
Cellular
Automata

What are Cellular Automata?
•! It is a model that can be used to show how the
elements of a system interact with each other.
•! Each element of the system is assigned a cell.
•! The cells can be:

–! 2-dimensional squares,
–! 3-dimensional blocks
–!or another shape such as a hexagon.

 Example of a two-dimensional
automaton

Here is a 2-d model, with
256 cells, each cell in this
example can be in either (0
or 1) state,

State 1 is encoded with
color black, 0 with white.

Each cell has eight
neighbors (excluding
itself).

Cellular Automata: the
specification

•! A neighborhood function that specifies
which of the cell s adjacent cells affect its
state.

•! A transition function that specifies mapping
from state of neighbor cells to state of given
cell

Each cell has a defined neighborhood.

For example, in a one dimension cellular automaton, a
neighborhood of radius one for a given cell would include the
cell to the immediate right and the cell to the immediate left.

The cell itself may or may not be included in the
neighborhood.

Different models.

(A,B,C,D,E,F,X) are cells

Examples of neighborhoods

What is the main
characteristics of Cellular

Automata?
•! Synchronous computation
•! Infinitely-large grid:

–! but finite occupancy,
–! grows when needed

•! Various dimensions (1D, 2D, 3D, …)
•! Typically fine-grain
•! If cells are distributed, they still need to communicate

across boundaries; they communicate once per cycle.

What are the Applications
of Cellular Automata?
•! Universal computers (embedded Turing

machines)
•! Self-reproduction
•! Diffusion equations
•! Artificial Life
•! Digital Physics

Some Examples of Application of
CA: Simulation Models

•! Game of Life
•! Gas particles: Billiard-ball model
•! Ising model: Ferro-magnetic spins
•! Heat equation simulation
•! Percolation models
•! Wire models
•! Lattice Gas models

•The cells on the end may (or may not) be treated as
"touching" each other as if the line of cells were circular.

If we consider them as they touch each other, then the cell
(A) is a neighbor of cell (C)

One-Dimensional Cellular Automaton with Wrap-
around

Life - The Game

Life - Conway s Game of Life

John H. Conway

Life - The Game
•! A cell dies or lives according to some transition rule

•! The world is round (flips over edges)

•! How many rules for Life? 20, 40, 100, 1000?

T = 0 T = 1

transition

rules

Three simple rules

•! dies if number of alive neighbour cells =< 2 (loneliness)

•! dies if number of alive neighbour cells >= 5 (overcrowding)

•! lives is number of alive neighbour cells = 3 (procreation)

Life - The Game

SOS - Lecture 4

Life - The Game

Examples of the rules

•! loneliness (dies if #alive =< 2)

•! overcrowding (dies if #alive >= 5)

•! procreation (lives if #alive = 3)

Life - The Game

How to design the functions for rules?

!

?

?

?

?

?

?

?

!

!

!

!

!

!

How to design the functions for rules?

SOS - Lecture 4

block pond ship eater

Stable

!

time = 1 time = 2

Periodic

Time = 1 time = 2 time = 3 time = 4 time = 5

Moving

Life - Patterns

Cellular Automata - Introduction

Now 1 second
later

Traditional science

•! Newton laws

•! states

Heisenberg principle

•! states that it is impossible to precisely know
the speed and the location of a particle

•! basis of quantum theory

•! problem: detailed description of states impossible etc etc

A CA is an array of identically programmed automata, or cells,
which interact with one another in a neighbourhood and have
definite state

Beyond Life - Cellular Automata

A CA is an array of identically programmed automata, or cells,
which interact with one another in a neighbourhood and have
definite state

Cellular Automata - Array

1 45 34 12 90 4 27 7

H Q M S W E T G

1 0 1 1 0 1 0 0

•! 1 dimensional

•! 2 dimensional
O
W J A
R
I T

D
G M

X E
N Z

R

P

Cellular Automata - Array

A CA is an array of identically programmed automata, or cells,
which interact with one another in a neighbourhood and have
definite state

SOS - Lecture 4

Cellular Automata - Cells

•! if #alive =< 2, then die
•! if #alive = 3, then live
•! if #alive >= 5, then die

•! if #alive =< 2, then
die
•! if #alive = 3, then live
•! if #alive >= 5, then
die

•! if #alive =< 2, then
die
•! if #alive = 3, then live
•! if #alive >= 5, then
die

Cellular Automata - Cells

A CA is an array of identically programmed automata, or cells,
which interact with one another in a neighbourhood and have
definite state

SOS - Lecture 4

Cellular Automata - Interaction

 Da rulez
 if #alive =< 2, then die
 if #alive = 3, then live
 if #alive >= 5, then die

Cellular Automata - Interaction

A CA is an array of identically programmed automata, or cells,
which interact with one another in a neighborhood and have
definite state

SOS - Lecture 4

Cellular Automata - Neighbourhood

Neumann
neighborhood

Moore
neighborhood

gCellular Automata - Neighborhood

A CA is an array of identically programmed automata, or cells,
which interact with one another in a neighborhood and have
definite state

SOS - Lecture 4

Cellular Automata - States

2 possible states: ON OFF

O
W J A
R
I T

D
G M

X E
N Z

R

P

A

Z
26 possible states: A ! Z

Never infinite!

