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The typed lambda calculus is normalizing.

(We have already seen that it is terminating,
so this is a weaker result.)



Difficulty

* Jerms grow
o (M.AX.f(fX))B = Ax.B(Bx)

* Redexes born

o (AMfAXI(TX))(AY.M) = Ax.(Ay.M)((Ay.M)x)

* Redexes multiply
o (ALAXI(TX))((AY.M)B) = Ax.((Ay.M)

3)(((Ay.M)




Preservation

o Contraction preserves type

 Reduction preserves type



Redex Creation

e Born
* (A.C[xN]))(Ay.M) = C{(Ay.M)N]

 Contracted
o (AXAY.M[X])NP = (Ay.M[N])P

e Extracted
o (AX.X)(AY.M)N = (Ay.M)N



Nesting Height

Base type: h(o) =0

Arrow type: h(o—=1) = max(h(a)+1,h(t))



Redex Reduction

e Born

* (MX.C[XN]))Ay.M) = Cl(Ay.M)N']

(0—>1)—0 0T

e Contracted

o (AXAY.M[X])NP = (Ay.M[N])P

0—(0—-T) 0T

e Extracted

o (AX.X)(AY.M)N = (Ay.M)N

(0—>1)2(0—>T) 0T



Normalization Strategy (Turing)

Choose an innermost (rightmost) maximal
(highest function type) redex.



Multiset Order



Proof

ook at multiset of redex heights.
No new maximal redexes created by a step.

One maximal redex removed.
Many smaller may be created.



Redex Creation

e Born

o (AX...xB..)(A\y.M) =» (Ay.M)B..

* Duplicated
o (AX. . X.X.)((AY.M)B) = . (Ay.M)

e Extracted

e (AX.X)(AY.M)B = (Ay.M)B
e (AX.(Ay.M))AB = (A\y.M)B

3. (\v.M)B..




Richer lypes

Union (sum) types
Intersection (product) types
Dependent types
Polymorphic types

Types of types
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