escott/ants/) 
•!High Life (http://www.cs.jhu.edu/~callahan/altrule.html) 
•!Day and Night (http://www.cs.jhu.edu/~callahan/altrule.html) 
•!L-systems 

FOR MORE INFO... 

http://www.cs.jhu.edu/~callahan/lexiconf.htm 



Cellular Automata 

•! Extension of Life  
•!Different Rules 
•!Varying Dimensions 

http://alife.santafe.edu/alife/topics/cas/ca-faq/ca-faq.html 
FOR MORE INFO... 



Cellular Automata and Emergence 

•! Mandelbrot s Fictitious Example 
–!Sierpinski gasket arising from a grid of 

spins. N=-1 if S(t-1, n-1) = S(t-1,n+1) 
else n=+1 

•! 1D CA and Attractor Types 



Analysis of Emergence in CA 

•!Wolfram s Classification 
•!Mean Field Theory 
•! ! Parameter 
•!Holland s CGP 

FOR MORE INFO... 

http://www.santafe.edu/~hag/complex1/complex1.html 



Wolfram s Classifications 

Four Classifications 
•! Class I Very Dull 
•! Class II Dull 
•! Class III Interesting 
•! Class IV Very Interesting 

http://alife.santafe.edu/alife/topics/cas/ca-faq/classify/classify.html 
S. Wolfram, Statistical Mechanics of CA, Rev. Mod. Phys. 55:601-644 (1983) 

FOR MORE INFO... 



Class I Very Dull 
•!All Configurations map to a 

homogeneous state 



Class II Dull 
•!All configurations map to 

simple, separated periodic 
structures 



Class III Interesting 

•! Produces chaotic patterns 
(impossible to predict long time 
behavior) 



Class IV Very Interesting 

•! Produces propagating structures, 
may be used in computations (The 
Game of Life) 



Mean Field Theory 

•! Statistical Picture of performance 
•! Based on 

–! The probability of a cell being in a certain state 
–! The probability of a block (certain specified states in 

specified locations) at a given time. 
–! No correlation between cell probabilities 

•! Approximation which improves in 
large time or dimensional limits 



! Parameter 
•! Measure of the distribution of state transitions 

(alive to dead/dead to alive) 
•! Fraction of the rule table containing 

neighborhoods with nonzero transitions. 
•! Low !, low Wolfram class 
•! High !, higher Wolfram class 
•! Works bests in the limit of infinite number of 

states. 



Holland s CGP 
•! Constrained Generating Procedures - models 

•! Rules that are simple can generate emergent behavior 

•! Emergence centers on interactions that are more than the 
summing of independent activities 

•! Persistent emergent phenomena can serve as components 
of more complex emergent phenomena 

FOR MORE INFO... 
Holland, Emergence, Helix Books (Addison Wesley), 1998 



CA as Turing Machines 
•!Glider Guns as Logic Gates 
•!Universal Turing Machines 

FOR MORE INFO... 

http://cgi.student.nada.kth.se/cgi-bin/d95-aeh/get/umeng 



Life and Music Generation 

•!Brian Eno 
•! http://www.cs.jhu.edu/~callahan/enoexcerpt.html 



Life and Universal Computing 

•! BIT REPRESENTATION 
•! NOT Gate 
•! AND GATE 
•! NAND GATE 
•! UNIVERSAL GATE 
•! BASIC DIGITAL CIRCUITS 



BIT REPRESENTATION 

•! The Glider can be used to represent a 1  
•! The absence of a Glider can be used to 

represent a 0  
•! A string of Gliders with equal spacing is 

a binary number. 



The NOT Gate 
•! The Collision of two gliders at the proper 

angle eliminates them. 

•! The Gun can be used as a source of 
continuous, equally spaced gliders 

•! A stream of gliders representing bits can be 
placed so that it intersects with the Gun s 
output to produce a NOT Gate 



The AND Gate 
•! The Output of a Note Gate whose 

in input is A (NOT A) is combined 
with a second stream, B 

•! The Collisions of B and Not A are 
the same as B AND A 



THE NAND Gate 

•! The output of B AND A shot 
through another gun stream 
produces B NAND A 



BASIC DIGITAL CIRCUITS 

•!The Adder 



Artificial Life 
Artificial Life ("AL" or "Alife") is the name given to a 

new discipline that studies "natural" life by attempting 
to recreate biological phenomena from scratch within 
computers and other "artificial" media.  

 
Alife complements the traditional analytic approach of 

traditional biology with a synthetic approach in which, 
rather than studying biological phenomena by taking 
apart living organisms to see how they work, one 
attempts to put together systems that behave like 
living organisms. 



Simulators 

The phrase Artificial Life is somewhat all-
encompassing including things such as: 
 artificial intelligence,  
simulation of natural life,  
etc.  
 