Cellular Automata - States

SOS - Lecture 4

! ! ! !

! ! ! !

cell# 1 2 3 4 5 6 7 8 9 10 11 12 13

time = 1
!

time = 2
!

time = 3
!

time = 4
!

time = 5
!

time = 6
!

time = 7

The rules

Cellular Automata - Simple 1D example

One difficulty with
three-dimensional
cellular automata is the
graphical
representation (on two-
dimensional paper or
screen)

Example of a three-dimensional cellular
automaton

In the initial configuration of the cellular automata,
each cell is assigned a "starting" value from the range
of possible values.

For example, if the range of possible values is 0 or 1,
then each cell would be assigned a 0 or a 1 in the initial
configuration.

Each value represents a color to the computer.

Each cell is associated a transition rule.

Example of description of a cellular
automaton

Here is an example
In this example, the initial configuration for all the cells is state
0, except for 4 cells in state 1.

 Initial Step1 Step2

The next slide shows animation for this example

• The transition rule for this example, is :
• a cell stays in state 1 (black), if it has two or three black
neighbors.
• a cell changes to black, if it has exactly three black neighbors.

In this example:
•  Each cell has 8 neighbors,
•  Each cell can be in one possible value at any given time,

–  the transition takes place in discrete times
•  it helps to imagine a clock feeding all the cells.

•  Each State is encoded with a unique color,
–  The transition rule takes as input the present states (i.e., the

present values) of all of the cells in a given cell's neighborhood
and generates the next state (i.e., the next value) of the given
cell.

–  When applied to all of the cells individually in a cellular
automata, the next state of the whole cellular automata is
generated from the present state.

–  Then the next state of the cellular automata is copied to the
(new) present state and the process is repeated for as many
clock cycles as desired.

Let us now find
some real-life
examples!!!

•! Vote is an example of the simplest
possible kind of eight-neighbor CA.

•! Vote is so simple because:
–! (1) Vote is a "one-bit rule" and,
–! (2) Vote is "totalistic.

•! What do these expressions mean?

Example of a Cellular Automaton:
VOTE

•! NineSums:
The NineSum for a cell (C) is the sum of
1 s in all the surrounding cells
(neighbors including cell (C)).

•! EightSum:
EightSum for a cell (C) is the sum of 1 s
in all the surrounding cells (neighbors
excluding cell (C)).

Example of a Cellular Automaton:
VOTE

•! Let s consider the above example to explain what
NineSume & EightSum are.

•! In this example, each cell can be in either 0 or 1 state.
•! Cell C has 8 neighbors, 3 of them are in state 1,

–! Then the EightSum for cell C is 3, NineSume is 4.

Example of a Cellular Automaton:
VOTE

•!Vote is a one-bit rule.
•!The cells of Vote have only two possible

states: on or off, zero or one.
•!Choosing between two options requires

one bit of information, and this is why
we call Vote a one-bit rule.

Example of a Cellular Automaton:
VOTE

•! Vote is totalistic.
•! A totalistic rule updates a cell C by forming the

EightSum of the eight neighbors, adding in the value of
C itself to get the full NineSum, and then determining
the cell's new value strictly on the basis of where the
NineSum lies in the range of ten possibilities 0, 1, 2, 3, 4,
5, 6, 7, 8, and 9.

•! Under a totalistic rule, a cell's next state depends only on
the total number of bits in its nine-cell neighborhood.

•! Let us present more detail of this example.

Example of a Cellular
Automaton: VOTE

A rule like this is completely specified by a ten-entry
lookup table which gives the new cell value for each of
the ten possible neighborhood NineSums.

Each of the entries has to be 0 or 1, so filling in such a
lookup table involves making ten consecutive binary
decisions, which can be done in 210 different ways.

How many different eight-neighbor
1-bit totalistic rules are there?

Example of a Cellular Automaton:
VOTE

Each time a cell is updated, the NineSum of the cell and its eight neighbors is formed.

