NOWHERE TO HIDE

— NOTES FOR ADVANCED COMPUTATIONAL MODELS —

We will say that a numerical function J/C\: N — N simulates a function f : D — D
over an arbitrary domain D with respect to an injective representation p : D — N
if p(f(n)) = f(p(n)) for all n € N. (This definition can be extended to partial
functions and to wider arity than 1.)

The question we address is whether, with this definition, an (intuitively) un-
computable function can be simulated by a recursive (computable) function if do
not restrict the representation to be (intuitively) effective. We show that—under
reasonable assumptions—such an anomaly is impossible, lending credence to the
above definition of simulation.

We need to be careful, since a computable function can in fact simulate an un-
computable one if the representation itself does uncomputable work. For example,
consider any standard enumeration TM,,, n = 0,1, ..., of Turing machines. Define
the following uncomputable functions: A : N — N enumerates (the numbers of)
those machines that do not halt on the empty tape; h : N — N enumerates those
that do. So h(N) W h(N) = N, where h(N) is the image {h(n) : n € N} of h and
h(N) is the image of h. Then the uncomputable function

Hn) = {mln R(N) if TM,, does not halt

min h(N) if TM,, halts

is simulated by the computable parity function (n mod 2) under the following
(uncomputable) bijective representation:

(n) 2h~1(n) if TM,, does not halt
n) =
P 9h~'(n)+1 if TM, halts

Note that the successor function cannot be simulated by any computable function
under this nefarious representation. (Exercise: Prove or disprove this claim.)

In the opposite direction, it is quite clear that a non-computable function can al-
ways simulate a recursive one. For example, the identity function 2 on the naturals
is tracked by the uncomputable function

2(2n) = n
1(2n+1) = halt(n)

under the (computable) injective representation p : n — 2n (where halt is the

halting function).
1

2 — NOTES FOR ADVANCED COMPUTATIONAL MODELS —

To circumvent the hiding of supernatural power in a representation, without
resorting to a circular definition of effectiveness, let’s say that an injective numer-
ical representation p : D — N is good if there is some finite (or countable) set of
functions C' over D via which all of D is reachable, that is, each z € D is the value
of at least one (ground) term over (the signature of) C. Furthermore, each ¢ € C
is simulated under p by a recursive numerical functions ¢. This condition guar-
antees that representations for all the elements of the domain can be effectively
generated.

The key to everything is that a good representation always has a recursive
definition (as we saw above for successor):

ple@r,. ., z)) = Ap@r),....plwe))
for each ¢ € C (at least one of which must be a constant of arity 0). For this to
constitute an effective definition, we need to be able to extract the arguments of
c(xy,...,xp) given its value in D. Assuming the ability to check equality over D,
one can effectively generate all terms over C' in some order, remembering how they
have been constructed, so that when the domain value ¢(x1, . .., x;) is encountered,
one knows which ¢ € C' was used to construct it and also what the values of its
arguments were. Furthermore, the inverse function p=! : N — D can be computed
for every number in the image p(N) of the representation, by enumerating the
elements of D and looking at their values under p.

For example, consider the constructors zero, 0, and successor, s, of the natu-
rals. Suppose these are mapped to 0 and s, respectively, under a good injective
representation p : N — N. Then p can be defined recursively as follows:

~

p(0) = 0
p(s(n)) = 5(p(n))
Therefore, any g : N — N that is simulated by a recursive g : N — N under this
representation must itself be recursive, since

gn) = p~'(g(p(n)))
is the composition of computable functions.
The point is that in general, under the above (lax) assumptions, if the simulating
function A is computable, then the simulated function h can in fact be programmed
effectively over the combined domain D ¥ N:

hc(ay,...,xe)) = p (@p(x1),- .., p(xe)))

for each ¢ € C'. For this to work, we presume an effective equality test for D. This
makes it possible to extract the z;, to which the computable p, p~1, and ¢’s can
be applied.

It seems right, then, to say, in general, that a function h over an arbitrary
domain D is not computable iff there is a good bijective representation 7 : D <> N
under which h is simulated by an uncomputable numeric function. We show that

NOWHERE TO HIDE 3

(1) no uncomputable function (in this sense) over any domain is ever simulated
by a recursive function for any good injective representation and that (2) every
computable function can be simulated by a recursive function regardless of which
good representation is used.

(1) Let A’ : N — N be the function that simulates h under =, that is, 7(h(z)) =
R (m(z)) for all x € D. Similarly, let ¢ : N — N be the recursive simulation of
ceC.

If ﬁ, the function that simulates h under p, is recursive, then A’ must also be,

since N
K(n) = m(h(r~'(n))) = 7(p~" (h(p(n~(n)))))
Let 7 = 7 1op. We will show that 7 is good, from which it follows, by the previous
discussion, that A’ = 7o h o771, which is simulated by h, is recursive. Hence that
h is effective by our proposed definition.
Define (looking at the unary case by way of example)

(n) = 7(ck (77" (n)))
To show that 7 is effective, we can work with any standard numerical encoding of

terms over C, rather than with elements of D, and compute 7~! and p as indicated
above.

(2) Let g : D — D:; let g be mapped to recursive ¢’ under some effective bijection
7; and let p be any effective representation. (In particular, we have seen that good
representations can be computed effectively.) The recursive function

g(n) = p(r = (g'(x(p™"(n)))))

simulates g, since