To narrow the discussion some, we will focus 
on Artificial Life Simulations. 



Fundamental Algorithms of 
ALife Simulation 

Artificial life simulation can be subdivided 
into categories based on the algorithm used.  

 
The subdivisions are 
•  Neural Networks 
•  Evolutionary Algorithms 
•  Cellular Automata 



Neural Networks 

Input-output “neurons” organized into highly 
connected networks.  

 
Used for higher-order processes such as 

learning.  
(Brain Model) 



Evolutionary Algorithms 
Iterative algorithms that contain a population of 

individuals that compete. Each iteration 
produces survivors who compete the best.  

There are several methods. 
•  Genetic Algorithm 
•  Genetic Programming 
•  Evolutionary Programming 
•  Classifier Systems 
•  Lindenmeyer Systems 



Genetic Algorithm 

•  By J. Holland.  
•  A population of individuals is chosen at random.  
•  The “fitness” of the individuals is determined 

through a defined function.  
•  Fit individuals are kept and unfit ones are not.  
•  The new population undergoes the process.  
•  Individuals are in practice arrays of bits or 

characters. 



Genetic Programming 

Similar to the GA except the individuals are 
computer programs in a lisp environment. 



Evolutionary Programming 

Start with a random population. 
 
 Mutate the individuals to produce the new 

population.  
 
Assess fitness of offspring (new population) 



Classifier Systems 
J. Holland. Early application  of  Gas.  
 
CFSs  use evolutionary algorithm to adapt their behavior toward a 

changing ENVIRONMENT.  
 
Holland  envisioned  a  cognitive  system  capable of classifying the 

goings on in its ENVIRONMENT, and then reacting to  these  
goings  on appropriately.   

 
So  what is needed to build such a system? Obviously, we need  

(1)!an environment; 
(2)!receptors that tell our system  about the  goings  on;   
(3)!effectors,  that let our system manipulate its environment; and  
(4)!the system itself, conveniently a "black box" in this first approach, that has 

(2) and (3) attached to it, and "lives"  in (1). 



Lindenmeyer Systems 

A system of rules used to model growth and 
development of organisms. 



Cellular Automata 

Discrete system of cells that iterate based a set 
of rules (game of Life, etc) 



A Life Simulations 

Many Simulations based on the algorithms described 
have been produced.  

 
These Simulations can be divided into two types.  
 
Simulation of a particular life form using one or 

more algorithms, and Instantiation of artificial life 
(or the bottom-up approach). 



Simulation 

Examples of simulations of life forms include 
•  ANTS 
•  BOIDS 
•  Gene Pool 
•  Biotopia 



ANTS 
Simulation of Ant behavior using a CA where each cell 

is either a left or right turn.  
 
Ants move through the cells following the turn 

commands and changing the value of the cell to its 
opposite. 

 
Instead of attempting to represent a living organism or 

process, natural laws are invoked in an artificial 
biosphere.   
–! Tom Ray s Tierra is an example.   
–! Avida is another. 



BOIDS 
Each boid has direct access to the whole scene's geometric 

description, but reacts only to flockmates within a certain small 
radius of itself.  

 
The basic flocking model consists of three simple steering 

behaviors:  
 
   1.Separation: steer to avoid crowding local flockmates.  
   2.Alignment: steer towards the average heading of local 

flockmates.  
   3.Cohesion: steer to move toward the average position of local 

flockmates.  
 



BOIDS - Cont. 
In addition, the more elaborate behavioral model 

included predictive obstacle avoidance and goal 
seeking.  

 
Obstacle avoidance allowed the boids to fly through 

simulated environments while dodging static objects.  
 
For applications in computer animation, a low priority 

goal seeking behavior caused the flock to follow a 
scripted path.  



Gene Pool 
Uses a genetic algorithm for animation of 

creatures based on a response to a stimulus. 
In the gene pool, creatures try to reproduce 
by contacting other creatures.  

 
Those creatures who move around better 

contact more of their fellow creatures and 
reproduce more. 



Biotopia 
Similar to Gene Pool except creatures thrive on their 

ability to find food.  
 
If they don t find enough, they lose energy  and 

die.  
 
They reproduce by finding life  cells which they 

collect until they have enough to produce 
offspring. 



Instantiation (bottom-up 
approach) 

Instead of attempting to represent a living 
organism or process, natural laws are 
invoked in an artificial biosphere.   

 
Tom Ray s Tierra is an example.   
 
Avida is another. 



 Tierra 
“Organisms” in Tierra are machine-language 

programs.  
 
The organism/program is executed by moving 

through it’s list of instructions.  
 
Instructions in an organism may be altered 

through mutation or swapping instructions with 
other organisms and the organism will still be 
executable. 