The idea behind Vote's rule is that if most cells in your neighborhood are 1, then you go
to 1, and if most cells in your neighborhood are 0, then you go to 0.

What do we mean by "most cells in your neighborhood?"

Since there are nine cells in your neighborhood, the most obvious interpretation is to
assume that "most" means "five or more".

Here is the lookup table for this simple majority rule.

Example of a Cellular Automaton:
VOTE

At this time we have an idea about
what the Cellular Automata is.

Let us now try to get closer to the
basic digital logic aspects

 and find a different definition for
Cellular Automata.

Many models of life can be created like this that illustrate
congestion, scarcity of resources, competing species, etc.

•! Let us first try to define the cellular automata as
follows:
–! it is a Finite State Machine, with one transition function for

all the cells,
–! this transition function changes the current state of a cell

depending on the previous state for that cell and its
neighbors.

•! All we need to do is to:
–! design the transition function,
–! set the initial state.

•! Cells here use Flip-Flops.
–! In general, registers.

Another definition of a Cellular
Automaton

•! One advantage is that each cell uses as many data as number of
neighbor cells to calculate its next state.

•! Next state represents an information that will be available for all
neighbors including itself,

•! The goal is to design the transition function for these cells
•! There is no State Assignment problem because all cells are the

same
•! Transition function is the same for all cells.
•! But the complexity is to design the Transition function that fits

our application!!!

What is the advantage of the CA
over standard FSM?

Formally, a CA with limited size is an FSM, but this model is
not practical because of too many states of FSM, Cartesian
Product of individual CA states.

•! Images that represent evolutions of states of
different cellular automata are used:
–! each cell can be in state (0 or 1or 2 …..or n),
–! each state is encoded with a unique color,
–! each cellular automata has its own transition rule.

Cellular Automata are often used to
visualize complex dynamic

phenomena

Oil&Water Simulation
(Bruce Boghosian, Boston Univ.)

http://physics.bu.edu/~bruceb/MolSim/

SOS - Lecture 4 Cellular Automata - Pascal Triangle

SOS - Lecture 4

Cellular Automata - Wow! examples Cellular Automata - Beauty

Surfactant Formation
(Bruce Boghosian, Boston Univ.)

Other Application of CA:
Consumer-resource

interactions
•! Key: One species exploits the other in some way

•! Predator-prey
•! Herbivore-plant
•! Host-parasite/parasitoid
•! Host-Pathogen

Predator-Prey (Lotka-Volterra)

SOS - Lecture 6

Predator-Prey - Basics

SOS - Lecture 6

•  Applicable to other problems:
•  herbivore-plant
•  parasitoid-host

•  oscillations in the population size of both predator and
prey

•  peak of the predator's oscillation slightly behind the peak
of the prey's oscillation

Predator-Prey - Formulas

SOS - Lecture 6

dP/dt = c0P - d0PR

dR/dt = c1R + d1PR

P = Prey
R = pRedator

Predator-Prey - History

SOS - Lecture 6

Biology
Mathematics

Lotka-Volterra

Industrial
Evolution

Population growth

Differential Equations

Predator-Prey - Assumptions

SOS - Lecture 6

•  population will grow exponentially when the predator is
absent

•  predator population will starve in the absence of the prey
population

•  predators can consume infinite quantities of prey

•  populations are moving randomly through a environment

Predator-Prey - History

SOS - Lecture 6

•! Alfred Lotka (american) and Vito Volterra (italian)

•! Volterra wanted to model the fish populations in the Adriatic Sea

•! Published his findings in Nature:

dP/dt = c0P - d0PR

dR/dt = c1R + d1PR

•! Received letter from Lotka about
previous similar publications of Lotka
himself

•! Developed model independently

Predator-Prey (ideal)

SOS - Lecture 6

Predator-Prey (for real)

SOS - Lecture 6

Huffaker (1958)

Predator-Prey - Correct?

SOS - Lecture 6

On the side - About Models

SOS - Lecture 6

•  must be simple enough to be mathematically tractable,
but complex enough to represent a system realistically.

•  shortcomings of the Lotka-Volterra model is its reliance
on unrealistic assumptions.

•  For example, prey populations are limited by food
resources and not just by predation, and no predator
can consume infinite quantities of prey.
•  Many other examples of cyclical relationships
between predator and prey populations have been
demonstrated in the laboratory or observed in nature,
which are better explained by other models.

Characteristics of these types
of problems

•! Consumers can impact resources

•! Consumers and resources are dynamic in space and
time

•! Models can result in complex dynamics

Resource

Consumer 1 Consumer 2

Competition (true)

Apparent Competition caused
by consumer.

Complex web of interactions

Top Consumer

Two consumers compete
for resources

Predator-prey simulation
•! Cellular Automata

•! http://www.stensland.net/java/erin.html

Examples: Impacts of predators

•! Marine organisms.
–!Many lay 10,000 - 1,000,000 + eggs.
–!On average, all but one become an adult

•! Desert/arid grassland transition.
–!Dominant vegetation type depends on small

mammal seed predation.

present

removed

Cascading Impacts of predators

Islands in the Bahamas. Simple food webs

Lizards

Plants

Web Spiders

Herbivorous
Arthropods

+ or - ?

-

-

-

Less arthropods will
cause less or more
lizards?

Lizards eat
spiders,
spiders eat
arthropods,
etc.

Biomedical simulations: what can be
done?

•! Lizards feed at two trophic levels
–! They eat spiders (predators) and insect herbivores
–! Results in complex responses

•! Spiders increase by 3.1 times in absence of lizards
–! predation and competition

•! Arthropods (control vs. removal).
–! Increase with lizards removed but not much…
–! Damage to plants depends on what predator is dominant
–! Lizards eat terrestrial bugs
–! Spiders eat flying insects

Remove lizards, see what happens

Spiders Insect herbivores

Plants

This color shows
what happens with
lizard removal

SOS - Lecture 4

Cellular Automata - Classification

•! dimension 1D, 2D ! nD

•! neighborhood Neumann, Moore for 1D
 (2D => r is used to denote the radius)

•! number of states 1,2,!, n

Classification of Cellular
Automata

SOS - Lecture 4

Cellular Automata - Types

•! Symmetric CAs

•! Spatial isotropic

•! Legal

•! Totalistic

•! Wolfram

Cellular Automata - Types

SOS - Lecture 4

Cellular Automata - Wolfram

 I. Always reaches a state in which
 all cells are dead or alive

 II. Periodic behavior

 III. Everything occurs randomly

 IV. Unstructured but complex behavior

Cellular Automata -
Steven Wolfram

SOS - Lecture 4

Cellular Automata - Wolfram

! = chance that a cell is alive in the next state

! 0.0 0.1 0.2 0.3 0.4 0.5

I I II IV III

Cellular Automata -
Steven Wolfram

What do these classes look like?

SOS - Lecture 4

Cellular Automata - Complexity

•! What is the total number of possibilities with CAs?

•! Let s look at total number of possible rules

•! For 1D CA:
 23 = 8 possible neighborhoods (for 3 cells)
 28 = 256 possible rules

•! For 2D CA:
 29 = 512 possible neighborhoods
 2512 possible rules (!!)

Cellular Automata -
Complexity

SOS - Lecture 4

Cellular Automata - Alive or not?

•! Can CA or Game of Life represent life as we know
it?

•! A computer can be simulated in Life

•! Building blocks of computer (wires, gates,
registers) can be simulated in Life as patterns
(gliders, eaters etcetera)

•! Possible to build a computer, possible to build life?

Cellular Automata -
Alive or not?

Universal Machines - Cellular Automata

Stanislaw Ulam (1909 - 1984)

ZOS Course book
1999/2000

Stanislaw Ulam
Memorial Lectures

•! conceived in the 1940s

•! Stanislaw Ulam - evolution of graphic
constructions generated by simple rules

•! Ulam asked two questions:
•! can recursive mechanisms explain
the complexity of the real?
•! Is complexity then only apparent,
the rules themselves being simple?

Universal Machines - Cellular Automata

SOS - Lecture 4

Alan Turing (1912-1954)

Universal Machines - Turing Machines

Data
(e.g., resignation letter)

Program
(e.g., Microsoft Word)

Are they really this different?

No, they re all just 0s and 1s!

Universal Machines - Turing Machines

Let s look at a Turing Machine!

SOS - Lecture 4

John von Neumann (1903- 1957)

Universal Machines - Neumann Machines

•! John von Neumann interests himself on theory of
self-reproductive automata

•! worked on a self-reproducing kinematon
(like the monolith in 2001 Space Odyssey)

•! Ulam suggested von Neumann to use cellular spaces

•! extremely simplified universe

Universal Machines - Neumann Machines

SOS - Lecture 4

von Neumann - Reproduction

Turing - Universal Machines

Conway - Game of Life

Langton - Reproducing Loops

Cellular Automata

Self-reproduction

Self-Reproduction

An example of Self Reproducing
Cellular Automata

Self-Reproduction

SOS - Lecture 4

Self Reproduction

Langton Loop s

•! 8 states

•! 29 rules

Self-Reproduction

SOS - Lecture 4

Summary

•! Ulam

•! Turing

•! von Neumann

•! Conway

•! Langton

•! Universal Machines

•! Turing Machines

•! von Neumann Machines

•! Game of Life

•! Self Reproduction

Summary

1. Seth Copen Goldstein, CMU
2. David E. Culler, UC. Berkeley,
3. Keller@cs.hmc.edu"
4. Syeda Mohsina Afroze
and other students of Advanced Logic Synthesis, ECE 572,
1999 and 2000.
5. Russell Deaton, The University of Memphis
6. Nouraddin Alhagi, class 572
7. Schut, Vrije Universiteit, Amsterdam