Tierra - cont. 

There are 32 instructions available. Each is 
specified by a 5 bit number (any possible 5 
bit number is therefore valid). Mutation can 
be caused by “flipping” a bit.  



Tierra - cont. 

The Tierra system sets up a virtual computer 
with a CPU and memory. Organisms use the 
CPU to execute their instructions and reside 
in portions of the memory. 



Tierra - cont. 

The process normally starts with a single 
organism which is self reproducing. It is 
executed over and over producing copies of 
itself which are stored in the memory. The 
Tierra user introduces mutations in some of 
offspring. 



Tierra - cont. 

Most mutations produce organisms that don’t 
reproduce at all. However, occasionally, 
mutations produce organisms that are better 
at reproduction. 



Tierra - cont. 

When the memory of the virtual computer is 
full, some organisms must be removed. The 
system removes organisms based on how 
well the work. For example, it is possible to 
“define” error conditions for certain 
executions and remove those organisms that 
produce errors.  



A Life and Evolution 

– Alife a "living system” The distinction between 
it and carbon based systems is a matter of 
semantics. As a result, the study of an 
instantiation of a-life is not a simulation for the 
purposes of drawing analogies to other living 
systems. 



Statistical Mechanics and A life 
Evolution 

Observation of the “entropy” of an a-life 
system allows some understanding of the 
self criticality of life. 



Consider a set of N strings of Ng 
types such that Ng<N 

–  Number of strings(ni) (at some time, t+1) of a particular type is a 
function of the rate of replication, probability of string mutating to 
a different type and probability of a string of a different type 
mutating into this one. 

–  ni(t+1)-ni(t) = (εI -< ε >-Rl)ni+(N/Ng)Rl 

where ε is the replication rate, Rl is the mutation rate and (N/Ng)Rl is 
the rate at which other strings mutate into this one. 



There is one type that has the 
best growth rate (increases its 

number better than others). 
εbest 



Running such a system on Avida, 
measure its "Shannon" entropy. 

The entropy related to information 
theory which can be best defined 
as the measure of the information 

content of the system. More 
simply, a measure of the number  

of different types of strings. 
S = -Σ(ni/N)log(ni/N) 



Entropy over time looks like 
attached graph. 



Interpretation: System is in equilibrium 
except when occasional mutations 

produce a new type that has a better 
growth rate that the best so far. Under 

these conditions, the entropy drops 
because the new string dominates the 
system. After a time, the new string 

produces mutated offspring with similar 
or lesser growth factors. 



This change of state can be considered 
the equivalent of a sand pile’s avalanche 
and a result of self organized criticality. 



Entropy does not always return to its 
original value. Interpretation: A string 
can have "cold Spots" and "hot spots". 
Cold spots are parts of the string that, 

when mutated, do not increase the 
growth factor. Hot spots are parts of 

the string that, when mutated, do 
increase the growth factor. 



When a new string is produced and causes a "change 
in state", the new string has attained new information 

for producing a better growth rate.  
This information is stored in cold spots for the string.  
Since there is more information than in previous, less 

effective genes, the number of hot spots is reduced.  
Information within the string is added at the expense of 
entropy (information or differences in string types for 

the whole system). 



Fractals and Zipf's Law and A 
Life 

– Power law distributions are known to exist 
within certain quantities in living systems. For 
example, frequency distribution of number of 
taxa with a certain number of sub taxa. Also, 
frequency distribution of proteins of different 
lengths and of codons. Power laws can be 
indicative of self-organized criticality. 



The taxa example can be expected if there 
is no time scale governing the length of 

time a species dominates a population and 
the number of subfamilies is proportional 

to the length of time a certain species 
dominates. In addition, the taxa 

example is found to have fractal 
dimensions. 



In general, if the distribution of 
waiting times between events 

follows a power law, the system is 
in a self-organized critical state. 
– Analogy: the taxa study. Another example, wait 

times between entropy drops (changes in state) is 
measured in a A-life simulation using Tierra (shown 
in attached graph). 







If this power law distribution (in alife 
example) is fractal, then the same results 

could be expected for a much longer 
running simulation. This means the system 
can make huge jumps and magnitudes and 

still retain its same structure. In other 
words, a large number of strings could be 
wiped out very quickly without external 

interference. 



Resources 

– On Modeling Life, Chris Adami 
•  http://xxx.lanl.gov/abs/adap-org/9405002 

– A Mathematical Theory of Communication. 
C.E. Shannon 

•  http://cm.bell-labs.com/cm/ms/what/shannonday/
paper.html 

–  Self Organizing Criticality in Living Systems 
•  http://xxx.lanl.gov/abs/adap-org/9401001 

 
 