Sources

Computers,
Life and

Complexity
Allen Shotwell
Ivy Tech State College

http://ivytech7.cc.in.us/mathsci/complexity/life/index.htm

Overview
•! Start Specific - Game of Life
•!Globalize - Cellular Automata
•! Speculate - Analogies and Stuff

Game of Life Overview

•! History
•! The Rules
•! Manual Life
•! Computerized Life
•! Emergent Behavior
•! Parameter Effects

http://www.reed.edu/~jwalton/gameoflife.html
FOR MORE INFO...

Game of Life - History

•! Ulam and Von Neumann
•! John Horton Conway
•! April 1970, Scientific American, Martin Gardner
•! Past time for computer programmers and

mathematicians

The Rules
 Each cell has eight possible neighbors (four on its sides,

four on its corners).

The rules for survival, death and birth are as follows:

–! survival: if a live cell has two or three live neighbors, it
survives.

–! death: if a live cell has less than two or more than three
live neighbors, it dies.

–! birth: if a dead cell has exactly three live neighbors, it is
born.

Manual Life
•!Try it

Computerized Life
•! Java - http://remus.rutgers.edu/~kenn/java/Life/
•! DOS - ftp://ftp.cs.jhu.edu/pub/callahan/conways_life/

life16.zip
•! X Windows - ftp://ftp.cs.jhu.edu/pub/callahan/

conways_life/xlife-3.0.tar.gz
•! Windows 95 - http://www.mindspring.com/~alanh/

Life32/
•! Windows 3.1 - ftp://ftp.cs.jhu.edu/pub/callahan/

conways_life/wlife.zip

Emergent behavior
A. Simple Life Forms
B. The Glider
C. The Eater
D. Methuselahs
E. Glider Guns and Puffer Trains
F. Spaceships

http://www.reed.edu/~jwalton/gameoflife.html

FOR MORE INFO...

A. Simple Life Forms
•! Simple Life forms can generally be grouped into two categories:

still-lifes and blinkers.
•! Still-lifes are stable forms that do not change over successive

generations unless disturbed by other live cells.

•! The block and the beehive are two common forms of still-lifes.
•! Blinkers are periodic Life forms which have predictable behavior.
•! The traffic light is a quite common form of blinker that has a

period of two.

B. The Glider
•! The glider is a unique Life form.

•! Technically, it is a blinker, having a period of four.

•! However, it is not a stationary blinker, but one that
travels a single diagonal cell ever four generations.

•! If a glider is capable of escaping the milieu of a
changing pattern, it travels off into the distance
forever.

Cheshire:

Generation 1:

Cheshire:

Generation 3

Cheshire:

Generation 8
and on

C. The Eater
•! The eater is a still-life that is remarkable for

it's capacity to devour gliders, provided that
the glider approaches it at a certain angle.

Eater:

Generation 1

Eater:

Generation 16

Eater:

Generation 22

Eater:

Generation 48

D. Methuselahs
•! Methuselahs are initial patterns of live cells that require

a large number of generations to stabilize.

•! The smallest and perhaps most famous methuselah is
the R-pentomino which takes 1103 generations before
it reaches a stable (periodic) state.

•! The acorn is perhaps the longest lived methuselah
known, requiring over 5000 generations to reach
periodicity.

R-pentomino

Generation 1:

E. Glider Guns and Puffer Trains

•! Glider guns and puffer trains are two unique Life forms
that produce populations of live cells that grow without
limit.

•! The glider gun simply continues to produce gliders

•! The puffer train travels endlessly in a horizontal
direction, leaving a trail of smoke behind it.

•! Both were discovered by Bill Gosper of the
Massachusetts Institute of Technology.

Puffer Train:

Generation 1

Puffer Train:

Generation 54

F. Spaceships
•! A spaceship is a finite pattern of live cells in Life that after a

certain number of generations reappears, but translated in some
direction by a nonzero distance.

•! Translation is measured by the shortest king-wise connected path
between two cells.

•! So two cells adjacent to each other are one cell apart, whether or
not the cells are adjacent orthogonally or diagonally.

•! The process of translating after a certain number of generations is
called moving or traveling.

•! The number of generations before the pattern reappears (but
translated) is called the period of the spaceship.
–! (This is analogous to the period of stationary oscillators.)

F. Spaceships (Cont)
•! Many spaceships appear to be the same pattern after a number of

generations,
•! but on closer examination are not really the same.

•! Instead of being merely translated, they are also reflected (or
flipped) as in a mirror.

•! After twice that number of generations, the spaceship does
reappear in its original form, with just a translation.

•! The period always measures this full number of generations.

•! Spaceships which show their mirror image after half their period
are called glide- reflection spaceships.

Example Space
Ship:

Generation 1

Example
Spaceship:

Generation 5

Additional Life/CA Forms
There are many other variations on these themes and many
methods (in some cases) of ways of producing the ones shown
here.
•!ANTS (http://math.math.sunysb.edu/%7Escott/ants/)
•!High Life (http://www.cs.jhu.edu/~callahan/altrule.html)
•!Day and Night (http://www.cs.jhu.edu/~callahan/altrule.html)
•!L-systems

FOR MORE INFO...

http://www.cs.jhu.edu/~callahan/lexiconf.htm

Cellular Automata

•! Extension of Life
•!Different Rules
•!Varying Dimensions

http://alife.santafe.edu/alife/topics/cas/ca-faq/ca-faq.html
FOR MORE INFO...

Cellular Automata and Emergence

•! Mandelbrot s Fictitious Example
–!Sierpinski gasket arising from a grid of

spins. N=-1 if S(t-1, n-1) = S(t-1,n+1)
else n=+1

•! 1D CA and Attractor Types

Analysis of Emergence in CA

•!Wolfram s Classification
•!Mean Field Theory
•! ! Parameter
•!Holland s CGP

FOR MORE INFO...

http://www.santafe.edu/~hag/complex1/complex1.html

Wolfram s Classifications

Four Classifications
•! Class I Very Dull
•! Class II Dull
•! Class III Interesting
•! Class IV Very Interesting

http://alife.santafe.edu/alife/topics/cas/ca-faq/classify/classify.html
S. Wolfram, Statistical Mechanics of CA, Rev. Mod. Phys. 55:601-644 (1983)

FOR MORE INFO...

Class I Very Dull
•!All Configurations map to a

homogeneous state

Class II Dull
•!All configurations map to

simple, separated periodic
structures

Class III Interesting

•! Produces chaotic patterns
(impossible to predict long time
behavior)

Class IV Very Interesting

•! Produces propagating structures,
may be used in computations (The
Game of Life)

Mean Field Theory

•! Statistical Picture of performance
•! Based on

–! The probability of a cell being in a certain state
–! The probability of a block (certain specified states in

specified locations) at a given time.
–! No correlation between cell probabilities

•! Approximation which improves in
large time or dimensional limits

! Parameter
•! Measure of the distribution of state transitions

(alive to dead/dead to alive)
•! Fraction of the rule table containing

neighborhoods with nonzero transitions.
•! Low !, low Wolfram class
•! High !, higher Wolfram class
•! Works bests in the limit of infinite number of

states.

Holland s CGP
•! Constrained Generating Procedures - models

•! Rules that are simple can generate emergent behavior

•! Emergence centers on interactions that are more than the
summing of independent activities

•! Persistent emergent phenomena can serve as components
of more complex emergent phenomena

FOR MORE INFO...
Holland, Emergence, Helix Books (Addison Wesley), 1998

CA as Turing Machines
•!Glider Guns as Logic Gates
•!Universal Turing Machines

FOR MORE INFO...

http://cgi.student.nada.kth.se/cgi-bin/d95-aeh/get/umeng

Life and Music Generation

•!Brian Eno
•! http://www.cs.jhu.edu/~callahan/enoexcerpt.html

Life and Universal Computing

•! BIT REPRESENTATION
•! NOT Gate
•! AND GATE
•! NAND GATE
•! UNIVERSAL GATE
•! BASIC DIGITAL CIRCUITS

BIT REPRESENTATION

•! The Glider can be used to represent a 1
•! The absence of a Glider can be used to

represent a 0
•! A string of Gliders with equal spacing is

a binary number.

The NOT Gate
•! The Collision of two gliders at the proper

angle eliminates them.

•! The Gun can be used as a source of
continuous, equally spaced gliders

•! A stream of gliders representing bits can be
placed so that it intersects with the Gun s
output to produce a NOT Gate

The AND Gate
•! The Output of a Note Gate whose

in input is A (NOT A) is combined
with a second stream, B

•! The Collisions of B and Not A are
the same as B AND A

THE NAND Gate

•! The output of B AND A shot
through another gun stream
produces B NAND A

BASIC DIGITAL CIRCUITS

•!The Adder

Artificial Life
Artificial Life ("AL" or "Alife") is the name given to a

new discipline that studies "natural" life by attempting
to recreate biological phenomena from scratch within
computers and other "artificial" media.

Alife complements the traditional analytic approach of

traditional biology with a synthetic approach in which,
rather than studying biological phenomena by taking
apart living organisms to see how they work, one
attempts to put together systems that behave like
living organisms.

Simulators

The phrase Artificial Life is somewhat all-
encompassing including things such as:
 artificial intelligence,
simulation of natural life,
etc.

To narrow the discussion some, we will focus
on Artificial Life Simulations.

Fundamental Algorithms of
ALife Simulation

Artificial life simulation can be subdivided
into categories based on the algorithm used.

The subdivisions are
•  Neural Networks
•  Evolutionary Algorithms
•  Cellular Automata

Neural Networks

Input-output “neurons” organized into highly
connected networks.

Used for higher-order processes such as

learning.
(Brain Model)

Evolutionary Algorithms
Iterative algorithms that contain a population of

individuals that compete. Each iteration
produces survivors who compete the best.

There are several methods.
•  Genetic Algorithm
•  Genetic Programming
•  Evolutionary Programming
•  Classifier Systems
•  Lindenmeyer Systems

Genetic Algorithm

•  By J. Holland.
•  A population of individuals is chosen at random.
•  The “fitness” of the individuals is determined

through a defined function.
•  Fit individuals are kept and unfit ones are not.
•  The new population undergoes the process.
•  Individuals are in practice arrays of bits or

characters.

Genetic Programming

Similar to the GA except the individuals are
computer programs in a lisp environment.

Evolutionary Programming

Start with a random population.

 Mutate the individuals to produce the new

population.

Assess fitness of offspring (new population)

Classifier Systems
J. Holland. Early application of Gas.

CFSs use evolutionary algorithm to adapt their behavior toward a

changing ENVIRONMENT.

Holland envisioned a cognitive system capable of classifying the

goings on in its ENVIRONMENT, and then reacting to these
goings on appropriately.

So what is needed to build such a system? Obviously, we need

(1)!an environment;
(2)!receptors that tell our system about the goings on;
(3)!effectors, that let our system manipulate its environment; and
(4)!the system itself, conveniently a "black box" in this first approach, that has

(2) and (3) attached to it, and "lives" in (1).

Lindenmeyer Systems

A system of rules used to model growth and
development of organisms.

Cellular Automata

Discrete system of cells that iterate based a set
of rules (game of Life, etc)

A Life Simulations

Many Simulations based on the algorithms described
have been produced.

These Simulations can be divided into two types.

Simulation of a particular life form using one or

more algorithms, and Instantiation of artificial life
(or the bottom-up approach).

Simulation

Examples of simulations of life forms include
•  ANTS
•  BOIDS
•  Gene Pool
•  Biotopia

ANTS
Simulation of Ant behavior using a CA where each cell

is either a left or right turn.

Ants move through the cells following the turn

commands and changing the value of the cell to its
opposite.

Instead of attempting to represent a living organism or

process, natural laws are invoked in an artificial
biosphere.
–! Tom Ray s Tierra is an example.
–! Avida is another.

BOIDS
Each boid has direct access to the whole scene's geometric

description, but reacts only to flockmates within a certain small
radius of itself.

The basic flocking model consists of three simple steering

behaviors:

 1.Separation: steer to avoid crowding local flockmates.
 2.Alignment: steer towards the average heading of local

flockmates.
 3.Cohesion: steer to move toward the average position of local

flockmates.

BOIDS - Cont.
In addition, the more elaborate behavioral model

included predictive obstacle avoidance and goal
seeking.

Obstacle avoidance allowed the boids to fly through

simulated environments while dodging static objects.

For applications in computer animation, a low priority

goal seeking behavior caused the flock to follow a
scripted path.

Gene Pool
Uses a genetic algorithm for animation of

creatures based on a response to a stimulus.
In the gene pool, creatures try to reproduce
by contacting other creatures.

Those creatures who move around better

contact more of their fellow creatures and
reproduce more.

Biotopia
Similar to Gene Pool except creatures thrive on their

ability to find food.

If they don t find enough, they lose energy and

die.

They reproduce by finding life cells which they

collect until they have enough to produce
offspring.

Instantiation (bottom-up
approach)

Instead of attempting to represent a living
organism or process, natural laws are
invoked in an artificial biosphere.

Tom Ray s Tierra is an example.

Avida is another.

 Tierra
“Organisms” in Tierra are machine-language

programs.

The organism/program is executed by moving

through it’s list of instructions.

Instructions in an organism may be altered

through mutation or swapping instructions with
other organisms and the organism will still be
executable.

Tierra - cont.

There are 32 instructions available. Each is
specified by a 5 bit number (any possible 5
bit number is therefore valid). Mutation can
be caused by “flipping” a bit.

Tierra - cont.

The Tierra system sets up a virtual computer
with a CPU and memory. Organisms use the
CPU to execute their instructions and reside
in portions of the memory.

Tierra - cont.

The process normally starts with a single
organism which is self reproducing. It is
executed over and over producing copies of
itself which are stored in the memory. The
Tierra user introduces mutations in some of
offspring.

Tierra - cont.

Most mutations produce organisms that don’t
reproduce at all. However, occasionally,
mutations produce organisms that are better
at reproduction.

Tierra - cont.

When the memory of the virtual computer is
full, some organisms must be removed. The
system removes organisms based on how
well the work. For example, it is possible to
“define” error conditions for certain
executions and remove those organisms that
produce errors.

A Life and Evolution

– Alife a "living system” The distinction between
it and carbon based systems is a matter of
semantics. As a result, the study of an
instantiation of a-life is not a simulation for the
purposes of drawing analogies to other living
systems.

Statistical Mechanics and A life
Evolution

Observation of the “entropy” of an a-life
system allows some understanding of the
self criticality of life.

Consider a set of N strings of Ng
types such that Ng<N

–  Number of strings(ni) (at some time, t+1) of a particular type is a
function of the rate of replication, probability of string mutating to
a different type and probability of a string of a different type
mutating into this one.

–  ni(t+1)-ni(t) = (εI -< ε >-Rl)ni+(N/Ng)Rl

where ε is the replication rate, Rl is the mutation rate and (N/Ng)Rl is
the rate at which other strings mutate into this one.

There is one type that has the
best growth rate (increases its

number better than others).
εbest

Running such a system on Avida,
measure its "Shannon" entropy.

The entropy related to information
theory which can be best defined
as the measure of the information

content of the system. More
simply, a measure of the number

of different types of strings.
S = -Σ(ni/N)log(ni/N)

Entropy over time looks like
attached graph.

Interpretation: System is in equilibrium
except when occasional mutations

produce a new type that has a better
growth rate that the best so far. Under

these conditions, the entropy drops
because the new string dominates the
system. After a time, the new string

produces mutated offspring with similar
or lesser growth factors.

This change of state can be considered
the equivalent of a sand pile’s avalanche
and a result of self organized criticality.

Entropy does not always return to its
original value. Interpretation: A string
can have "cold Spots" and "hot spots".
Cold spots are parts of the string that,

when mutated, do not increase the
growth factor. Hot spots are parts of

the string that, when mutated, do
increase the growth factor.

When a new string is produced and causes a "change
in state", the new string has attained new information

for producing a better growth rate.
This information is stored in cold spots for the string.
Since there is more information than in previous, less

effective genes, the number of hot spots is reduced.
Information within the string is added at the expense of
entropy (information or differences in string types for

the whole system).

Fractals and Zipf's Law and A
Life

– Power law distributions are known to exist
within certain quantities in living systems. For
example, frequency distribution of number of
taxa with a certain number of sub taxa. Also,
frequency distribution of proteins of different
lengths and of codons. Power laws can be
indicative of self-organized criticality.

The taxa example can be expected if there
is no time scale governing the length of

time a species dominates a population and
the number of subfamilies is proportional

to the length of time a certain species
dominates. In addition, the taxa

example is found to have fractal
dimensions.

In general, if the distribution of
waiting times between events

follows a power law, the system is
in a self-organized critical state.
– Analogy: the taxa study. Another example, wait

times between entropy drops (changes in state) is
measured in a A-life simulation using Tierra (shown
in attached graph).

If this power law distribution (in alife
example) is fractal, then the same results

could be expected for a much longer
running simulation. This means the system
can make huge jumps and magnitudes and

still retain its same structure. In other
words, a large number of strings could be
wiped out very quickly without external

interference.

Resources

– On Modeling Life, Chris Adami
•  http://xxx.lanl.gov/abs/adap-org/9405002

– A Mathematical Theory of Communication.
C.E. Shannon

•  http://cm.bell-labs.com/cm/ms/what/shannonday/
paper.html

–  Self Organizing Criticality in Living Systems
•  http://xxx.lanl.gov/abs/adap-org/9401001

